|  | /* | 
|  | * SuperH Timer Support - CMT | 
|  | * | 
|  | *  Copyright (C) 2008 Magnus Damm | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_domain.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/sh_timer.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | struct sh_cmt_device; | 
|  |  | 
|  | /* | 
|  | * The CMT comes in 5 different identified flavours, depending not only on the | 
|  | * SoC but also on the particular instance. The following table lists the main | 
|  | * characteristics of those flavours. | 
|  | * | 
|  | *			16B	32B	32B-F	48B	48B-2 | 
|  | * ----------------------------------------------------------------------------- | 
|  | * Channels		2	1/4	1	6	2/8 | 
|  | * Control Width	16	16	16	16	32 | 
|  | * Counter Width	16	32	32	32/48	32/48 | 
|  | * Shared Start/Stop	Y	Y	Y	Y	N | 
|  | * | 
|  | * The 48-bit gen2 version has a per-channel start/stop register located in the | 
|  | * channel registers block. All other versions have a shared start/stop register | 
|  | * located in the global space. | 
|  | * | 
|  | * Channels are indexed from 0 to N-1 in the documentation. The channel index | 
|  | * infers the start/stop bit position in the control register and the channel | 
|  | * registers block address. Some CMT instances have a subset of channels | 
|  | * available, in which case the index in the documentation doesn't match the | 
|  | * "real" index as implemented in hardware. This is for instance the case with | 
|  | * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0 | 
|  | * in the documentation but using start/stop bit 5 and having its registers | 
|  | * block at 0x60. | 
|  | * | 
|  | * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit | 
|  | * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable. | 
|  | */ | 
|  |  | 
|  | enum sh_cmt_model { | 
|  | SH_CMT_16BIT, | 
|  | SH_CMT_32BIT, | 
|  | SH_CMT_32BIT_FAST, | 
|  | SH_CMT_48BIT, | 
|  | SH_CMT_48BIT_GEN2, | 
|  | }; | 
|  |  | 
|  | struct sh_cmt_info { | 
|  | enum sh_cmt_model model; | 
|  |  | 
|  | unsigned long width; /* 16 or 32 bit version of hardware block */ | 
|  | unsigned long overflow_bit; | 
|  | unsigned long clear_bits; | 
|  |  | 
|  | /* callbacks for CMSTR and CMCSR access */ | 
|  | unsigned long (*read_control)(void __iomem *base, unsigned long offs); | 
|  | void (*write_control)(void __iomem *base, unsigned long offs, | 
|  | unsigned long value); | 
|  |  | 
|  | /* callbacks for CMCNT and CMCOR access */ | 
|  | unsigned long (*read_count)(void __iomem *base, unsigned long offs); | 
|  | void (*write_count)(void __iomem *base, unsigned long offs, | 
|  | unsigned long value); | 
|  | }; | 
|  |  | 
|  | struct sh_cmt_channel { | 
|  | struct sh_cmt_device *cmt; | 
|  |  | 
|  | unsigned int index;	/* Index in the documentation */ | 
|  | unsigned int hwidx;	/* Real hardware index */ | 
|  |  | 
|  | void __iomem *iostart; | 
|  | void __iomem *ioctrl; | 
|  |  | 
|  | unsigned int timer_bit; | 
|  | unsigned long flags; | 
|  | unsigned long match_value; | 
|  | unsigned long next_match_value; | 
|  | unsigned long max_match_value; | 
|  | unsigned long rate; | 
|  | raw_spinlock_t lock; | 
|  | struct clock_event_device ced; | 
|  | struct clocksource cs; | 
|  | unsigned long total_cycles; | 
|  | bool cs_enabled; | 
|  | }; | 
|  |  | 
|  | struct sh_cmt_device { | 
|  | struct platform_device *pdev; | 
|  |  | 
|  | const struct sh_cmt_info *info; | 
