| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/kvm/coproc.c: |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| * Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/mm.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/esr.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_coproc.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_host.h> |
| #include <asm/kvm_mmu.h> |
| |
| #include <trace/events/kvm.h> |
| |
| #include "sys_regs.h" |
| |
| #include "trace.h" |
| |
| /* |
| * All of this file is extremly similar to the ARM coproc.c, but the |
| * types are different. My gut feeling is that it should be pretty |
| * easy to merge, but that would be an ABI breakage -- again. VFP |
| * would also need to be abstracted. |
| * |
| * For AArch32, we only take care of what is being trapped. Anything |
| * that has to do with init and userspace access has to go via the |
| * 64bit interface. |
| */ |
| |
| /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ |
| static u32 cache_levels; |
| |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ |
| #define CSSELR_MAX 12 |
| |
| /* Which cache CCSIDR represents depends on CSSELR value. */ |
| static u32 get_ccsidr(u32 csselr) |
| { |
| u32 ccsidr; |
| |
| /* Make sure noone else changes CSSELR during this! */ |
| local_irq_disable(); |
| /* Put value into CSSELR */ |
| asm volatile("msr csselr_el1, %x0" : : "r" (csselr)); |
| isb(); |
| /* Read result out of CCSIDR */ |
| asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr)); |
| local_irq_enable(); |
| |
| return ccsidr; |
| } |
| |
| /* |
| * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| */ |
| static bool access_dcsw(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p); |
| |
| kvm_set_way_flush(vcpu); |
| return true; |
| } |
| |
| /* |
| * Generic accessor for VM registers. Only called as long as HCR_TVM |
| * is set. If the guest enables the MMU, we stop trapping the VM |
| * sys_regs and leave it in complete control of the caches. |
| */ |
| static bool access_vm_reg(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| unsigned long val; |
| bool was_enabled = vcpu_has_cache_enabled(vcpu); |
| |
| BUG_ON(!p->is_write); |
| |
| val = *vcpu_reg(vcpu, p->Rt); |
| if (!p->is_aarch32) { |
| vcpu_sys_reg(vcpu, r->reg) = val; |
| } else { |
| if (!p->is_32bit) |
| vcpu_cp15_64_high(vcpu, r->reg) = val >> 32; |
| vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL; |
| } |
| |
| kvm_toggle_cache(vcpu, was_enabled); |
| return true; |
| } |
| |
| /* |
| * Trap handler for the GICv3 SGI generation system register. |
| * Forward the request to the VGIC emulation. |
| * The cp15_64 code makes sure this automatically works |
| * for both AArch64 and AArch32 accesses. |
| */ |
| static bool access_gic_sgi(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| u64 val; |
| |
| if (!p->is_write) |
| return read_from_write_only(vcpu, p); |
| |
| val = *vcpu_reg(vcpu, p->Rt); |
| vgic_v3_dispatch_sgi(vcpu, val); |
| |
| return true; |
| } |
| |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) |
| return ignore_write(vcpu, p); |
| else |
| return read_zero(vcpu, p); |
| } |
| |
| static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| *vcpu_reg(vcpu, p->Rt) = (1 << 3); |
| return true; |
| } |
| } |
| |
| static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| u32 val; |
| asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val)); |
| *vcpu_reg(vcpu, p->Rt) = val; |
| return true; |
| } |
| } |
| |
| /* |
| * We want to avoid world-switching all the DBG registers all the |
| * time: |
| * |
| * - If we've touched any debug register, it is likely that we're |
| * going to touch more of them. It then makes sense to disable the |
| * traps and start doing the save/restore dance |
| * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is |
| * then mandatory to save/restore the registers, as the guest |
| * depends on them. |
| * |
| * For this, we use a DIRTY bit, indicating the guest has modified the |
| * debug registers, used as follow: |
| * |
| * On guest entry: |
| * - If the dirty bit is set (because we're coming back from trapping), |
| * disable the traps, save host registers, restore guest registers. |
| * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), |
| * set the dirty bit, disable the traps, save host registers, |
| * restore guest registers. |
| * - Otherwise, enable the traps |
| * |
| * On guest exit: |
| * - If the dirty bit is set, save guest registers, restore host |
| * registers and clear the dirty bit. This ensure that the host can |
| * now use the debug registers. |
| */ |
| static bool trap_debug_regs(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt); |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } else { |
| *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg); |
| } |
| |
| trace_trap_reg(__func__, r->reg, p->is_write, *vcpu_reg(vcpu, p->Rt)); |
| |
| return true; |
| } |
| |
| /* |
| * reg_to_dbg/dbg_to_reg |
| * |
| * A 32 bit write to a debug register leave top bits alone |
| * A 32 bit read from a debug register only returns the bottom bits |
| * |
| * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the |
| * hyp.S code switches between host and guest values in future. |
| */ |
| static inline void reg_to_dbg(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| u64 *dbg_reg) |
| { |
| u64 val = *vcpu_reg(vcpu, p->Rt); |
| |
| if (p->is_32bit) { |
| val &= 0xffffffffUL; |
| val |= ((*dbg_reg >> 32) << 32); |
| } |
| |
| *dbg_reg = val; |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } |
| |
| static inline void dbg_to_reg(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| u64 *dbg_reg) |
