| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * mm/percpu-vm.c - vmalloc area based chunk allocation |
| * |
| * Copyright (C) 2010 SUSE Linux Products GmbH |
| * Copyright (C) 2010 Tejun Heo <tj@kernel.org> |
| * |
| * Chunks are mapped into vmalloc areas and populated page by page. |
| * This is the default chunk allocator. |
| */ |
| #include "internal.h" |
| |
| static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, |
| unsigned int cpu, int page_idx) |
| { |
| /* must not be used on pre-mapped chunk */ |
| WARN_ON(chunk->immutable); |
| |
| return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); |
| } |
| |
| /** |
| * pcpu_get_pages - get temp pages array |
| * |
| * Returns pointer to array of pointers to struct page which can be indexed |
| * with pcpu_page_idx(). Note that there is only one array and accesses |
| * should be serialized by pcpu_alloc_mutex. |
| * |
| * RETURNS: |
| * Pointer to temp pages array on success. |
| */ |
| static struct page **pcpu_get_pages(void) |
| { |
| static struct page **pages; |
| size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); |
| |
| lockdep_assert_held(&pcpu_alloc_mutex); |
| |
| if (!pages) |
| pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL); |
| return pages; |
| } |
| |
| /** |
| * pcpu_free_pages - free pages which were allocated for @chunk |
| * @chunk: chunk pages were allocated for |
| * @pages: array of pages to be freed, indexed by pcpu_page_idx() |
| * @page_start: page index of the first page to be freed |
| * @page_end: page index of the last page to be freed + 1 |
| * |
| * Free pages [@page_start and @page_end) in @pages for all units. |
| * The pages were allocated for @chunk. |
| */ |
| static void pcpu_free_pages(struct pcpu_chunk *chunk, |
| struct page **pages, int page_start, int page_end) |
| { |
| unsigned int cpu; |
| int i; |
| |
| for_each_possible_cpu(cpu) { |
| for (i = page_start; i < page_end; i++) { |
| struct page *page = pages[pcpu_page_idx(cpu, i)]; |
| |
| if (page) |
| __free_page(page); |
| } |
| } |
| } |
| |
| /** |
| * pcpu_alloc_pages - allocates pages for @chunk |
| * @chunk: target chunk |
| * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() |
| * @page_start: page index of the first page to be allocated |
| * @page_end: page index of the last page to be allocated + 1 |
| * @gfp: allocation flags passed to the underlying allocator |
| * |
| * Allocate pages [@page_start,@page_end) into @pages for all units. |
| * The allocation is for @chunk. Percpu core doesn't care about the |
| * content of @pages and will pass it verbatim to pcpu_map_pages(). |
| */ |
| static int pcpu_alloc_pages(struct pcpu_chunk *chunk, |
| struct page **pages, int page_start, int page_end, |
| gfp_t gfp) |
| { |
| unsigned int cpu, tcpu; |
| int i; |
| |
| gfp |= __GFP_HIGHMEM; |
| |
| for_each_possible_cpu(cpu) { |
| for (i = page_start; i < page_end; i++) { |
| struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; |
| |
| *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); |
| if (!*pagep) |
| goto err; |
| } |
| } |
| return 0; |
| |
| err: |
| while (--i >= page_start) |
| __free_page(pages[pcpu_page_idx(cpu, i)]); |
| |
| for_each_possible_cpu(tcpu) { |
| if (tcpu == cpu) |
| break; |
| for (i = page_start; i < page_end; i++) |
| __free_page(pages[pcpu_page_idx(tcpu, i)]); |
| } |
| return -ENOMEM; |
| } |
| |
| /** |
| * pcpu_pre_unmap_flush - flush cache prior to unmapping |
| * @chunk: chunk the regions to be flushed belongs to |
| * @page_start: page index of the first page to be flushed |
| * @page_end: page index of the last page to be flushed + 1 |
| * |
| * Pages in [@page_start,@page_end) of @chunk are about to be |
| * unmapped. Flush cache. As each flushing trial can be very |
| * expensive, issue flush on the whole region at once rather than |
| * doing it for each cpu. This could be an overkill but is more |
| * scalable. |
| */ |
| static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, |
| int page_start, int page_end) |
| { |
| flush_cache_vunmap( |
| pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), |
| pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); |
| } |
| |
| static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) |
| { |
| vunmap_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT)); |
