| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/err.h> |
| #include <linux/irq_work.h> |
| #include <linux/slab.h> |
| #include <linux/filter.h> |
| #include <linux/mm.h> |
| #include <linux/vmalloc.h> |
| #include <linux/wait.h> |
| #include <linux/poll.h> |
| #include <linux/kmemleak.h> |
| #include <uapi/linux/btf.h> |
| #include <linux/btf_ids.h> |
| |
| #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) |
| |
| /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ |
| #define RINGBUF_PGOFF \ |
| (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) |
| /* consumer page and producer page */ |
| #define RINGBUF_POS_PAGES 2 |
| |
| #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) |
| |
| /* Maximum size of ring buffer area is limited by 32-bit page offset within |
| * record header, counted in pages. Reserve 8 bits for extensibility, and take |
| * into account few extra pages for consumer/producer pages and |
| * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single |
| * ring buffer. |
| */ |
| #define RINGBUF_MAX_DATA_SZ \ |
| (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) |
| |
| struct bpf_ringbuf { |
| wait_queue_head_t waitq; |
| struct irq_work work; |
| u64 mask; |
| struct page **pages; |
| int nr_pages; |
| spinlock_t spinlock ____cacheline_aligned_in_smp; |
| /* For user-space producer ring buffers, an atomic_t busy bit is used |
| * to synchronize access to the ring buffers in the kernel, rather than |
| * the spinlock that is used for kernel-producer ring buffers. This is |
| * done because the ring buffer must hold a lock across a BPF program's |
| * callback: |
| * |
| * __bpf_user_ringbuf_peek() // lock acquired |
| * -> program callback_fn() |
| * -> __bpf_user_ringbuf_sample_release() // lock released |
| * |
| * It is unsafe and incorrect to hold an IRQ spinlock across what could |
| * be a long execution window, so we instead simply disallow concurrent |
| * access to the ring buffer by kernel consumers, and return -EBUSY from |
| * __bpf_user_ringbuf_peek() if the busy bit is held by another task. |
| */ |
| atomic_t busy ____cacheline_aligned_in_smp; |
| /* Consumer and producer counters are put into separate pages to |
| * allow each position to be mapped with different permissions. |
| * This prevents a user-space application from modifying the |
| * position and ruining in-kernel tracking. The permissions of the |
| * pages depend on who is producing samples: user-space or the |
| * kernel. |
| * |
| * Kernel-producer |
| * --------------- |
| * The producer position and data pages are mapped as r/o in |
| * userspace. For this approach, bits in the header of samples are |
| * used to signal to user-space, and to other producers, whether a |
| * sample is currently being written. |
| * |
| * User-space producer |
| * ------------------- |
| * Only the page containing the consumer position is mapped r/o in |
| * user-space. User-space producers also use bits of the header to |
| * communicate to the kernel, but the kernel must carefully check and |
| * validate each sample to ensure that they're correctly formatted, and |
| * fully contained within the ring buffer. |
| */ |
| unsigned long consumer_pos __aligned(PAGE_SIZE); |
| unsigned long producer_pos __aligned(PAGE_SIZE); |
| char data[] __aligned(PAGE_SIZE); |
| }; |
| |
| struct bpf_ringbuf_map { |
| struct bpf_map map; |
| struct bpf_ringbuf *rb; |
| }; |
| |
| /* 8-byte ring buffer record header structure */ |
| struct bpf_ringbuf_hdr { |
| u32 len; |
| u32 pg_off; |
| }; |
| |
| static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) |
| { |
| const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | |
| __GFP_NOWARN | __GFP_ZERO; |
| int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES; |
| int nr_data_pages = data_sz >> PAGE_SHIFT; |
| int nr_pages = nr_meta_pages + nr_data_pages; |
| struct page **pages, *page; |
| struct bpf_ringbuf *rb; |
| size_t array_size; |
| int i; |
| |
| /* Each data page is mapped twice to allow "virtual" |
| * continuous read of samples wrapping around the end of ring |
| * buffer area: |
| * ------------------------------------------------------ |
| * | meta pages | real data pages | same data pages | |
| * ------------------------------------------------------ |
| * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | |
| * ------------------------------------------------------ |
| * | | TA DA | TA DA | |
| * ------------------------------------------------------ |
| * ^^^^^^^ |
