| /* |
| * pci.c - Low-Level PCI Access in IA-64 |
| * |
| * Derived from bios32.c of i386 tree. |
| * |
| * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P. |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Bjorn Helgaas <bjorn.helgaas@hp.com> |
| * Copyright (C) 2004 Silicon Graphics, Inc. |
| * |
| * Note: Above list of copyright holders is incomplete... |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/pci-acpi.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/memblock.h> |
| #include <linux/export.h> |
| |
| #include <asm/machvec.h> |
| #include <asm/page.h> |
| #include <asm/io.h> |
| #include <asm/sal.h> |
| #include <asm/smp.h> |
| #include <asm/irq.h> |
| #include <asm/hw_irq.h> |
| |
| /* |
| * Low-level SAL-based PCI configuration access functions. Note that SAL |
| * calls are already serialized (via sal_lock), so we don't need another |
| * synchronization mechanism here. |
| */ |
| |
| #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ |
| (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg)) |
| |
| /* SAL 3.2 adds support for extended config space. */ |
| |
| #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ |
| (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg)) |
| |
| int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn, |
| int reg, int len, u32 *value) |
| { |
| u64 addr, data = 0; |
| int mode, result; |
| |
| if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) |
| return -EINVAL; |
| |
| if ((seg | reg) <= 255) { |
| addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); |
| mode = 0; |
| } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { |
| addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); |
| mode = 1; |
| } else { |
| return -EINVAL; |
| } |
| |
| result = ia64_sal_pci_config_read(addr, mode, len, &data); |
| if (result != 0) |
| return -EINVAL; |
| |
| *value = (u32) data; |
| return 0; |
| } |
| |
| int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn, |
| int reg, int len, u32 value) |
| { |
| u64 addr; |
| int mode, result; |
| |
| if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) |
| return -EINVAL; |
| |
| if ((seg | reg) <= 255) { |
| addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); |
| mode = 0; |
| } else if (sal_revision >= SAL_VERSION_CODE(3,2)) { |
| addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); |
| mode = 1; |
| } else { |
| return -EINVAL; |
| } |
| result = ia64_sal_pci_config_write(addr, mode, len, value); |
| if (result != 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 *value) |
| { |
| return raw_pci_read(pci_domain_nr(bus), bus->number, |
| devfn, where, size, value); |
| } |
| |
| static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 value) |
| { |
| return raw_pci_write(pci_domain_nr(bus), bus->number, |
| devfn, where, size, value); |
| } |
| |
| struct pci_ops pci_root_ops = { |
| .read = pci_read, |
| .write = pci_write, |
| }; |
| |
| struct pci_root_info { |
| struct acpi_pci_root_info common; |
| struct pci_controller controller; |
| struct list_head io_resources; |
| }; |
| |
| static unsigned int new_space(u64 phys_base, int sparse) |
| { |
| u64 mmio_base; |
| int i; |
| |
| if (phys_base == 0) |
| return 0; /* legacy I/O port space */ |
| |
| mmio_base = (u64) ioremap(phys_base, 0); |
| for (i = 0; i < num_io_spaces; i++) |
| if (io_space[i].mmio_base == mmio_base && |
| io_space[i].sparse == sparse) |
| return i; |
| |
| if (num_io_spaces == MAX_IO_SPACES) { |
| pr_err("PCI: Too many IO port spaces " |
| "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES); |
| return ~0; |
| } |
| |
| i = num_io_spaces++; |
| io_space[i].mmio_base = mmio_base; |
| io_space[i].sparse = sparse; |
| |
| return i; |
| } |
| |
| static int add_io_space(struct device *dev, struct pci_root_info *info, |
| struct resource_entry *entry) |
| { |