| } |
| |
| /** |
| * pcpu_unmap_pages - unmap pages out of a pcpu_chunk |
| * @chunk: chunk of interest |
| * @pages: pages array which can be used to pass information to free |
| * @page_start: page index of the first page to unmap |
| * @page_end: page index of the last page to unmap + 1 |
| * |
| * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. |
| * Corresponding elements in @pages were cleared by the caller and can |
| * be used to carry information to pcpu_free_pages() which will be |
| * called after all unmaps are finished. The caller should call |
| * proper pre/post flush functions. |
| */ |
| static void pcpu_unmap_pages(struct pcpu_chunk *chunk, |
| struct page **pages, int page_start, int page_end) |
| { |
| unsigned int cpu; |
| int i; |
| |
| for_each_possible_cpu(cpu) { |
| for (i = page_start; i < page_end; i++) { |
| struct page *page; |
| |
| page = pcpu_chunk_page(chunk, cpu, i); |
| WARN_ON(!page); |
| pages[pcpu_page_idx(cpu, i)] = page; |
| } |
| __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), |
| page_end - page_start); |
| } |
| } |
| |
| /** |
| * pcpu_post_unmap_tlb_flush - flush TLB after unmapping |
| * @chunk: pcpu_chunk the regions to be flushed belong to |
| * @page_start: page index of the first page to be flushed |
| * @page_end: page index of the last page to be flushed + 1 |
| * |
| * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush |
| * TLB for the regions. This can be skipped if the area is to be |
| * returned to vmalloc as vmalloc will handle TLB flushing lazily. |
| * |
| * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once |
| * for the whole region. |
| */ |
| static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, |
| int page_start, int page_end) |
| { |
| flush_tlb_kernel_range( |
| pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), |
| pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); |
| } |
| |
| static int __pcpu_map_pages(unsigned long addr, struct page **pages, |
| int nr_pages) |
| { |
| return vmap_pages_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT), |
| PAGE_KERNEL, pages, PAGE_SHIFT); |
| } |
| |
| /** |
| * pcpu_map_pages - map pages into a pcpu_chunk |
| * @chunk: chunk of interest |
| * @pages: pages array containing pages to be mapped |
| * @page_start: page index of the first page to map |
| * @page_end: page index of the last page to map + 1 |
| * |
| * For each cpu, map pages [@page_start,@page_end) into @chunk. The |
| * caller is responsible for calling pcpu_post_map_flush() after all |
| * mappings are complete. |
| * |
| * This function is responsible for setting up whatever is necessary for |
| * reverse lookup (addr -> chunk). |
| */ |
| static int pcpu_map_pages(struct pcpu_chunk *chunk, |
| struct page **pages, int page_start, int page_end) |
| { |
| unsigned int cpu, tcpu; |
| int i, err; |
| |
| for_each_possible_cpu(cpu) { |
| err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), |
| &pages[pcpu_page_idx(cpu, page_start)], |
| page_end - page_start); |
| if (err < 0) |
| goto err; |
| |
| for (i = page_start; i < page_end; i++) |
| pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], |
| chunk); |
| } |
| return 0; |
| err: |
| for_each_possible_cpu(tcpu) { |
| __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), |
| page_end - page_start); |
| if (tcpu == cpu) |
| break; |
| } |
| pcpu_post_unmap_tlb_flush(chunk, page_start, page_end); |
| return err; |
| } |
| |
| /** |
| * pcpu_post_map_flush - flush cache after mapping |
| * @chunk: pcpu_chunk the regions to be flushed belong to |
| * @page_start: page index of the first page to be flushed |
| * @page_end: page index of the last page to be flushed + 1 |
| * |
| * Pages [@page_start,@page_end) of @chunk have been mapped. Flush |
| * cache. |
| * |
| * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once |
| * for the whole region. |
| */ |
| static void pcpu_post_map_flush(struct pcpu_chunk *chunk, |
| int page_start, int page_end) |
| { |
| flush_cache_vmap( |
| pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start), |
| pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end)); |
| } |
| |
| /** |
| * pcpu_populate_chunk - populate and map an area of a pcpu_chunk |
| * @chunk: chunk of interest |
| * @page_start: the start page |