| { |
| u64 val = *dbg_reg; |
| |
| if (p->is_32bit) |
| val &= 0xffffffffUL; |
| |
| *vcpu_reg(vcpu, p->Rt) = val; |
| } |
| |
| static inline bool trap_bvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static inline void reset_bvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val; |
| } |
| |
| static inline bool trap_bcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static inline void reset_bcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val; |
| } |
| |
| static inline bool trap_wvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]); |
| |
| return true; |
| } |
| |
| static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static inline void reset_wvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val; |
| } |
| |
| static inline bool trap_wcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; |
| |
| if (p->is_write) |
| reg_to_dbg(vcpu, p, dbg_reg); |
| else |
| dbg_to_reg(vcpu, p, dbg_reg); |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; |
| |
| if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, |
| const struct kvm_one_reg *reg, void __user *uaddr) |
| { |
| __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; |
| |
| if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static inline void reset_wcr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *rd) |
| { |
| vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val; |
| } |
| |
| static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 amair; |
| |
| asm volatile("mrs %0, amair_el1\n" : "=r" (amair)); |
| vcpu_sys_reg(vcpu, AMAIR_EL1) = amair; |
| } |
| |
| static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) |
| { |
| u64 mpidr; |
| |
| /* |
| * Map the vcpu_id into the first three affinity level fields of |
| * the MPIDR. We limit the number of VCPUs in level 0 due to a |
| * limitation to 16 CPUs in that level in the ICC_SGIxR registers |
| * of the GICv3 to be able to address each CPU directly when |
| * sending IPIs. |
| */ |
| mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); |
| mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); |
| mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); |
| vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr; |
| } |
| |
| /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ |
| #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ |
| /* DBGBVRn_EL1 */ \ |
| { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \ |
| trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \ |
| /* DBGBCRn_EL1 */ \ |
| { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \ |
| trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \ |
| /* DBGWVRn_EL1 */ \ |
| { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \ |
| trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \ |
| /* DBGWCRn_EL1 */ \ |
| { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \ |
| trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr } |
| |
| /* |
| * Architected system registers. |
| * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 |
| * |
| * We could trap ID_DFR0 and tell the guest we don't support performance |
| * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was |
| * NAKed, so it will read the PMCR anyway. |
| * |
| * Therefore we tell the guest we have 0 counters. Unfortunately, we |
| * must always support PMCCNTR (the cycle counter): we just RAZ/WI for |
| * all PM registers, which doesn't crash the guest kernel at least. |
| * |
| * Debug handling: We do trap most, if not all debug related system |
| * registers. The implementation is good enough to ensure that a guest |
| * can use these with minimal performance degradation. The drawback is |
| * that we don't implement any of the external debug, none of the |
| * OSlock protocol. This should be revisited if we ever encounter a |
| * more demanding guest... |
| */ |
| static const struct sys_reg_desc sys_reg_descs[] = { |
| /* DC ISW */ |
| { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010), |
| access_dcsw }, |
| /* DC CSW */ |
| { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010), |
| access_dcsw }, |
| /* DC CISW */ |
| { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010), |
| access_dcsw }, |
| |
| DBG_BCR_BVR_WCR_WVR_EL1(0), |
| DBG_BCR_BVR_WCR_WVR_EL1(1), |
| /* MDCCINT_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000), |
| trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, |
| /* MDSCR_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010), |
| trap_debug_regs, reset_val, MDSCR_EL1, 0 }, |
| DBG_BCR_BVR_WCR_WVR_EL1(2), |
| DBG_BCR_BVR_WCR_WVR_EL1(3), |
| DBG_BCR_BVR_WCR_WVR_EL1(4), |
| DBG_BCR_BVR_WCR_WVR_EL1(5), |
| DBG_BCR_BVR_WCR_WVR_EL1(6), |
| DBG_BCR_BVR_WCR_WVR_EL1(7), |
| DBG_BCR_BVR_WCR_WVR_EL1(8), |
| DBG_BCR_BVR_WCR_WVR_EL1(9), |
| DBG_BCR_BVR_WCR_WVR_EL1(10), |
| DBG_BCR_BVR_WCR_WVR_EL1(11), |
| DBG_BCR_BVR_WCR_WVR_EL1(12), |
| DBG_BCR_BVR_WCR_WVR_EL1(13), |
| DBG_BCR_BVR_WCR_WVR_EL1(14), |
| DBG_BCR_BVR_WCR_WVR_EL1(15), |
| |
| /* MDRAR_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000), |
| trap_raz_wi }, |
| /* OSLAR_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100), |
| trap_raz_wi }, |
| /* OSLSR_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100), |
| trap_oslsr_el1 }, |
| /* OSDLR_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100), |
| trap_raz_wi }, |
| /* DBGPRCR_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100), |
| trap_raz_wi }, |
| /* DBGCLAIMSET_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110), |
| trap_raz_wi }, |
| /* DBGCLAIMCLR_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110), |
| trap_raz_wi }, |
