blob: af631085e88c56937ac4d1a119167bdf46f3d75f [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.cls
*
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "stream_encoder.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dce120_resource.h"
#include "dce112/dce112_resource.h"
#include "dce110/dce110_resource.h"
#include "../virtual/virtual_stream_encoder.h"
#include "dce120_timing_generator.h"
#include "irq/dce120/irq_service_dce120.h"
#include "dce/dce_opp.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_ipp.h"
#include "dce/dce_mem_input.h"
#include "dce/dce_panel_cntl.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce120/dce120_hw_sequencer.h"
#include "dce/dce_transform.h"
#include "clk_mgr.h"
#include "dce/dce_audio.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_hwseq.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "dce/dce_12_0_offset.h"
#include "dce/dce_12_0_sh_mask.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "nbio/nbio_6_1_offset.h"
#include "mmhub/mmhub_1_0_offset.h"
#include "mmhub/mmhub_1_0_sh_mask.h"
#include "reg_helper.h"
#include "dce100/dce100_resource.h"
#ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#endif
enum dce120_clk_src_array_id {
DCE120_CLK_SRC_PLL0,
DCE120_CLK_SRC_PLL1,
DCE120_CLK_SRC_PLL2,
DCE120_CLK_SRC_PLL3,
DCE120_CLK_SRC_PLL4,
DCE120_CLK_SRC_PLL5,
DCE120_CLK_SRC_TOTAL
};
static const struct dce110_timing_generator_offsets dce120_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL),
}
};
/* begin *********************
* macros to expend register list macro defined in HW object header file */
#define BASE_INNER(seg) \
DCE_BASE__INST0_SEG ## seg
#define NBIO_BASE_INNER(seg) \
NBIF_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
/* compile time expand base address. */
#define BASE(seg) \
BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* macros to expend register list macro defined in HW object header file
* end *********************/
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE110_COMMON_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_DCE110_REG_LIST_DCE_BASE(id)\
}
static const struct dce_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
ipp_regs(4),
ipp_regs(5)
};
static const struct dce_ipp_shift ipp_shift = {
IPP_DCE120_MASK_SH_LIST_SOC_BASE(__SHIFT)
};
static const struct dce_ipp_mask ipp_mask = {
IPP_DCE120_MASK_SH_LIST_SOC_BASE(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE110(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2),
transform_regs(3),
transform_regs(4),
transform_regs(5)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_SOC_BASE(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_SOC_BASE(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE120_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST(id),\
.TMDS_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE120(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE120(_MASK)
};
static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
{ DCE_PANEL_CNTL_REG_LIST() }
};
static const struct dce_panel_cntl_shift panel_cntl_shift = {
DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
};
static const struct dce_panel_cntl_mask panel_cntl_mask = {
DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
};
static const struct dce110_aux_registers_shift aux_shift = {
DCE12_AUX_MASK_SH_LIST(__SHIFT)
};
static const struct dce110_aux_registers_mask aux_mask = {
DCE12_AUX_MASK_SH_LIST(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_120_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_120(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_120(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST(id), \
.AUX_RESET_MASK = 0 \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_audio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
static int map_transmitter_id_to_phy_instance(
enum transmitter transmitter)
{
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
return 0;
case TRANSMITTER_UNIPHY_B:
return 1;
case TRANSMITTER_UNIPHY_C:
return 2;
case TRANSMITTER_UNIPHY_D:
return 3;
case TRANSMITTER_UNIPHY_E:
return 4;
case TRANSMITTER_UNIPHY_F:
return 5;
case TRANSMITTER_UNIPHY_G:
return 6;
default:
ASSERT(0);
return 0;
}
}
#define clk_src_regs(index, id)\
[index] = {\
CS_COMMON_REG_LIST_DCE_112(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D),