| struct resource_entry *iospace; |
| struct resource *resource, *res = entry->res; |
| char *name; |
| unsigned long base, min, max, base_port; |
| unsigned int sparse = 0, space_nr, len; |
| |
| len = strlen(info->common.name) + 32; |
| iospace = resource_list_create_entry(NULL, len); |
| if (!iospace) { |
| dev_err(dev, "PCI: No memory for %s I/O port space\n", |
| info->common.name); |
| return -ENOMEM; |
| } |
| |
| if (res->flags & IORESOURCE_IO_SPARSE) |
| sparse = 1; |
| space_nr = new_space(entry->offset, sparse); |
| if (space_nr == ~0) |
| goto free_resource; |
| |
| name = (char *)(iospace + 1); |
| min = res->start - entry->offset; |
| max = res->end - entry->offset; |
| base = __pa(io_space[space_nr].mmio_base); |
| base_port = IO_SPACE_BASE(space_nr); |
| snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name, |
| base_port + min, base_port + max); |
| |
| /* |
| * The SDM guarantees the legacy 0-64K space is sparse, but if the |
| * mapping is done by the processor (not the bridge), ACPI may not |
| * mark it as sparse. |
| */ |
| if (space_nr == 0) |
| sparse = 1; |
| |
| resource = iospace->res; |
| resource->name = name; |
| resource->flags = IORESOURCE_MEM; |
| resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min); |
| resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max); |
| if (insert_resource(&iomem_resource, resource)) { |
| dev_err(dev, |
| "can't allocate host bridge io space resource %pR\n", |
| resource); |
| goto free_resource; |
| } |
| |
| entry->offset = base_port; |
| res->start = min + base_port; |
| res->end = max + base_port; |
| resource_list_add_tail(iospace, &info->io_resources); |
| |
| return 0; |
| |
| free_resource: |
| resource_list_free_entry(iospace); |
| return -ENOSPC; |
| } |
| |
| /* |
| * An IO port or MMIO resource assigned to a PCI host bridge may be |
| * consumed by the host bridge itself or available to its child |
| * bus/devices. The ACPI specification defines a bit (Producer/Consumer) |
| * to tell whether the resource is consumed by the host bridge itself, |
| * but firmware hasn't used that bit consistently, so we can't rely on it. |
| * |
| * On x86 and IA64 platforms, all IO port and MMIO resources are assumed |
| * to be available to child bus/devices except one special case: |
| * IO port [0xCF8-0xCFF] is consumed by the host bridge itself |
| * to access PCI configuration space. |
| * |
| * So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF]. |
| */ |
| static bool resource_is_pcicfg_ioport(struct resource *res) |
| { |
| return (res->flags & IORESOURCE_IO) && |
| res->start == 0xCF8 && res->end == 0xCFF; |
| } |
| |
| static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci) |
| { |
| struct device *dev = &ci->bridge->dev; |
| struct pci_root_info *info; |
| struct resource *res; |
| struct resource_entry *entry, *tmp; |
| int status; |
| |
| status = acpi_pci_probe_root_resources(ci); |
| if (status > 0) { |
| info = container_of(ci, struct pci_root_info, common); |
| resource_list_for_each_entry_safe(entry, tmp, &ci->resources) { |
| res = entry->res; |
| if (res->flags & IORESOURCE_MEM) { |
| /* |
| * HP's firmware has a hack to work around a |
| * Windows bug. Ignore these tiny memory ranges. |
| */ |
| if (resource_size(res) <= 16) { |
| resource_list_del(entry); |
| insert_resource(&iomem_resource, |
| entry->res); |
| resource_list_add_tail(entry, |
| &info->io_resources); |
| } |
| } else if (res->flags & IORESOURCE_IO) { |
| if (resource_is_pcicfg_ioport(entry->res)) |
| resource_list_destroy_entry(entry); |
| else if (add_io_space(dev, info, entry)) |
| resource_list_destroy_entry(entry); |
| } |
| } |
| } |
| |
| return status; |
| } |
| |
| static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci) |
| { |
| struct pci_root_info *info; |
| struct resource_entry *entry, *tmp; |
| |