| /* DBGAUTHSTATUS_EL1 */ |
| { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110), |
| trap_dbgauthstatus_el1 }, |
| |
| /* MDCCSR_EL1 */ |
| { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000), |
| trap_raz_wi }, |
| /* DBGDTR_EL0 */ |
| { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000), |
| trap_raz_wi }, |
| /* DBGDTR[TR]X_EL0 */ |
| { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000), |
| trap_raz_wi }, |
| |
| /* DBGVCR32_EL2 */ |
| { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000), |
| NULL, reset_val, DBGVCR32_EL2, 0 }, |
| |
| /* MPIDR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101), |
| NULL, reset_mpidr, MPIDR_EL1 }, |
| /* SCTLR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000), |
| access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, |
| /* CPACR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010), |
| NULL, reset_val, CPACR_EL1, 0 }, |
| /* TTBR0_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000), |
| access_vm_reg, reset_unknown, TTBR0_EL1 }, |
| /* TTBR1_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001), |
| access_vm_reg, reset_unknown, TTBR1_EL1 }, |
| /* TCR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010), |
| access_vm_reg, reset_val, TCR_EL1, 0 }, |
| |
| /* AFSR0_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000), |
| access_vm_reg, reset_unknown, AFSR0_EL1 }, |
| /* AFSR1_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001), |
| access_vm_reg, reset_unknown, AFSR1_EL1 }, |
| /* ESR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000), |
| access_vm_reg, reset_unknown, ESR_EL1 }, |
| /* FAR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000), |
| access_vm_reg, reset_unknown, FAR_EL1 }, |
| /* PAR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000), |
| NULL, reset_unknown, PAR_EL1 }, |
| |
| /* PMINTENSET_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001), |
| trap_raz_wi }, |
| /* PMINTENCLR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010), |
| trap_raz_wi }, |
| |
| /* MAIR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000), |
| access_vm_reg, reset_unknown, MAIR_EL1 }, |
| /* AMAIR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000), |
| access_vm_reg, reset_amair_el1, AMAIR_EL1 }, |
| |
| /* VBAR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000), |
| NULL, reset_val, VBAR_EL1, 0 }, |
| |
| /* ICC_SGI1R_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101), |
| access_gic_sgi }, |
| /* ICC_SRE_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101), |
| trap_raz_wi }, |
| |
| /* CONTEXTIDR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001), |
| access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, |
| /* TPIDR_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100), |
| NULL, reset_unknown, TPIDR_EL1 }, |
| |
| /* CNTKCTL_EL1 */ |
| { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000), |
| NULL, reset_val, CNTKCTL_EL1, 0}, |
| |
| /* CSSELR_EL1 */ |
| { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000), |
| NULL, reset_unknown, CSSELR_EL1 }, |
| |
| /* PMCR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000), |
| trap_raz_wi }, |
| /* PMCNTENSET_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001), |
| trap_raz_wi }, |
| /* PMCNTENCLR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010), |
| trap_raz_wi }, |
| /* PMOVSCLR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011), |
| trap_raz_wi }, |
| /* PMSWINC_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100), |
| trap_raz_wi }, |
| /* PMSELR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101), |
| trap_raz_wi }, |
| /* PMCEID0_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110), |
| trap_raz_wi }, |
| /* PMCEID1_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111), |
| trap_raz_wi }, |
| /* PMCCNTR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000), |
| trap_raz_wi }, |
| /* PMXEVTYPER_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001), |
| trap_raz_wi }, |
| /* PMXEVCNTR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010), |
| trap_raz_wi }, |
| /* PMUSERENR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000), |
| trap_raz_wi }, |
| /* PMOVSSET_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011), |
| trap_raz_wi }, |
| |
| /* TPIDR_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010), |
| NULL, reset_unknown, TPIDR_EL0 }, |
| /* TPIDRRO_EL0 */ |
| { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011), |
| NULL, reset_unknown, TPIDRRO_EL0 }, |
| |
| /* DACR32_EL2 */ |
| { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000), |
| NULL, reset_unknown, DACR32_EL2 }, |
| /* IFSR32_EL2 */ |
| { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001), |
| NULL, reset_unknown, IFSR32_EL2 }, |
| /* FPEXC32_EL2 */ |
| { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000), |
| NULL, reset_val, FPEXC32_EL2, 0x70 }, |
| }; |
| |
| static bool trap_dbgidr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| return ignore_write(vcpu, p); |
| } else { |
| u64 dfr = read_cpuid(ID_AA64DFR0_EL1); |
| u64 pfr = read_cpuid(ID_AA64PFR0_EL1); |
| u32 el3 = !!((pfr >> 12) & 0xf); |
| |
| *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) | |
| (((dfr >> 12) & 0xf) << 24) | |
| (((dfr >> 28) & 0xf) << 20) | |
| (6 << 16) | (el3 << 14) | (el3 << 12)); |
| return true; |
| } |
| } |
| |
| static bool trap_debug32(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *r) |
| { |
| if (p->is_write) { |
| vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt); |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } else { |
| *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg); |
