| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fake_mem.c |
| * |
| * Copyright (C) 2015 FUJITSU LIMITED |
| * Author: Taku Izumi <izumi.taku@jp.fujitsu.com> |
| * |
| * This code introduces new boot option named "efi_fake_mem" |
| * By specifying this parameter, you can add arbitrary attribute to |
| * specific memory range by updating original (firmware provided) EFI |
| * memmap. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/efi.h> |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/types.h> |
| #include <linux/sort.h> |
| #include <asm/e820/api.h> |
| #include <asm/efi.h> |
| |
| #define EFI_MAX_FAKEMEM CONFIG_EFI_MAX_FAKE_MEM |
| |
| static struct efi_mem_range efi_fake_mems[EFI_MAX_FAKEMEM]; |
| static int nr_fake_mem; |
| |
| static int __init cmp_fake_mem(const void *x1, const void *x2) |
| { |
| const struct efi_mem_range *m1 = x1; |
| const struct efi_mem_range *m2 = x2; |
| |
| if (m1->range.start < m2->range.start) |
| return -1; |
| if (m1->range.start > m2->range.start) |
| return 1; |
| return 0; |
| } |
| |
| static void __init efi_fake_range(struct efi_mem_range *efi_range) |
| { |
| struct efi_memory_map_data data = { 0 }; |
| int new_nr_map = efi.memmap.nr_map; |
| efi_memory_desc_t *md; |
| void *new_memmap; |
| |
| /* count up the number of EFI memory descriptor */ |
| for_each_efi_memory_desc(md) |
| new_nr_map += efi_memmap_split_count(md, &efi_range->range); |
| |
| /* allocate memory for new EFI memmap */ |
| if (efi_memmap_alloc(new_nr_map, &data) != 0) |
| return; |
| |
| /* create new EFI memmap */ |
| new_memmap = early_memremap(data.phys_map, data.size); |
| if (!new_memmap) { |
| __efi_memmap_free(data.phys_map, data.size, data.flags); |
| return; |
| } |
| |
| efi_memmap_insert(&efi.memmap, new_memmap, efi_range); |
| |
| /* swap into new EFI memmap */ |
| early_memunmap(new_memmap, data.size); |
| |
| efi_memmap_install(&data); |
| } |
| |
| void __init efi_fake_memmap(void) |
| { |
| int i; |
| |
| if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem) |
| return; |
| |
| for (i = 0; i < nr_fake_mem; i++) |
| efi_fake_range(&efi_fake_mems[i]); |
| |
| /* print new EFI memmap */ |
| efi_print_memmap(); |
| } |
| |
| static int __init setup_fake_mem(char *p) |
| { |
| u64 start = 0, mem_size = 0, attribute = 0; |
| int i; |
| |
| if (!p) |
| return -EINVAL; |
| |
| while (*p != '\0') { |
| mem_size = memparse(p, &p); |
| if (*p == '@') |
| start = memparse(p+1, &p); |
| else |
| break; |
| |
| if (*p == ':') |
| attribute = simple_strtoull(p+1, &p, 0); |
| else |
| break; |
| |
| if (nr_fake_mem >= EFI_MAX_FAKEMEM) |
| break; |
| |
| efi_fake_mems[nr_fake_mem].range.start = start; |
| efi_fake_mems[nr_fake_mem].range.end = start + mem_size - 1; |
| efi_fake_mems[nr_fake_mem].attribute = attribute; |
| nr_fake_mem++; |
| |
| if (*p == ',') |
| p++; |
| } |
| |
| sort(efi_fake_mems, nr_fake_mem, sizeof(struct efi_mem_range), |
| cmp_fake_mem, NULL); |
| |
| for (i = 0; i < nr_fake_mem; i++) |
| pr_info("efi_fake_mem: add attr=0x%016llx to [mem 0x%016llx-0x%016llx]", |
| efi_fake_mems[i].attribute, efi_fake_mems[i].range.start, |
| efi_fake_mems[i].range.end); |
| |
| return *p == '\0' ? 0 : -EINVAL; |
| } |
| |
| early_param("efi_fake_mem", setup_fake_mem); |
| |
| void __init efi_fake_memmap_early(void) |
| { |
| int i; |
| |
| /* |
| * The late efi_fake_mem() call can handle all requests if |
| * EFI_MEMORY_SP support is disabled. |
| */ |
| if (!efi_soft_reserve_enabled()) |
| return; |
| |
| if (!efi_enabled(EFI_MEMMAP) || !nr_fake_mem) |
| return; |
| |
| /* |
| * Given that efi_fake_memmap() needs to perform memblock |
| * allocations it needs to run after e820__memblock_setup(). |
| * However, if efi_fake_mem specifies EFI_MEMORY_SP for a given |
| * address range that potentially needs to mark the memory as |
| * reserved prior to e820__memblock_setup(). Update e820 |
| * directly if EFI_MEMORY_SP is specified for an |
| * EFI_CONVENTIONAL_MEMORY descriptor. |
| */ |
| for (i = 0; i < nr_fake_mem; i++) { |
| struct efi_mem_range *mem = &efi_fake_mems[i]; |
| efi_memory_desc_t *md; |
| u64 m_start, m_end; |
| |
| if ((mem->attribute & EFI_MEMORY_SP) == 0) |
| continue; |
| |
| m_start = mem->range.start; |
| m_end = mem->range.end; |
| for_each_efi_memory_desc(md) { |
| u64 start, end, size; |
| |
| if (md->type != EFI_CONVENTIONAL_MEMORY) |
| continue; |
| |
| start = md->phys_addr; |
| end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; |
| |
| if (m_start <= end && m_end >= start) |
| /* fake range overlaps descriptor */; |
| else |
| continue; |
| |
| /* |
| * Trim the boundary of the e820 update to the |
| * descriptor in case the fake range overlaps |
| * !EFI_CONVENTIONAL_MEMORY |
| */ |
| start = max(start, m_start); |
| end = min(end, m_end); |
| size = end - start + 1; |
| |
| if (end <= start) |
| continue; |
| |
| /* |
| * Ensure each efi_fake_mem instance results in |
| * a unique e820 resource |
| */ |
| e820__range_remove(start, size, E820_TYPE_RAM, 1); |
| e820__range_add(start, size, E820_TYPE_SOFT_RESERVED); |
| e820__update_table(e820_table); |
| } |
| } |
| } |