| info = container_of(ci, struct pci_root_info, common); |
| resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) { |
| release_resource(entry->res); |
| resource_list_destroy_entry(entry); |
| } |
| kfree(info); |
| } |
| |
| static struct acpi_pci_root_ops pci_acpi_root_ops = { |
| .pci_ops = &pci_root_ops, |
| .release_info = pci_acpi_root_release_info, |
| .prepare_resources = pci_acpi_root_prepare_resources, |
| }; |
| |
| struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root) |
| { |
| struct acpi_device *device = root->device; |
| struct pci_root_info *info; |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) { |
| dev_err(&device->dev, |
| "pci_bus %04x:%02x: ignored (out of memory)\n", |
| root->segment, (int)root->secondary.start); |
| return NULL; |
| } |
| |
| info->controller.segment = root->segment; |
| info->controller.companion = device; |
| info->controller.node = acpi_get_node(device->handle); |
| INIT_LIST_HEAD(&info->io_resources); |
| return acpi_pci_root_create(root, &pci_acpi_root_ops, |
| &info->common, &info->controller); |
| } |
| |
| int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) |
| { |
| /* |
| * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL |
| * here, pci_create_root_bus() has been called by someone else and |
| * sysdata is likely to be different from what we expect. Let it go in |
| * that case. |
| */ |
| if (!bridge->dev.parent) { |
| struct pci_controller *controller = bridge->bus->sysdata; |
| ACPI_COMPANION_SET(&bridge->dev, controller->companion); |
| } |
| return 0; |
| } |
| |
| void pcibios_fixup_device_resources(struct pci_dev *dev) |
| { |
| int idx; |
| |
| if (!dev->bus) |
| return; |
| |
| for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) { |
| struct resource *r = &dev->resource[idx]; |
| |
| if (!r->flags || r->parent || !r->start) |
| continue; |
| |
| pci_claim_resource(dev, idx); |
| } |
| } |
| EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources); |
| |
| static void pcibios_fixup_bridge_resources(struct pci_dev *dev) |
| { |
| int idx; |
| |
| if (!dev->bus) |
| return; |
| |
| for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) { |
| struct resource *r = &dev->resource[idx]; |
| |
| if (!r->flags || r->parent || !r->start) |
| continue; |
| |
| pci_claim_bridge_resource(dev, idx); |
| } |
| } |
| |
| /* |
| * Called after each bus is probed, but before its children are examined. |
| */ |
| void pcibios_fixup_bus(struct pci_bus *b) |
| { |
| struct pci_dev *dev; |
| |
| if (b->self) { |
| pci_read_bridge_bases(b); |
| pcibios_fixup_bridge_resources(b->self); |
| } |
| list_for_each_entry(dev, &b->devices, bus_list) |
| pcibios_fixup_device_resources(dev); |
| platform_pci_fixup_bus(b); |
| } |
| |
| void pcibios_add_bus(struct pci_bus *bus) |
| { |
| acpi_pci_add_bus(bus); |
| } |
| |
| void pcibios_remove_bus(struct pci_bus *bus) |
| { |
| acpi_pci_remove_bus(bus); |
| } |
| |
| void pcibios_set_master (struct pci_dev *dev) |
| { |
| /* No special bus mastering setup handling */ |
| } |
| |
| int |
| pcibios_enable_device (struct pci_dev *dev, int mask) |
| { |
| int ret; |
| |
| ret = pci_enable_resources(dev, mask); |
| if (ret < 0) |
| return ret; |
| |
| if (!pci_dev_msi_enabled(dev)) |
| return acpi_pci_irq_enable(dev); |
| return 0; |
| } |
| |
| void |
| pcibios_disable_device (struct pci_dev *dev) |
| { |
| BUG_ON(atomic_read(&dev->enable_cnt)); |
| if (!pci_dev_msi_enabled(dev)) |
| acpi_pci_irq_disable(dev); |
| } |
| |
| /** |
| * ia64_pci_get_legacy_mem - generic legacy mem routine |
| * @bus: bus to get legacy memory base address for |
| * |
| * Find the base of legacy memory for @bus. This is typically the first |
| * megabyte of bus address space for @bus or is simply 0 on platforms whose |
| * chipsets support legacy I/O and memory routing. Returns the base address |