|  |  | 
|  | void __iomem *mapbase; | 
|  | struct clk *clk; | 
|  |  | 
|  | raw_spinlock_t lock; /* Protect the shared start/stop register */ | 
|  |  | 
|  | struct sh_cmt_channel *channels; | 
|  | unsigned int num_channels; | 
|  | unsigned int hw_channels; | 
|  |  | 
|  | bool has_clockevent; | 
|  | bool has_clocksource; | 
|  | }; | 
|  |  | 
|  | #define SH_CMT16_CMCSR_CMF		(1 << 7) | 
|  | #define SH_CMT16_CMCSR_CMIE		(1 << 6) | 
|  | #define SH_CMT16_CMCSR_CKS8		(0 << 0) | 
|  | #define SH_CMT16_CMCSR_CKS32		(1 << 0) | 
|  | #define SH_CMT16_CMCSR_CKS128		(2 << 0) | 
|  | #define SH_CMT16_CMCSR_CKS512		(3 << 0) | 
|  | #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0) | 
|  |  | 
|  | #define SH_CMT32_CMCSR_CMF		(1 << 15) | 
|  | #define SH_CMT32_CMCSR_OVF		(1 << 14) | 
|  | #define SH_CMT32_CMCSR_WRFLG		(1 << 13) | 
|  | #define SH_CMT32_CMCSR_STTF		(1 << 12) | 
|  | #define SH_CMT32_CMCSR_STPF		(1 << 11) | 
|  | #define SH_CMT32_CMCSR_SSIE		(1 << 10) | 
|  | #define SH_CMT32_CMCSR_CMS		(1 << 9) | 
|  | #define SH_CMT32_CMCSR_CMM		(1 << 8) | 
|  | #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7) | 
|  | #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4) | 
|  | #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4) | 
|  | #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4) | 
|  | #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4) | 
|  | #define SH_CMT32_CMCSR_DBGIVD		(1 << 3) | 
|  | #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0) | 
|  | #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0) | 
|  | #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0) | 
|  | #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0) | 
|  | #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0) | 
|  |  | 
|  | static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs) | 
|  | { | 
|  | return ioread16(base + (offs << 1)); | 
|  | } | 
|  |  | 
|  | static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs) | 
|  | { | 
|  | return ioread32(base + (offs << 2)); | 
|  | } | 
|  |  | 
|  | static void sh_cmt_write16(void __iomem *base, unsigned long offs, | 
|  | unsigned long value) | 
|  | { | 
|  | iowrite16(value, base + (offs << 1)); | 
|  | } | 
|  |  | 
|  | static void sh_cmt_write32(void __iomem *base, unsigned long offs, | 
|  | unsigned long value) | 
|  | { | 
|  | iowrite32(value, base + (offs << 2)); | 
|  | } | 
|  |  | 
|  | static const struct sh_cmt_info sh_cmt_info[] = { | 
|  | [SH_CMT_16BIT] = { | 
|  | .model = SH_CMT_16BIT, | 
|  | .width = 16, | 
|  | .overflow_bit = SH_CMT16_CMCSR_CMF, | 
|  | .clear_bits = ~SH_CMT16_CMCSR_CMF, | 
|  | .read_control = sh_cmt_read16, | 
|  | .write_control = sh_cmt_write16, | 
|  | .read_count = sh_cmt_read16, | 
|  | .write_count = sh_cmt_write16, | 
|  | }, | 
|  | [SH_CMT_32BIT] = { | 
|  | .model = SH_CMT_32BIT, | 
|  | .width = 32, | 
|  | .overflow_bit = SH_CMT32_CMCSR_CMF, | 
|  | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), | 
|  | .read_control = sh_cmt_read16, | 
|  | .write_control = sh_cmt_write16, | 
|  | .read_count = sh_cmt_read32, | 
|  | .write_count = sh_cmt_write32, | 
|  | }, | 
|  | [SH_CMT_32BIT_FAST] = { | 
|  | .model = SH_CMT_32BIT_FAST, | 
|  | .width = 32, | 
|  | .overflow_bit = SH_CMT32_CMCSR_CMF, | 
|  | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), | 
|  | .read_control = sh_cmt_read16, | 
|  | .write_control = sh_cmt_write16, | 