| } |
| |
| return true; |
| } |
| |
| /* AArch32 debug register mappings |
| * |
| * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] |
| * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] |
| * |
| * All control registers and watchpoint value registers are mapped to |
| * the lower 32 bits of their AArch64 equivalents. We share the trap |
| * handlers with the above AArch64 code which checks what mode the |
| * system is in. |
| */ |
| |
| static inline bool trap_xvr(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *p, |
| const struct sys_reg_desc *rd) |
| { |
| u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; |
| |
| if (p->is_write) { |
| u64 val = *dbg_reg; |
| |
| val &= 0xffffffffUL; |
| val |= *vcpu_reg(vcpu, p->Rt) << 32; |
| *dbg_reg = val; |
| |
| vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; |
| } else { |
| *vcpu_reg(vcpu, p->Rt) = *dbg_reg >> 32; |
| } |
| |
| trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); |
| |
| return true; |
| } |
| |
| #define DBG_BCR_BVR_WCR_WVR(n) \ |
| /* DBGBVRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ |
| /* DBGBCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ |
| /* DBGWVRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ |
| /* DBGWCRn */ \ |
| { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } |
| |
| #define DBGBXVR(n) \ |
| { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n } |
| |
| /* |
| * Trapped cp14 registers. We generally ignore most of the external |
| * debug, on the principle that they don't really make sense to a |
| * guest. Revisit this one day, would this principle change. |
| */ |
| static const struct sys_reg_desc cp14_regs[] = { |
| /* DBGIDR */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr }, |
| /* DBGDTRRXext */ |
| { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, |
| |
| DBG_BCR_BVR_WCR_WVR(0), |
| /* DBGDSCRint */ |
| { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(1), |
| /* DBGDCCINT */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 }, |
| /* DBGDSCRext */ |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 }, |
| DBG_BCR_BVR_WCR_WVR(2), |
| /* DBGDTR[RT]Xint */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, |
| /* DBGDTR[RT]Xext */ |
| { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(3), |
| DBG_BCR_BVR_WCR_WVR(4), |
| DBG_BCR_BVR_WCR_WVR(5), |
| /* DBGWFAR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, |
| /* DBGOSECCR */ |
| { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, |
| DBG_BCR_BVR_WCR_WVR(6), |
| /* DBGVCR */ |
| { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 }, |
| DBG_BCR_BVR_WCR_WVR(7), |
| DBG_BCR_BVR_WCR_WVR(8), |
| DBG_BCR_BVR_WCR_WVR(9), |
| DBG_BCR_BVR_WCR_WVR(10), |
| DBG_BCR_BVR_WCR_WVR(11), |
| DBG_BCR_BVR_WCR_WVR(12), |
| DBG_BCR_BVR_WCR_WVR(13), |
| DBG_BCR_BVR_WCR_WVR(14), |
| DBG_BCR_BVR_WCR_WVR(15), |
| |
| /* DBGDRAR (32bit) */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| DBGBXVR(0), |
| /* DBGOSLAR */ |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi }, |
| DBGBXVR(1), |
| /* DBGOSLSR */ |
| { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 }, |
| DBGBXVR(2), |
| DBGBXVR(3), |
| /* DBGOSDLR */ |
| { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, |
| DBGBXVR(4), |
| /* DBGPRCR */ |
| { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, |
| DBGBXVR(5), |
| DBGBXVR(6), |
| DBGBXVR(7), |
| DBGBXVR(8), |
| DBGBXVR(9), |
| DBGBXVR(10), |
| DBGBXVR(11), |
| DBGBXVR(12), |
| DBGBXVR(13), |
| DBGBXVR(14), |
| DBGBXVR(15), |
| |
| /* DBGDSAR (32bit) */ |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, |
| |
| /* DBGDEVID2 */ |
| { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID1 */ |
| { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, |
| /* DBGDEVID */ |
| { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, |
| /* DBGCLAIMSET */ |
| { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, |
| /* DBGCLAIMCLR */ |
| { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, |
| /* DBGAUTHSTATUS */ |
| { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, |
| }; |
| |
| /* Trapped cp14 64bit registers */ |
| static const struct sys_reg_desc cp14_64_regs[] = { |
| /* DBGDRAR (64bit) */ |
| { Op1( 0), CRm( 1), .access = trap_raz_wi }, |
| |
| /* DBGDSAR (64bit) */ |
| { Op1( 0), CRm( 2), .access = trap_raz_wi }, |
| }; |
| |
| /* |
| * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, |
| * depending on the way they are accessed (as a 32bit or a 64bit |
| * register). |
| */ |
| static const struct sys_reg_desc cp15_regs[] = { |
| { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, |
| |
| { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 }, |
| { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR }, |
| { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR }, |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR }, |
| { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR }, |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR }, |
| { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR }, |
| { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR }, |
| { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR }, |
| |
| /* |
| * DC{C,I,CI}SW operations: |
| */ |
| { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, |
| { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, |
| |
| /* PMU */ |
| { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi }, |
| { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi }, |
| |
| { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR }, |
| { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR }, |
| { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 }, |
| { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 }, |
| |
| /* ICC_SRE */ |
| { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi }, |
| |
| { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID }, |
| }; |
| |
| static const struct sys_reg_desc cp15_64_regs[] = { |
| { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, |
| { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, |
| { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 }, |
| }; |
| |
| /* Target specific emulation tables */ |
| static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS]; |
| |
| void kvm_register_target_sys_reg_table(unsigned int target, |
| struct kvm_sys_reg_target_table *table) |
| { |
| target_tables[target] = table; |
| } |
| |
| /* Get specific register table for this target. */ |
| static const struct sys_reg_desc *get_target_table(unsigned target, |
| bool mode_is_64, |
| size_t *num) |
| { |
| struct kvm_sys_reg_target_table *table; |
| |
| table = target_tables[target]; |
| if (mode_is_64) { |
| *num = table->table64.num; |
| return table->table64.table; |
| } else { |
| *num = table->table32.num; |
| return table->table32.table; |
| } |
| } |
| |
| static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params, |
| const struct sys_reg_desc table[], |
| unsigned int num) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < num; i++) { |
| const struct sys_reg_desc *r = &table[i]; |
| |
| if (params->Op0 != r->Op0) |
| continue; |
| if (params->Op1 != r->Op1) |
| continue; |
| if (params->CRn != r->CRn) |
| continue; |
| if (params->CRm != r->CRm) |
| continue; |
| if (params->Op2 != r->Op2) |
| continue; |
| |
| return r; |
| } |
| return NULL; |
| } |
| |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| /* |
| * emulate_cp -- tries to match a sys_reg access in a handling table, and |
| * call the corresponding trap handler. |
| * |
| * @params: pointer to the descriptor of the access |
| * @table: array of trap descriptors |
| * @num: size of the trap descriptor array |
| * |
| * Return 0 if the access has been handled, and -1 if not. |
| */ |
| static int emulate_cp(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *params, |
| const struct sys_reg_desc *table, |
| size_t num) |
| { |
| const struct sys_reg_desc *r; |
| |
| if (!table) |
| return -1; /* Not handled */ |
| |
| r = find_reg(params, table, num); |
| |
| if (r) { |
| /* |
| * Not having an accessor means that we have |
| * configured a trap that we don't know how to |
| * handle. This certainly qualifies as a gross bug |
| * that should be fixed right away. |
| */ |
| BUG_ON(!r->access); |
| |
| if (likely(r->access(vcpu, params, r))) { |
| /* Skip instruction, since it was emulated */ |
| kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| } |
| |
| /* Handled */ |
| return 0; |
| } |
| |
| /* Not handled */ |
| return -1; |
| } |
| |
| static void unhandled_cp_access(struct kvm_vcpu *vcpu, |
| struct sys_reg_params *params) |
| { |
| u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu); |
| int cp; |
| |
| switch(hsr_ec) { |
| case ESR_ELx_EC_CP15_32: |
| case ESR_ELx_EC_CP15_64: |
| cp = 15; |
| break; |
| case ESR_ELx_EC_CP14_MR: |
| case ESR_ELx_EC_CP14_64: |
| cp = 14; |
| break; |
| default: |
| WARN_ON((cp = -1)); |
| } |
| |
| kvm_err("Unsupported guest CP%d access at: %08lx\n", |
| cp, *vcpu_pc(vcpu)); |
| print_sys_reg_instr(params); |
| kvm_inject_undefined(vcpu); |
| } |
| |
| /** |
| * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *global, |
| size_t nr_global, |
| const struct sys_reg_desc *target_specific, |
| size_t nr_specific) |
| { |
| struct sys_reg_params params; |
| u32 hsr = kvm_vcpu_get_hsr(vcpu); |
| int Rt2 = (hsr >> 10) & 0xf; |
| |
| params.is_aarch32 = true; |
| params.is_32bit = false; |
| params.CRm = (hsr >> 1) & 0xf; |
| params.Rt = (hsr >> 5) & 0xf; |
| params.is_write = ((hsr & 1) == 0); |
| |
| params.Op0 = 0; |
| params.Op1 = (hsr >> 16) & 0xf; |
| params.Op2 = 0; |
| params.CRn = 0; |
| |
| /* |
| * Massive hack here. Store Rt2 in the top 32bits so we only |
| * have one register to deal with. As we use the same trap |
| * backends between AArch32 and AArch64, we get away with it. |
| */ |
| if (params.is_write) { |
| u64 val = *vcpu_reg(vcpu, params.Rt); |
| val &= 0xffffffff; |
| val |= *vcpu_reg(vcpu, Rt2) << 32; |
| *vcpu_reg(vcpu, params.Rt) = val; |
| } |
| |
| if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific)) |
| goto out; |
| if (!emulate_cp(vcpu, ¶ms, global, nr_global)) |
| goto out; |
| |
| unhandled_cp_access(vcpu, ¶ms); |
| |
| out: |
| /* Do the opposite hack for the read side */ |
| if (!params.is_write) { |
| u64 val = *vcpu_reg(vcpu, params.Rt); |
| val >>= 32; |
| *vcpu_reg(vcpu, Rt2) = val; |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *global, |
| size_t nr_global, |
| const struct sys_reg_desc *target_specific, |
| size_t nr_specific) |
| { |
| struct sys_reg_params params; |
| u32 hsr = kvm_vcpu_get_hsr(vcpu); |
| |
| params.is_aarch32 = true; |
| params.is_32bit = true; |
| params.CRm = (hsr >> 1) & 0xf; |
| params.Rt = (hsr >> 5) & 0xf; |
| params.is_write = ((hsr & 1) == 0); |
| params.CRn = (hsr >> 10) & 0xf; |
| params.Op0 = 0; |
| params.Op1 = (hsr >> 14) & 0x7; |
| params.Op2 = (hsr >> 17) & 0x7; |
| |
| if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific)) |
| return 1; |
| if (!emulate_cp(vcpu, ¶ms, global, nr_global)) |
| return 1; |
| |
| unhandled_cp_access(vcpu, ¶ms); |
| return 1; |
| } |
| |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| const struct sys_reg_desc *target_specific; |
| size_t num; |
| |