| * | |
| * Here, no need to worry about special handling of wrapped-around |
| * data due to double-mapped data pages. This works both in kernel and |
| * when mmap()'ed in user-space, simplifying both kernel and |
| * user-space implementations significantly. |
| */ |
| array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); |
| pages = bpf_map_area_alloc(array_size, numa_node); |
| if (!pages) |
| return NULL; |
| |
| for (i = 0; i < nr_pages; i++) { |
| page = alloc_pages_node(numa_node, flags, 0); |
| if (!page) { |
| nr_pages = i; |
| goto err_free_pages; |
| } |
| pages[i] = page; |
| if (i >= nr_meta_pages) |
| pages[nr_data_pages + i] = page; |
| } |
| |
| rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, |
| VM_MAP | VM_USERMAP, PAGE_KERNEL); |
| if (rb) { |
| kmemleak_not_leak(pages); |
| rb->pages = pages; |
| rb->nr_pages = nr_pages; |
| return rb; |
| } |
| |
| err_free_pages: |
| for (i = 0; i < nr_pages; i++) |
| __free_page(pages[i]); |
| bpf_map_area_free(pages); |
| return NULL; |
| } |
| |
| static void bpf_ringbuf_notify(struct irq_work *work) |
| { |
| struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); |
| |
| wake_up_all(&rb->waitq); |
| } |
| |
| static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) |
| { |
| struct bpf_ringbuf *rb; |
| |
| rb = bpf_ringbuf_area_alloc(data_sz, numa_node); |
| if (!rb) |
| return NULL; |
| |
| spin_lock_init(&rb->spinlock); |
| atomic_set(&rb->busy, 0); |
| init_waitqueue_head(&rb->waitq); |
| init_irq_work(&rb->work, bpf_ringbuf_notify); |
| |
| rb->mask = data_sz - 1; |
| rb->consumer_pos = 0; |
| rb->producer_pos = 0; |
| |
| return rb; |
| } |
| |
| static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| |
| if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) |
| return ERR_PTR(-EINVAL); |
| |
| if (attr->key_size || attr->value_size || |
| !is_power_of_2(attr->max_entries) || |
| !PAGE_ALIGNED(attr->max_entries)) |
| return ERR_PTR(-EINVAL); |
| |
| #ifdef CONFIG_64BIT |
| /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ |
| if (attr->max_entries > RINGBUF_MAX_DATA_SZ) |
| return ERR_PTR(-E2BIG); |
| #endif |
| |
| rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); |
| if (!rb_map) |
| return ERR_PTR(-ENOMEM); |
| |
| bpf_map_init_from_attr(&rb_map->map, attr); |
| |
| rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); |
| if (!rb_map->rb) { |
| bpf_map_area_free(rb_map); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| return &rb_map->map; |
| } |
| |
| static void bpf_ringbuf_free(struct bpf_ringbuf *rb) |
| { |
| /* copy pages pointer and nr_pages to local variable, as we are going |
| * to unmap rb itself with vunmap() below |
| */ |
| struct page **pages = rb->pages; |
| int i, nr_pages = rb->nr_pages; |
| |
| vunmap(rb); |
| for (i = 0; i < nr_pages; i++) |
| __free_page(pages[i]); |
| bpf_map_area_free(pages); |
| } |
| |
| static void ringbuf_map_free(struct bpf_map *map) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| bpf_ringbuf_free(rb_map->rb); |
| bpf_map_area_free(rb_map); |
| } |
| |
| static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) |
| { |
| return ERR_PTR(-ENOTSUPP); |
| } |
| |
| static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, |
| u64 flags) |
| { |
| return -ENOTSUPP; |
| } |
| |
| static int ringbuf_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| return -ENOTSUPP; |
| } |
| |
| static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, |
| void *next_key) |
| { |
| return -ENOTSUPP; |
| } |
| |
| static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| |
| if (vma->vm_flags & VM_WRITE) { |
| /* allow writable mapping for the consumer_pos only */ |
| if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) |
| return -EPERM; |
| } else { |
| vm_flags_clear(vma, VM_MAYWRITE); |
| } |
| /* remap_vmalloc_range() checks size and offset constraints */ |
| return remap_vmalloc_range(vma, rb_map->rb, |
| vma->vm_pgoff + RINGBUF_PGOFF); |
| } |
| |
| static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| |
| if (vma->vm_flags & VM_WRITE) { |
| if (vma->vm_pgoff == 0) |
| /* Disallow writable mappings to the consumer pointer, |
| * and allow writable mappings to both the producer |
| * position, and the ring buffer data itself. |
| */ |
| return -EPERM; |
| } else { |
| vm_flags_clear(vma, VM_MAYWRITE); |
| } |
| /* remap_vmalloc_range() checks size and offset constraints */ |
| return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); |
| } |
| |