| * or an error pointer if an error occurred. |
| * |
| * This is the ia64 generic version of this routine. Other platforms |
| * are free to override it with a machine vector. |
| */ |
| char *ia64_pci_get_legacy_mem(struct pci_bus *bus) |
| { |
| return (char *)__IA64_UNCACHED_OFFSET; |
| } |
| |
| /** |
| * pci_mmap_legacy_page_range - map legacy memory space to userland |
| * @bus: bus whose legacy space we're mapping |
| * @vma: vma passed in by mmap |
| * |
| * Map legacy memory space for this device back to userspace using a machine |
| * vector to get the base address. |
| */ |
| int |
| pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| unsigned long size = vma->vm_end - vma->vm_start; |
| pgprot_t prot; |
| char *addr; |
| |
| /* We only support mmap'ing of legacy memory space */ |
| if (mmap_state != pci_mmap_mem) |
| return -ENOSYS; |
| |
| /* |
| * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt |
| * for more details. |
| */ |
| if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) |
| return -EINVAL; |
| prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size, |
| vma->vm_page_prot); |
| |
| addr = pci_get_legacy_mem(bus); |
| if (IS_ERR(addr)) |
| return PTR_ERR(addr); |
| |
| vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT; |
| vma->vm_page_prot = prot; |
| |
| if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| size, vma->vm_page_prot)) |
| return -EAGAIN; |
| |
| return 0; |
| } |
| |
| /** |
| * ia64_pci_legacy_read - read from legacy I/O space |
| * @bus: bus to read |
| * @port: legacy port value |
| * @val: caller allocated storage for returned value |
| * @size: number of bytes to read |
| * |
| * Simply reads @size bytes from @port and puts the result in @val. |
| * |
| * Again, this (and the write routine) are generic versions that can be |
| * overridden by the platform. This is necessary on platforms that don't |
| * support legacy I/O routing or that hard fail on legacy I/O timeouts. |
| */ |
| int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) |
| { |
| int ret = size; |
| |
| switch (size) { |
| case 1: |
| *val = inb(port); |
| break; |
| case 2: |
| *val = inw(port); |
| break; |
| case 4: |
| *val = inl(port); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ia64_pci_legacy_write - perform a legacy I/O write |
| * @bus: bus pointer |
| * @port: port to write |
| * @val: value to write |
| * @size: number of bytes to write from @val |
| * |
| * Simply writes @size bytes of @val to @port. |
| */ |
| int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) |
| { |
| int ret = size; |
| |
| switch (size) { |
| case 1: |
| outb(val, port); |
| break; |
| case 2: |
| outw(val, port); |
| break; |
| case 4: |
| outl(val, port); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * set_pci_cacheline_size - determine cacheline size for PCI devices |
| * |
| * We want to use the line-size of the outer-most cache. We assume |
| * that this line-size is the same for all CPUs. |
| * |
| * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). |
| */ |
| static void __init set_pci_dfl_cacheline_size(void) |
| { |
| unsigned long levels, unique_caches; |
| long status; |
| pal_cache_config_info_t cci; |
| |
| status = ia64_pal_cache_summary(&levels, &unique_caches); |
| if (status != 0) { |
| pr_err("%s: ia64_pal_cache_summary() failed " |
| "(status=%ld)\n", __func__, status); |
| return; |
| } |
| |
| status = ia64_pal_cache_config_info(levels - 1, |
| /* cache_type (data_or_unified)= */ 2, &cci); |
| if (status != 0) { |
| pr_err("%s: ia64_pal_cache_config_info() failed " |
| "(status=%ld)\n", __func__, status); |
| return; |
| } |
| pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4; |
| } |
| |
| static int __init pcibios_init(void) |
| { |
| set_pci_dfl_cacheline_size(); |
| return 0; |
| } |
| |
| subsys_initcall(pcibios_init); |