| target_specific = get_target_table(vcpu->arch.target, false, &num); |
| return kvm_handle_cp_64(vcpu, |
| cp15_64_regs, ARRAY_SIZE(cp15_64_regs), |
| target_specific, num); |
| } |
| |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| const struct sys_reg_desc *target_specific; |
| size_t num; |
| |
| target_specific = get_target_table(vcpu->arch.target, false, &num); |
| return kvm_handle_cp_32(vcpu, |
| cp15_regs, ARRAY_SIZE(cp15_regs), |
| target_specific, num); |
| } |
| |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| return kvm_handle_cp_64(vcpu, |
| cp14_64_regs, ARRAY_SIZE(cp14_64_regs), |
| NULL, 0); |
| } |
| |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| return kvm_handle_cp_32(vcpu, |
| cp14_regs, ARRAY_SIZE(cp14_regs), |
| NULL, 0); |
| } |
| |
| static int emulate_sys_reg(struct kvm_vcpu *vcpu, |
| const struct sys_reg_params *params) |
| { |
| size_t num; |
| const struct sys_reg_desc *table, *r; |
| |
| table = get_target_table(vcpu->arch.target, true, &num); |
| |
| /* Search target-specific then generic table. */ |
| r = find_reg(params, table, num); |
| if (!r) |
| r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| if (likely(r)) { |
| /* |
| * Not having an accessor means that we have |
| * configured a trap that we don't know how to |
| * handle. This certainly qualifies as a gross bug |
| * that should be fixed right away. |
| */ |
| BUG_ON(!r->access); |
| |
| if (likely(r->access(vcpu, params, r))) { |
| /* Skip instruction, since it was emulated */ |
| kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| return 1; |
| } |
| /* If access function fails, it should complain. */ |
| } else { |
| kvm_err("Unsupported guest sys_reg access at: %lx\n", |
| *vcpu_pc(vcpu)); |
| print_sys_reg_instr(params); |
| } |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| static void reset_sys_reg_descs(struct kvm_vcpu *vcpu, |
| const struct sys_reg_desc *table, size_t num) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < num; i++) |
| if (table[i].reset) |
| table[i].reset(vcpu, &table[i]); |
| } |
| |
| /** |
| * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run struct |
| */ |
| int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| struct sys_reg_params params; |
| unsigned long esr = kvm_vcpu_get_hsr(vcpu); |
| |
| trace_kvm_handle_sys_reg(esr); |
| |
| params.is_aarch32 = false; |
| params.is_32bit = false; |
| params.Op0 = (esr >> 20) & 3; |
| params.Op1 = (esr >> 14) & 0x7; |
| params.CRn = (esr >> 10) & 0xf; |
| params.CRm = (esr >> 1) & 0xf; |
| params.Op2 = (esr >> 17) & 0x7; |
| params.Rt = (esr >> 5) & 0x1f; |
| params.is_write = !(esr & 1); |
| |
| return emulate_sys_reg(vcpu, ¶ms); |
| } |
| |
| /****************************************************************************** |
| * Userspace API |
| *****************************************************************************/ |
| |
| static bool index_to_params(u64 id, struct sys_reg_params *params) |
| { |
| switch (id & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U64: |
| /* Any unused index bits means it's not valid. */ |
| if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| | KVM_REG_ARM_COPROC_MASK |
| | KVM_REG_ARM64_SYSREG_OP0_MASK |
| | KVM_REG_ARM64_SYSREG_OP1_MASK |
| | KVM_REG_ARM64_SYSREG_CRN_MASK |
| | KVM_REG_ARM64_SYSREG_CRM_MASK |
| | KVM_REG_ARM64_SYSREG_OP2_MASK)) |
| return false; |
| params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); |
| params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); |
| params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); |
| params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) |
| >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); |
| params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) |
| >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* Decode an index value, and find the sys_reg_desc entry. */ |
| static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, |
| u64 id) |
| { |
| size_t num; |
| const struct sys_reg_desc *table, *r; |
| struct sys_reg_params params; |
| |
| /* We only do sys_reg for now. */ |
| if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) |
| return NULL; |
| |
| if (!index_to_params(id, ¶ms)) |
| return NULL; |
| |
| table = get_target_table(vcpu->arch.target, true, &num); |
| r = find_reg(¶ms, table, num); |
| if (!r) |
| r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| /* Not saved in the sys_reg array? */ |
| if (r && !r->reg) |
| r = NULL; |
| |
| return r; |
| } |
| |
| /* |
| * These are the invariant sys_reg registers: we let the guest see the |
| * host versions of these, so they're part of the guest state. |
| * |
| * A future CPU may provide a mechanism to present different values to |
| * the guest, or a future kvm may trap them. |
| */ |
| |
| #define FUNCTION_INVARIANT(reg) \ |
| static void get_##reg(struct kvm_vcpu *v, \ |
| const struct sys_reg_desc *r) \ |
| { \ |
| u64 val; \ |
| \ |
| asm volatile("mrs %0, " __stringify(reg) "\n" \ |
| : "=r" (val)); \ |
| ((struct sys_reg_desc *)r)->val = val; \ |
| } |
| |
| FUNCTION_INVARIANT(midr_el1) |
| FUNCTION_INVARIANT(ctr_el0) |
| FUNCTION_INVARIANT(revidr_el1) |
| FUNCTION_INVARIANT(id_pfr0_el1) |
| FUNCTION_INVARIANT(id_pfr1_el1) |
| FUNCTION_INVARIANT(id_dfr0_el1) |
| FUNCTION_INVARIANT(id_afr0_el1) |
| FUNCTION_INVARIANT(id_mmfr0_el1) |
| FUNCTION_INVARIANT(id_mmfr1_el1) |
| FUNCTION_INVARIANT(id_mmfr2_el1) |
| FUNCTION_INVARIANT(id_mmfr3_el1) |
| FUNCTION_INVARIANT(id_isar0_el1) |
| FUNCTION_INVARIANT(id_isar1_el1) |
| FUNCTION_INVARIANT(id_isar2_el1) |
| FUNCTION_INVARIANT(id_isar3_el1) |
| FUNCTION_INVARIANT(id_isar4_el1) |
| FUNCTION_INVARIANT(id_isar5_el1) |