|  | .read_count = sh_cmt_read32, | 
|  | .write_count = sh_cmt_write32, | 
|  | }, | 
|  | [SH_CMT_48BIT] = { | 
|  | .model = SH_CMT_48BIT, | 
|  | .width = 32, | 
|  | .overflow_bit = SH_CMT32_CMCSR_CMF, | 
|  | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), | 
|  | .read_control = sh_cmt_read32, | 
|  | .write_control = sh_cmt_write32, | 
|  | .read_count = sh_cmt_read32, | 
|  | .write_count = sh_cmt_write32, | 
|  | }, | 
|  | [SH_CMT_48BIT_GEN2] = { | 
|  | .model = SH_CMT_48BIT_GEN2, | 
|  | .width = 32, | 
|  | .overflow_bit = SH_CMT32_CMCSR_CMF, | 
|  | .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), | 
|  | .read_control = sh_cmt_read32, | 
|  | .write_control = sh_cmt_write32, | 
|  | .read_count = sh_cmt_read32, | 
|  | .write_count = sh_cmt_write32, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #define CMCSR 0 /* channel register */ | 
|  | #define CMCNT 1 /* channel register */ | 
|  | #define CMCOR 2 /* channel register */ | 
|  |  | 
|  | static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch) | 
|  | { | 
|  | if (ch->iostart) | 
|  | return ch->cmt->info->read_control(ch->iostart, 0); | 
|  | else | 
|  | return ch->cmt->info->read_control(ch->cmt->mapbase, 0); | 
|  | } | 
|  |  | 
|  | static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, | 
|  | unsigned long value) | 
|  | { | 
|  | if (ch->iostart) | 
|  | ch->cmt->info->write_control(ch->iostart, 0, value); | 
|  | else | 
|  | ch->cmt->info->write_control(ch->cmt->mapbase, 0, value); | 
|  | } | 
|  |  | 
|  | static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch) | 
|  | { | 
|  | return ch->cmt->info->read_control(ch->ioctrl, CMCSR); | 
|  | } | 
|  |  | 
|  | static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, | 
|  | unsigned long value) | 
|  | { | 
|  | ch->cmt->info->write_control(ch->ioctrl, CMCSR, value); | 
|  | } | 
|  |  | 
|  | static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch) | 
|  | { | 
|  | return ch->cmt->info->read_count(ch->ioctrl, CMCNT); | 
|  | } | 
|  |  | 
|  | static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, | 
|  | unsigned long value) | 
|  | { | 
|  | ch->cmt->info->write_count(ch->ioctrl, CMCNT, value); | 
|  | } | 
|  |  | 
|  | static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, | 
|  | unsigned long value) | 
|  | { | 
|  | ch->cmt->info->write_count(ch->ioctrl, CMCOR, value); | 
|  | } | 
|  |  | 
|  | static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch, | 
|  | int *has_wrapped) | 
|  | { | 
|  | unsigned long v1, v2, v3; | 
|  | int o1, o2; | 
|  |  | 
|  | o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; | 
|  |  | 
|  | /* Make sure the timer value is stable. Stolen from acpi_pm.c */ | 
|  | do { | 
|  | o2 = o1; | 
|  | v1 = sh_cmt_read_cmcnt(ch); | 
|  | v2 = sh_cmt_read_cmcnt(ch); | 
|  | v3 = sh_cmt_read_cmcnt(ch); | 
|  | o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; | 
|  | } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) | 
|  | || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); | 
|  |  | 
|  | *has_wrapped = o1; | 
|  | return v2; | 
|  | } | 
|  |  | 
|  | static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start) | 
|  | { | 
|  | unsigned long flags, value; | 
|  |  | 
|  | /* start stop register shared by multiple timer channels */ | 
|  | raw_spin_lock_irqsave(&ch->cmt->lock, flags); | 
|  | value = sh_cmt_read_cmstr(ch); | 
|  |  | 