clk_src_regs(4, E),
clk_src_regs(5, F)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_112(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_112(_MASK)
};
static struct output_pixel_processor *dce120_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
kzalloc(sizeof(struct dce110_opp), GFP_KERNEL);
if (!opp)
return NULL;
dce110_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct dce_aux *dce120_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst],
&aux_mask,
&aux_shift,
ctx->dc->caps.extended_aux_timeout_support);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
static struct dce_i2c_hw *dce120_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dce112_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3 + NBIO_BASE(mmBIOS_SCRATCH_3_BASE_IDX),
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6 + NBIO_BASE(mmBIOS_SCRATCH_6_BASE_IDX)
};
static const struct resource_caps res_cap = {
.num_timing_generator = 6,
.num_audio = 7,
.num_stream_encoder = 6,
.num_pll = 6,
.num_ddc = 6,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCE_RGB,
.pixel_format_support = {
.argb8888 = true,
.nv12 = false,
.fp16 = true
},
.max_upscale_factor = {
.argb8888 = 16000,
.nv12 = 1,
.fp16 = 1
},
.max_downscale_factor = {
.argb8888 = 250,
.nv12 = 1,
.fp16 = 1
}
};
static const struct dc_debug_options debug_defaults = {
.disable_clock_gate = true,
};
static struct clock_source *dce120_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(*clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce112_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
kfree(clk_src);
BREAK_TO_DEBUGGER();
return NULL;
}
static void dce120_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static bool dce120_hw_sequencer_create(struct dc *dc)
{
/* All registers used by dce11.2 match those in dce11 in offset and
* structure
*/
dce120_hw_sequencer_construct(dc);
/*TODO Move to separate file and Override what is needed */
return true;
}
static struct timing_generator *dce120_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL);
if (!tg110)
return NULL;
dce120_timing_generator_construct(tg110, ctx, instance, offsets);
return &tg110->base;
}
static void dce120_transform_destroy(struct transform **xfm)
{
kfree(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static void dce120_resource_destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce120_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
kfree(TO_DCE_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL)
dce120_clock_source_destroy(
&pool->base.clock_sources[i]);
}
if (pool->base.dp_clock_source != NULL)
dce120_clock_source_destroy(&pool->base.dp_clock_source);
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
uint32_t reg_val = dm_read_reg_soc15(ctx, mmCC_DC_MISC_STRAPS, 0);
straps->audio_stream_number = get_reg_field_value(reg_val,
CC_DC_MISC_STRAPS,
AUDIO_STREAM_NUMBER);
straps->hdmi_disable = get_reg_field_value(reg_val,
CC_DC_MISC_STRAPS,
HDMI_DISABLE);
reg_val = dm_read_reg_soc15(ctx, mmDC_PINSTRAPS, 0);
straps->dc_pinstraps_audio = get_reg_field_value(reg_val,
DC_PINSTRAPS,
DC_PINSTRAPS_AUDIO);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = false,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true,
};
static struct link_encoder *dce120_link_encoder_create(
struct dc_context *ctx,
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL);
int link_regs_id;
if (!enc110)
return NULL;
link_regs_id =
map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
dce110_link_encoder_construct(enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[link_regs_id],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source]);
return &enc110->base;
}
static struct panel_cntl *dce120_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
struct dce_panel_cntl *panel_cntl =
kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
if (!panel_cntl)
return NULL;
dce_panel_cntl_construct(panel_cntl,
init_data,
&panel_cntl_regs[init_data->inst],
&panel_cntl_shift,
&panel_cntl_mask);
return &panel_cntl->base;
}
static struct input_pixel_processor *dce120_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static struct stream_encoder *dce120_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc110->base;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCE120_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE12_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE12_MASK_SH_LIST(_MASK)