| FUNCTION_INVARIANT(clidr_el1) |
| FUNCTION_INVARIANT(aidr_el1) |
| |
| /* ->val is filled in by kvm_sys_reg_table_init() */ |
| static struct sys_reg_desc invariant_sys_regs[] = { |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000), |
| NULL, get_midr_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110), |
| NULL, get_revidr_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000), |
| NULL, get_id_pfr0_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001), |
| NULL, get_id_pfr1_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010), |
| NULL, get_id_dfr0_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011), |
| NULL, get_id_afr0_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100), |
| NULL, get_id_mmfr0_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101), |
| NULL, get_id_mmfr1_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110), |
| NULL, get_id_mmfr2_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111), |
| NULL, get_id_mmfr3_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000), |
| NULL, get_id_isar0_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001), |
| NULL, get_id_isar1_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010), |
| NULL, get_id_isar2_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011), |
| NULL, get_id_isar3_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100), |
| NULL, get_id_isar4_el1 }, |
| { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101), |
| NULL, get_id_isar5_el1 }, |
| { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001), |
| NULL, get_clidr_el1 }, |
| { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111), |
| NULL, get_aidr_el1 }, |
| { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001), |
| NULL, get_ctr_el0 }, |
| }; |
| |
| static int reg_from_user(u64 *val, const void __user *uaddr, u64 id) |
| { |
| if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int reg_to_user(void __user *uaddr, const u64 *val, u64 id) |
| { |
| if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int get_invariant_sys_reg(u64 id, void __user *uaddr) |
| { |
| struct sys_reg_params params; |
| const struct sys_reg_desc *r; |
| |
| if (!index_to_params(id, ¶ms)) |
| return -ENOENT; |
| |
| r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| return reg_to_user(uaddr, &r->val, id); |
| } |
| |
| static int set_invariant_sys_reg(u64 id, void __user *uaddr) |
| { |
| struct sys_reg_params params; |
| const struct sys_reg_desc *r; |
| int err; |
| u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ |
| |
| if (!index_to_params(id, ¶ms)) |
| return -ENOENT; |
| r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); |
| if (!r) |
| return -ENOENT; |
| |
| err = reg_from_user(&val, uaddr, id); |
| if (err) |
| return err; |
| |
| /* This is what we mean by invariant: you can't change it. */ |
| if (r->val != val) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool is_valid_cache(u32 val) |
| { |
| u32 level, ctype; |
| |
| if (val >= CSSELR_MAX) |
| return false; |
| |
| /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ |
| level = (val >> 1); |
| ctype = (cache_levels >> (level * 3)) & 7; |
| |
| switch (ctype) { |
| case 0: /* No cache */ |
| return false; |
| case 1: /* Instruction cache only */ |
| return (val & 1); |
| case 2: /* Data cache only */ |
| case 4: /* Unified cache */ |
| return !(val & 1); |
| case 3: /* Separate instruction and data caches */ |
| return true; |
| default: /* Reserved: we can't know instruction or data. */ |
| return false; |
| } |
| } |
| |
| static int demux_c15_get(u64 id, void __user *uaddr) |
| { |
| u32 val; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| return put_user(get_ccsidr(val), uval); |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| static int demux_c15_set(u64 id, void __user *uaddr) |
| { |
| u32 val, newval; |
| u32 __user *uval = uaddr; |
| |
| /* Fail if we have unknown bits set. */ |
| if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK |
| | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) |
| return -ENOENT; |
| |
| switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { |
| case KVM_REG_ARM_DEMUX_ID_CCSIDR: |
| if (KVM_REG_SIZE(id) != 4) |
| return -ENOENT; |
| val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) |
| >> KVM_REG_ARM_DEMUX_VAL_SHIFT; |
| if (!is_valid_cache(val)) |
| return -ENOENT; |
| |
| if (get_user(newval, uval)) |
| return -EFAULT; |
| |
| /* This is also invariant: you can't change it. */ |
| if (newval != get_ccsidr(val)) |
| return -EINVAL; |
| return 0; |
| default: |
| return -ENOENT; |
| } |
| } |
| |
| int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct sys_reg_desc *r; |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_get(reg->id, uaddr); |
| |
| if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| return -ENOENT; |
| |
| r = index_to_sys_reg_desc(vcpu, reg->id); |
| if (!r) |
| return get_invariant_sys_reg(reg->id, uaddr); |
| |
| if (r->get_user) |
| return (r->get_user)(vcpu, r, reg, uaddr); |
| |
| return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id); |
| } |
| |
| int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| const struct sys_reg_desc *r; |
| void __user *uaddr = (void __user *)(unsigned long)reg->addr; |
| |
| if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) |
| return demux_c15_set(reg->id, uaddr); |
| |
| if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) |
| return -ENOENT; |
| |
| r = index_to_sys_reg_desc(vcpu, reg->id); |
| if (!r) |
| return set_invariant_sys_reg(reg->id, uaddr); |
| |
| if (r->set_user) |
| return (r->set_user)(vcpu, r, reg, uaddr); |
| |
| return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); |