| static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) |
| { |
| unsigned long cons_pos, prod_pos; |
| |
| cons_pos = smp_load_acquire(&rb->consumer_pos); |
| prod_pos = smp_load_acquire(&rb->producer_pos); |
| return prod_pos - cons_pos; |
| } |
| |
| static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) |
| { |
| return rb->mask + 1; |
| } |
| |
| static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, |
| struct poll_table_struct *pts) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| poll_wait(filp, &rb_map->rb->waitq, pts); |
| |
| if (ringbuf_avail_data_sz(rb_map->rb)) |
| return EPOLLIN | EPOLLRDNORM; |
| return 0; |
| } |
| |
| static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, |
| struct poll_table_struct *pts) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| poll_wait(filp, &rb_map->rb->waitq, pts); |
| |
| if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) |
| return EPOLLOUT | EPOLLWRNORM; |
| return 0; |
| } |
| |
| BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) |
| const struct bpf_map_ops ringbuf_map_ops = { |
| .map_meta_equal = bpf_map_meta_equal, |
| .map_alloc = ringbuf_map_alloc, |
| .map_free = ringbuf_map_free, |
| .map_mmap = ringbuf_map_mmap_kern, |
| .map_poll = ringbuf_map_poll_kern, |
| .map_lookup_elem = ringbuf_map_lookup_elem, |
| .map_update_elem = ringbuf_map_update_elem, |
| .map_delete_elem = ringbuf_map_delete_elem, |
| .map_get_next_key = ringbuf_map_get_next_key, |
| .map_btf_id = &ringbuf_map_btf_ids[0], |
| }; |
| |
| BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) |
| const struct bpf_map_ops user_ringbuf_map_ops = { |
| .map_meta_equal = bpf_map_meta_equal, |
| .map_alloc = ringbuf_map_alloc, |
| .map_free = ringbuf_map_free, |
| .map_mmap = ringbuf_map_mmap_user, |
| .map_poll = ringbuf_map_poll_user, |
| .map_lookup_elem = ringbuf_map_lookup_elem, |
| .map_update_elem = ringbuf_map_update_elem, |
| .map_delete_elem = ringbuf_map_delete_elem, |
| .map_get_next_key = ringbuf_map_get_next_key, |
| .map_btf_id = &user_ringbuf_map_btf_ids[0], |
| }; |
| |
| /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, |
| * calculate offset from record metadata to ring buffer in pages, rounded |
| * down. This page offset is stored as part of record metadata and allows to |
| * restore struct bpf_ringbuf * from record pointer. This page offset is |
| * stored at offset 4 of record metadata header. |
| */ |
| static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, |
| struct bpf_ringbuf_hdr *hdr) |
| { |
| return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; |
| } |
| |
| /* Given pointer to ring buffer record header, restore pointer to struct |
| * bpf_ringbuf itself by using page offset stored at offset 4 |
| */ |
| static struct bpf_ringbuf * |
| bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) |
| { |
| unsigned long addr = (unsigned long)(void *)hdr; |
| unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; |
| |
| return (void*)((addr & PAGE_MASK) - off); |
| } |
| |
| static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) |
| { |
| unsigned long cons_pos, prod_pos, new_prod_pos, flags; |
| u32 len, pg_off; |
| struct bpf_ringbuf_hdr *hdr; |
| |
| if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) |
| return NULL; |
| |
| len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); |
| if (len > ringbuf_total_data_sz(rb)) |
| return NULL; |
| |
| cons_pos = smp_load_acquire(&rb->consumer_pos); |
| |
| if (in_nmi()) { |
| if (!spin_trylock_irqsave(&rb->spinlock, flags)) |
| return NULL; |
| } else { |
| spin_lock_irqsave(&rb->spinlock, flags); |
| } |
| |
| prod_pos = rb->producer_pos; |
| new_prod_pos = prod_pos + len; |
| |
| /* check for out of ringbuf space by ensuring producer position |
| * doesn't advance more than (ringbuf_size - 1) ahead |
| */ |
| if (new_prod_pos - cons_pos > rb->mask) { |
| spin_unlock_irqrestore(&rb->spinlock, flags); |
| return NULL; |
| } |
| |
| hdr = (void *)rb->data + (prod_pos & rb->mask); |
| pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); |
| hdr->len = size | BPF_RINGBUF_BUSY_BIT; |
| hdr->pg_off = pg_off; |
| |
| /* pairs with consumer's smp_load_acquire() */ |
| smp_store_release(&rb->producer_pos, new_prod_pos); |
| |
| spin_unlock_irqrestore(&rb->spinlock, flags); |
| |
| return (void *)hdr + BPF_RINGBUF_HDR_SZ; |
| } |
| |
| BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| |
| if (unlikely(flags)) |
| return 0; |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_reserve_proto = { |