};
/* HWSEQ regs for VG20 */
static const struct dce_hwseq_registers dce121_hwseq_reg = {
HWSEQ_VG20_REG_LIST()
};
static const struct dce_hwseq_shift dce121_hwseq_shift = {
HWSEQ_VG20_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask dce121_hwseq_mask = {
HWSEQ_VG20_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dce120_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static struct dce_hwseq *dce121_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &dce121_hwseq_reg;
hws->shifts = &dce121_hwseq_shift;
hws->masks = &dce121_hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce120_stream_encoder_create,
.create_hwseq = dce120_hwseq_create,
};
static const struct resource_create_funcs dce121_res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce120_stream_encoder_create,
.create_hwseq = dce121_hwseq_create,
};
#define mi_inst_regs(id) { MI_DCE12_REG_LIST(id) }
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
mi_inst_regs(3),
mi_inst_regs(4),
mi_inst_regs(5),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE12_MASK_SH_LIST(__SHIFT)
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE12_MASK_SH_LIST(_MASK)
};
static struct mem_input *dce120_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input),
GFP_KERNEL);
if (!dce_mi) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce120_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks);
return &dce_mi->base;
}
static struct transform *dce120_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
kzalloc(sizeof(struct dce_transform), GFP_KERNEL);
if (!transform)
return NULL;
dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask);
transform->lb_memory_size = 0x1404; /*5124*/
return &transform->base;
}
static void dce120_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
dce120_resource_destruct(dce110_pool);
kfree(dce110_pool);
*pool = NULL;
}
static const struct resource_funcs dce120_res_pool_funcs = {
.destroy = dce120_destroy_resource_pool,
.link_enc_create = dce120_link_encoder_create,
.panel_cntl_create = dce120_panel_cntl_create,
.validate_bandwidth = dce112_validate_bandwidth,
.validate_plane = dce100_validate_plane,
.add_stream_to_ctx = dce112_add_stream_to_ctx,
.find_first_free_match_stream_enc_for_link = dce110_find_first_free_match_stream_enc_for_link
};
static void bw_calcs_data_update_from_pplib(struct dc *dc)
{
struct dm_pp_clock_levels_with_latency eng_clks = {0};
struct dm_pp_clock_levels_with_latency mem_clks = {0};
struct dm_pp_wm_sets_with_clock_ranges clk_ranges = {0};
int i;
unsigned int clk;
unsigned int latency;
/*original logic in dal3*/
int memory_type_multiplier = MEMORY_TYPE_MULTIPLIER_CZ;
/*do system clock*/
if (!dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&eng_clks) || eng_clks.num_levels == 0) {
eng_clks.num_levels = 8;
clk = 300000;
for (i = 0; i < eng_clks.num_levels; i++) {
eng_clks.data[i].clocks_in_khz = clk;
clk += 100000;
}
}
/* convert all the clock fro kHz to fix point mHz TODO: wloop data */
dc->bw_vbios->high_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels-1].clocks_in_khz, 1000);
dc->bw_vbios->mid1_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels/8].clocks_in_khz, 1000);
dc->bw_vbios->mid2_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*2/8].clocks_in_khz, 1000);
dc->bw_vbios->mid3_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz, 1000);
dc->bw_vbios->mid4_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*4/8].clocks_in_khz, 1000);
dc->bw_vbios->mid5_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*5/8].clocks_in_khz, 1000);
dc->bw_vbios->mid6_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*6/8].clocks_in_khz, 1000);
dc->bw_vbios->low_sclk = bw_frc_to_fixed(
eng_clks.data[0].clocks_in_khz, 1000);
/*do memory clock*/
if (!dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&mem_clks) || mem_clks.num_levels == 0) {
mem_clks.num_levels = 3;
clk = 250000;
latency = 45;
for (i = 0; i < eng_clks.num_levels; i++) {
mem_clks.data[i].clocks_in_khz = clk;
mem_clks.data[i].latency_in_us = latency;
clk += 500000;
latency -= 5;
}
}
/* we don't need to call PPLIB for validation clock since they
* also give us the highest sclk and highest mclk (UMA clock).