| } |
| |
| static unsigned int num_demux_regs(void) |
| { |
| unsigned int i, count = 0; |
| |
| for (i = 0; i < CSSELR_MAX; i++) |
| if (is_valid_cache(i)) |
| count++; |
| |
| return count; |
| } |
| |
| static int write_demux_regids(u64 __user *uindices) |
| { |
| u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; |
| unsigned int i; |
| |
| val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; |
| for (i = 0; i < CSSELR_MAX; i++) { |
| if (!is_valid_cache(i)) |
| continue; |
| if (put_user(val | i, uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| return 0; |
| } |
| |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg) |
| { |
| return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | |
| KVM_REG_ARM64_SYSREG | |
| (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | |
| (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | |
| (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | |
| (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | |
| (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); |
| } |
| |
| static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) |
| { |
| if (!*uind) |
| return true; |
| |
| if (put_user(sys_reg_to_index(reg), *uind)) |
| return false; |
| |
| (*uind)++; |
| return true; |
| } |
| |
| /* Assumed ordered tables, see kvm_sys_reg_table_init. */ |
| static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) |
| { |
| const struct sys_reg_desc *i1, *i2, *end1, *end2; |
| unsigned int total = 0; |
| size_t num; |
| |
| /* We check for duplicates here, to allow arch-specific overrides. */ |
| i1 = get_target_table(vcpu->arch.target, true, &num); |
| end1 = i1 + num; |
| i2 = sys_reg_descs; |
| end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); |
| |
| BUG_ON(i1 == end1 || i2 == end2); |
| |
| /* Walk carefully, as both tables may refer to the same register. */ |
| while (i1 || i2) { |
| int cmp = cmp_sys_reg(i1, i2); |
| /* target-specific overrides generic entry. */ |
| if (cmp <= 0) { |
| /* Ignore registers we trap but don't save. */ |
| if (i1->reg) { |
| if (!copy_reg_to_user(i1, &uind)) |
| return -EFAULT; |
| total++; |
| } |
| } else { |
| /* Ignore registers we trap but don't save. */ |
| if (i2->reg) { |
| if (!copy_reg_to_user(i2, &uind)) |
| return -EFAULT; |
| total++; |
| } |
| } |
| |
| if (cmp <= 0 && ++i1 == end1) |
| i1 = NULL; |
| if (cmp >= 0 && ++i2 == end2) |
| i2 = NULL; |
| } |
| return total; |
| } |
| |
| unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) |
| { |
| return ARRAY_SIZE(invariant_sys_regs) |
| + num_demux_regs() |
| + walk_sys_regs(vcpu, (u64 __user *)NULL); |
| } |
| |
| int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| unsigned int i; |
| int err; |
| |
| /* Then give them all the invariant registers' indices. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { |
| if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) |
| return -EFAULT; |
| uindices++; |
| } |
| |
| err = walk_sys_regs(vcpu, uindices); |
| if (err < 0) |
| return err; |
| uindices += err; |
| |
| return write_demux_regids(uindices); |
| } |
| |
| static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n) |
| { |
| unsigned int i; |
| |
| for (i = 1; i < n; i++) { |
| if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) { |
| kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void kvm_sys_reg_table_init(void) |
| { |
| unsigned int i; |
| struct sys_reg_desc clidr; |
| |
| /* Make sure tables are unique and in order. */ |
| BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs))); |
| BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs))); |
| BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs))); |
| BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); |
| BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs))); |
| BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs))); |
| |
| /* We abuse the reset function to overwrite the table itself. */ |
| for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) |
| invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); |
| |
| /* |
| * CLIDR format is awkward, so clean it up. See ARM B4.1.20: |
| * |
| * If software reads the Cache Type fields from Ctype1 |
| * upwards, once it has seen a value of 0b000, no caches |
| * exist at further-out levels of the hierarchy. So, for |
| * example, if Ctype3 is the first Cache Type field with a |
| * value of 0b000, the values of Ctype4 to Ctype7 must be |
| * ignored. |
| */ |
| get_clidr_el1(NULL, &clidr); /* Ugly... */ |
| cache_levels = clidr.val; |
| for (i = 0; i < 7; i++) |
| if (((cache_levels >> (i*3)) & 7) == 0) |
| break; |
| /* Clear all higher bits. */ |
| cache_levels &= (1 << (i*3))-1; |
| } |
| |
| /** |
| * kvm_reset_sys_regs - sets system registers to reset value |
| * @vcpu: The VCPU pointer |
| * |
| * This function finds the right table above and sets the registers on the |
| * virtual CPU struct to their architecturally defined reset values. |
| */ |
| void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) |
| { |
| size_t num; |
| const struct sys_reg_desc *table; |
| |
| /* Catch someone adding a register without putting in reset entry. */ |
| memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs)); |
| |
| /* Generic chip reset first (so target could override). */ |
| reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); |
| |
| table = get_target_table(vcpu->arch.target, true, &num); |
| reset_sys_reg_descs(vcpu, table, num); |
| |
| for (num = 1; num < NR_SYS_REGS; num++) |
| if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242) |
| panic("Didn't reset vcpu_sys_reg(%zi)", num); |
| } |