| * @page_end: the end page |
| * @gfp: allocation flags passed to the underlying memory allocator |
| * |
| * For each cpu, populate and map pages [@page_start,@page_end) into |
| * @chunk. |
| * |
| * CONTEXT: |
| * pcpu_alloc_mutex, does GFP_KERNEL allocation. |
| */ |
| static int pcpu_populate_chunk(struct pcpu_chunk *chunk, |
| int page_start, int page_end, gfp_t gfp) |
| { |
| struct page **pages; |
| |
| pages = pcpu_get_pages(); |
| if (!pages) |
| return -ENOMEM; |
| |
| if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp)) |
| return -ENOMEM; |
| |
| if (pcpu_map_pages(chunk, pages, page_start, page_end)) { |
| pcpu_free_pages(chunk, pages, page_start, page_end); |
| return -ENOMEM; |
| } |
| pcpu_post_map_flush(chunk, page_start, page_end); |
| |
| return 0; |
| } |
| |
| /** |
| * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk |
| * @chunk: chunk to depopulate |
| * @page_start: the start page |
| * @page_end: the end page |
| * |
| * For each cpu, depopulate and unmap pages [@page_start,@page_end) |
| * from @chunk. |
| * |
| * Caller is required to call pcpu_post_unmap_tlb_flush() if not returning the |
| * region back to vmalloc() which will lazily flush the tlb. |
| * |
| * CONTEXT: |
| * pcpu_alloc_mutex. |
| */ |
| static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, |
| int page_start, int page_end) |
| { |
| struct page **pages; |
| |
| /* |
| * If control reaches here, there must have been at least one |
| * successful population attempt so the temp pages array must |
| * be available now. |
| */ |
| pages = pcpu_get_pages(); |
| BUG_ON(!pages); |
| |
| /* unmap and free */ |
| pcpu_pre_unmap_flush(chunk, page_start, page_end); |
| |
| pcpu_unmap_pages(chunk, pages, page_start, page_end); |
| |
| pcpu_free_pages(chunk, pages, page_start, page_end); |
| } |
| |
| static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp) |
| { |
| struct pcpu_chunk *chunk; |
| struct vm_struct **vms; |
| |
| chunk = pcpu_alloc_chunk(gfp); |
| if (!chunk) |
| return NULL; |
| |
| vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, |
| pcpu_nr_groups, pcpu_atom_size); |
| if (!vms) { |
| pcpu_free_chunk(chunk); |
| return NULL; |
| } |
| |
| chunk->data = vms; |
| chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; |
| |
| pcpu_stats_chunk_alloc(); |
| trace_percpu_create_chunk(chunk->base_addr); |
| |
| return chunk; |
| } |
| |
| static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) |
| { |
| if (!chunk) |
| return; |
| |
| pcpu_stats_chunk_dealloc(); |
| trace_percpu_destroy_chunk(chunk->base_addr); |
| |
| if (chunk->data) |
| pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); |
| pcpu_free_chunk(chunk); |
| } |
| |
| static struct page *pcpu_addr_to_page(void *addr) |
| { |
| return vmalloc_to_page(addr); |
| } |
| |
| static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) |
| { |
| /* no extra restriction */ |
| return 0; |
| } |
| |
| /** |
| * pcpu_should_reclaim_chunk - determine if a chunk should go into reclaim |
| * @chunk: chunk of interest |
| * |
| * This is the entry point for percpu reclaim. If a chunk qualifies, it is then |
| * isolated and managed in separate lists at the back of pcpu_slot: sidelined |
| * and to_depopulate respectively. The to_depopulate list holds chunks slated |
| * for depopulation. They no longer contribute to pcpu_nr_empty_pop_pages once |
| * they are on this list. Once depopulated, they are moved onto the sidelined |
| * list which enables them to be pulled back in for allocation if no other chunk |
| * can suffice the allocation. |
| */ |
| static bool pcpu_should_reclaim_chunk(struct pcpu_chunk *chunk) |
| { |
| /* do not reclaim either the first chunk or reserved chunk */ |
| if (chunk == pcpu_first_chunk || chunk == pcpu_reserved_chunk) |
| return false; |
| |
| /* |
| * If it is isolated, it may be on the sidelined list so move it back to |
| * the to_depopulate list. If we hit at least 1/4 pages empty pages AND |
| * there is no system-wide shortage of empty pages aside from this |
| * chunk, move it to the to_depopulate list. |
| */ |
| return ((chunk->isolated && chunk->nr_empty_pop_pages) || |
| (pcpu_nr_empty_pop_pages > |
| (PCPU_EMPTY_POP_PAGES_HIGH + chunk->nr_empty_pop_pages) && |
| chunk->nr_empty_pop_pages >= chunk->nr_pages / 4)); |
| } |