* ALSO always convert UMA clock (from PPLIB) to YCLK (HW formula):
* YCLK = UMACLK*m_memoryTypeMultiplier
*/
if (dc->bw_vbios->memory_type == bw_def_hbm)
memory_type_multiplier = MEMORY_TYPE_HBM;
dc->bw_vbios->low_yclk = bw_frc_to_fixed(
mem_clks.data[0].clocks_in_khz * memory_type_multiplier, 1000);
dc->bw_vbios->mid_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz * memory_type_multiplier,
1000);
dc->bw_vbios->high_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels-1].clocks_in_khz * memory_type_multiplier,
1000);
/* Now notify PPLib/SMU about which Watermarks sets they should select
* depending on DPM state they are in. And update BW MGR GFX Engine and
* Memory clock member variables for Watermarks calculations for each
* Watermark Set
*/
clk_ranges.num_wm_sets = 4;
clk_ranges.wm_clk_ranges[0].wm_set_id = WM_SET_A;
clk_ranges.wm_clk_ranges[0].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[0].wm_min_mem_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[1].wm_set_id = WM_SET_B;
clk_ranges.wm_clk_ranges[1].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[1].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[1].wm_min_mem_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[1].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_set_id = WM_SET_C;
clk_ranges.wm_clk_ranges[2].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[2].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_min_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[2].wm_max_mem_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_set_id = WM_SET_D;
clk_ranges.wm_clk_ranges[3].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_min_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_mem_clk_in_khz = 5000000;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
dm_pp_notify_wm_clock_changes(dc->ctx, &clk_ranges);
}
static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
uint32_t value = dm_read_reg_soc15(ctx, mmCC_DC_PIPE_DIS, 0);
/* VG20 support max 6 pipes */
value = value & 0x3f;
return value;
}
static bool dce120_resource_construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
int j;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data irq_init_data;
static const struct resource_create_funcs *res_funcs;
bool is_vg20 = ASICREV_IS_VEGA20_P(ctx->asic_id.hw_internal_rev);
uint32_t pipe_fuses;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap;
pool->base.funcs = &dce120_res_pool_funcs;
/* TODO: Fill more data from GreenlandAsicCapability.cpp */
pool->base.pipe_count = res_cap.num_timing_generator;
pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator;
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
dc->caps.max_cursor_size = 128;
dc->caps.min_horizontal_blanking_period = 80;
dc->caps.dual_link_dvi = true;
dc->caps.psp_setup_panel_mode = true;
dc->caps.extended_aux_timeout_support = false;
dc->debug = debug_defaults;
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCE120_CLK_SRC_PLL0] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL1] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL2] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL3] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL4] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clock_sources[DCE120_CLK_SRC_PLL5] =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL5,
&clk_src_regs[5], false);
pool->base.clk_src_count = DCE120_CLK_SRC_TOTAL;
pool->base.dp_clock_source =
dce120_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto clk_src_create_fail;
}
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
irq_init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce120_create(&irq_init_data);
if (!pool->base.irqs)
goto irqs_create_fail;
/* VG20: Pipe harvesting enabled, retrieve valid pipe fuses */
if (is_vg20)
pipe_fuses = read_pipe_fuses(ctx);
/* index to valid pipe resource */
j = 0;
for (i = 0; i < pool->base.pipe_count; i++) {
if (is_vg20) {
if ((pipe_fuses & (1 << i)) != 0) {
dm_error("DC: skip invalid pipe %d!\n", i);
continue;
}
}
pool->base.timing_generators[j] =
dce120_timing_generator_create(
ctx,
i,
&dce120_tg_offsets[i]);
if (pool->base.timing_generators[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto controller_create_fail;
}
pool->base.mis[j] = dce120_mem_input_create(ctx, i);
if (pool->base.mis[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto controller_create_fail;
}
pool->base.ipps[j] = dce120_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto controller_create_fail;
}
pool->base.transforms[j] = dce120_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[j] = dce120_opp_create(
ctx,
i);
if (pool->base.opps[j] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
}
/* check next valid pipe */
j++;
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dce120_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto res_create_fail;
}
pool->base.hw_i2cs[i] = dce120_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create i2c engine!!\n");
goto res_create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
/* valid pipe num */
pool->base.pipe_count = j;
pool->base.timing_generator_count = j;
if (is_vg20)
res_funcs = &dce121_res_create_funcs;
else
res_funcs = &res_create_funcs;
if (!resource_construct(num_virtual_links, dc, &pool->base, res_funcs))
goto res_create_fail;
/* Create hardware sequencer */
if (!dce120_hw_sequencer_create(dc))
goto controller_create_fail;
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id);
bw_calcs_data_update_from_pplib(dc);
return true;
irqs_create_fail:
controller_create_fail:
clk_src_create_fail:
res_create_fail:
dce120_resource_destruct(pool);
return false;
}
struct resource_pool *dce120_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (dce120_resource_construct(num_virtual_links, dc, pool))
return &pool->base;
kfree(pool);
BREAK_TO_DEBUGGER();
return NULL;
}