| .func = bpf_ringbuf_reserve, |
| .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, |
| .arg3_type = ARG_ANYTHING, |
| }; |
| |
| static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) |
| { |
| unsigned long rec_pos, cons_pos; |
| struct bpf_ringbuf_hdr *hdr; |
| struct bpf_ringbuf *rb; |
| u32 new_len; |
| |
| hdr = sample - BPF_RINGBUF_HDR_SZ; |
| rb = bpf_ringbuf_restore_from_rec(hdr); |
| new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; |
| if (discard) |
| new_len |= BPF_RINGBUF_DISCARD_BIT; |
| |
| /* update record header with correct final size prefix */ |
| xchg(&hdr->len, new_len); |
| |
| /* if consumer caught up and is waiting for our record, notify about |
| * new data availability |
| */ |
| rec_pos = (void *)hdr - (void *)rb->data; |
| cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; |
| |
| if (flags & BPF_RB_FORCE_WAKEUP) |
| irq_work_queue(&rb->work); |
| else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) |
| irq_work_queue(&rb->work); |
| } |
| |
| BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) |
| { |
| bpf_ringbuf_commit(sample, flags, false /* discard */); |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_submit_proto = { |
| .func = bpf_ringbuf_submit, |
| .ret_type = RET_VOID, |
| .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, |
| .arg2_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) |
| { |
| bpf_ringbuf_commit(sample, flags, true /* discard */); |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_discard_proto = { |
| .func = bpf_ringbuf_discard, |
| .ret_type = RET_VOID, |
| .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, |
| .arg2_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, |
| u64, flags) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| void *rec; |
| |
| if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) |
| return -EINVAL; |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| rec = __bpf_ringbuf_reserve(rb_map->rb, size); |
| if (!rec) |
| return -EAGAIN; |
| |
| memcpy(rec, data, size); |
| bpf_ringbuf_commit(rec, flags, false /* discard */); |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_output_proto = { |
| .func = bpf_ringbuf_output, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, |
| .arg3_type = ARG_CONST_SIZE_OR_ZERO, |
| .arg4_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) |
| { |
| struct bpf_ringbuf *rb; |
| |
| rb = container_of(map, struct bpf_ringbuf_map, map)->rb; |
| |
| switch (flags) { |
| case BPF_RB_AVAIL_DATA: |
| return ringbuf_avail_data_sz(rb); |
| case BPF_RB_RING_SIZE: |
| return ringbuf_total_data_sz(rb); |
| case BPF_RB_CONS_POS: |
| return smp_load_acquire(&rb->consumer_pos); |
| case BPF_RB_PROD_POS: |
| return smp_load_acquire(&rb->producer_pos); |
| default: |
| return 0; |
| } |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_query_proto = { |
| .func = bpf_ringbuf_query, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, |
| struct bpf_dynptr_kern *, ptr) |
| { |
| struct bpf_ringbuf_map *rb_map; |
| void *sample; |
| int err; |
| |
| if (unlikely(flags)) { |
| bpf_dynptr_set_null(ptr); |
| return -EINVAL; |
| } |
| |
| err = bpf_dynptr_check_size(size); |
| if (err) { |
| bpf_dynptr_set_null(ptr); |
| return err; |
| } |
| |
| rb_map = container_of(map, struct bpf_ringbuf_map, map); |
| |
| sample = __bpf_ringbuf_reserve(rb_map->rb, size); |
| if (!sample) { |
| bpf_dynptr_set_null(ptr); |
| return -EINVAL; |
| } |
| |
| bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); |
| |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { |
| .func = bpf_ringbuf_reserve_dynptr, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_ANYTHING, |
| .arg3_type = ARG_ANYTHING, |
| .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT, |
| }; |
| |
| BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) |
| { |
| if (!ptr->data) |
| return 0; |
| |
| bpf_ringbuf_commit(ptr->data, flags, false /* discard */); |
| |
| bpf_dynptr_set_null(ptr); |
| |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { |
| .func = bpf_ringbuf_submit_dynptr, |
| .ret_type = RET_VOID, |
| .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, |
| .arg2_type = ARG_ANYTHING, |
| }; |
| |
| BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) |
| { |
| if (!ptr->data) |
| return 0; |
| |
| bpf_ringbuf_commit(ptr->data, flags, true /* discard */); |
| |
| bpf_dynptr_set_null(ptr); |
| |
| return 0; |
| } |
| |
| const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { |
| .func = bpf_ringbuf_discard_dynptr, |
| .ret_type = RET_VOID, |
| .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, |
| .arg2_type = ARG_ANYTHING, |
| }; |
| |
| static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) |
| { |
| int err; |
| u32 hdr_len, sample_len, total_len, flags, *hdr; |
| u64 cons_pos, prod_pos; |
| |
| /* Synchronizes with smp_store_release() in user-space producer. */ |
| prod_pos = smp_load_acquire(&rb->producer_pos); |
| if (prod_pos % 8) |
| return -EINVAL; |
| |
| /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ |
| cons_pos = smp_load_acquire(&rb->consumer_pos); |
| if (cons_pos >= prod_pos) |
| return -ENODATA; |
| |
| hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); |
| /* Synchronizes with smp_store_release() in user-space producer. */ |
| hdr_len = smp_load_acquire(hdr); |
| flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); |
| sample_len = hdr_len & ~flags; |
| total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); |
| |
| /* The sample must fit within the region advertised by the producer position. */ |
| if (total_len > prod_pos - cons_pos) |
| return -EINVAL; |
| |
| /* The sample must fit within the data region of the ring buffer. */ |
| if (total_len > ringbuf_total_data_sz(rb)) |
| return -E2BIG; |
| |
| /* The sample must fit into a struct bpf_dynptr. */ |
| err = bpf_dynptr_check_size(sample_len); |
| if (err) |
| return -E2BIG; |
| |
| if (flags & BPF_RINGBUF_DISCARD_BIT) { |
| /* If the discard bit is set, the sample should be skipped. |
| * |
| * Update the consumer pos, and return -EAGAIN so the caller |
| * knows to skip this sample and try to read the next one. |
| */ |
| smp_store_release(&rb->consumer_pos, cons_pos + total_len); |
| return -EAGAIN; |
| } |
| |
| if (flags & BPF_RINGBUF_BUSY_BIT) |
| return -ENODATA; |
| |
| *sample = (void *)((uintptr_t)rb->data + |
| (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); |
| *size = sample_len; |
| return 0; |
| } |
| |
| static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) |
| { |
| u64 consumer_pos; |
| u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); |
| |
| /* Using smp_load_acquire() is unnecessary here, as the busy-bit |
| * prevents another task from writing to consumer_pos after it was read |
| * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). |
| */ |
| consumer_pos = rb->consumer_pos; |
| /* Synchronizes with smp_load_acquire() in user-space producer. */ |
| smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); |
| } |
| |
| BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, |
| void *, callback_fn, void *, callback_ctx, u64, flags) |
| { |
| struct bpf_ringbuf *rb; |
| long samples, discarded_samples = 0, ret = 0; |
| bpf_callback_t callback = (bpf_callback_t)callback_fn; |
| u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; |
| int busy = 0; |
| |
| if (unlikely(flags & ~wakeup_flags)) |
| return -EINVAL; |
| |
| rb = container_of(map, struct bpf_ringbuf_map, map)->rb; |
| |
| /* If another consumer is already consuming a sample, wait for them to finish. */ |
| if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) |
| return -EBUSY; |
| |
| for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { |
| int err; |
| u32 size; |
| void *sample; |
| struct bpf_dynptr_kern dynptr; |
| |
| err = __bpf_user_ringbuf_peek(rb, &sample, &size); |
| if (err) { |
| if (err == -ENODATA) { |
| break; |
| } else if (err == -EAGAIN) { |
| discarded_samples++; |
| continue; |
| } else { |
| ret = err; |
| goto schedule_work_return; |
| } |
| } |
| |
| bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); |
| ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); |
| __bpf_user_ringbuf_sample_release(rb, size, flags); |
| } |
| ret = samples - discarded_samples; |
| |
| schedule_work_return: |
| /* Prevent the clearing of the busy-bit from being reordered before the |
| * storing of any rb consumer or producer positions. |
| */ |
| smp_mb__before_atomic(); |
| atomic_set(&rb->busy, 0); |
| |
| if (flags & BPF_RB_FORCE_WAKEUP) |
| irq_work_queue(&rb->work); |
| else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) |
| irq_work_queue(&rb->work); |
| return ret; |
| } |
| |
| const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { |
| .func = bpf_user_ringbuf_drain, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_CONST_MAP_PTR, |
| .arg2_type = ARG_PTR_TO_FUNC, |
| .arg3_type = ARG_PTR_TO_STACK_OR_NULL, |
| .arg4_type = ARG_ANYTHING, |
| }; |