|  | if (start) | 
|  | value |= 1 << ch->timer_bit; | 
|  | else | 
|  | value &= ~(1 << ch->timer_bit); | 
|  |  | 
|  | sh_cmt_write_cmstr(ch, value); | 
|  | raw_spin_unlock_irqrestore(&ch->cmt->lock, flags); | 
|  | } | 
|  |  | 
|  | static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate) | 
|  | { | 
|  | int k, ret; | 
|  |  | 
|  | pm_runtime_get_sync(&ch->cmt->pdev->dev); | 
|  | dev_pm_syscore_device(&ch->cmt->pdev->dev, true); | 
|  |  | 
|  | /* enable clock */ | 
|  | ret = clk_enable(ch->cmt->clk); | 
|  | if (ret) { | 
|  | dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n", | 
|  | ch->index); | 
|  | goto err0; | 
|  | } | 
|  |  | 
|  | /* make sure channel is disabled */ | 
|  | sh_cmt_start_stop_ch(ch, 0); | 
|  |  | 
|  | /* configure channel, periodic mode and maximum timeout */ | 
|  | if (ch->cmt->info->width == 16) { | 
|  | *rate = clk_get_rate(ch->cmt->clk) / 512; | 
|  | sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE | | 
|  | SH_CMT16_CMCSR_CKS512); | 
|  | } else { | 
|  | *rate = clk_get_rate(ch->cmt->clk) / 8; | 
|  | sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM | | 
|  | SH_CMT32_CMCSR_CMTOUT_IE | | 
|  | SH_CMT32_CMCSR_CMR_IRQ | | 
|  | SH_CMT32_CMCSR_CKS_RCLK8); | 
|  | } | 
|  |  | 
|  | sh_cmt_write_cmcor(ch, 0xffffffff); | 
|  | sh_cmt_write_cmcnt(ch, 0); | 
|  |  | 
|  | /* | 
|  | * According to the sh73a0 user's manual, as CMCNT can be operated | 
|  | * only by the RCLK (Pseudo 32 KHz), there's one restriction on | 
|  | * modifying CMCNT register; two RCLK cycles are necessary before | 
|  | * this register is either read or any modification of the value | 
|  | * it holds is reflected in the LSI's actual operation. | 
|  | * | 
|  | * While at it, we're supposed to clear out the CMCNT as of this | 
|  | * moment, so make sure it's processed properly here.  This will | 
|  | * take RCLKx2 at maximum. | 
|  | */ | 
|  | for (k = 0; k < 100; k++) { | 
|  | if (!sh_cmt_read_cmcnt(ch)) | 
|  | break; | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | if (sh_cmt_read_cmcnt(ch)) { | 
|  | dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n", | 
|  | ch->index); | 
|  | ret = -ETIMEDOUT; | 
|  | goto err1; | 
|  | } | 
|  |  | 
|  | /* enable channel */ | 
|  | sh_cmt_start_stop_ch(ch, 1); | 
|  | return 0; | 
|  | err1: | 
|  | /* stop clock */ | 
|  | clk_disable(ch->cmt->clk); | 
|  |  | 
|  | err0: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sh_cmt_disable(struct sh_cmt_channel *ch) | 
|  | { | 
|  | /* disable channel */ | 
|  | sh_cmt_start_stop_ch(ch, 0); | 
|  |  | 
|  | /* disable interrupts in CMT block */ | 
|  | sh_cmt_write_cmcsr(ch, 0); | 
|  |  | 
|  | /* stop clock */ | 
|  | clk_disable(ch->cmt->clk); | 
|  |  | 
|  | dev_pm_syscore_device(&ch->cmt->pdev->dev, false); | 
|  | pm_runtime_put(&ch->cmt->pdev->dev); | 
|  | } | 
|  |  | 
|  | /* private flags */ | 
|  | #define FLAG_CLOCKEVENT (1 << 0) | 
|  | #define FLAG_CLOCKSOURCE (1 << 1) | 
|  | #define FLAG_REPROGRAM (1 << 2) | 
|  | #define FLAG_SKIPEVENT (1 << 3) | 
|  | #define FLAG_IRQCONTEXT (1 << 4) | 
|  |  | 
|  | static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch, | 
|  | int absolute) | 
|  | { | 
|  | unsigned long new_match; | 
|  | unsigned long value = ch->next_match_value; | 
|  | unsigned long delay = 0; | 
|  | unsigned long now = 0; | 
|  | int has_wrapped; | 
|  |  | 
|  | now = sh_cmt_get_counter(ch, &has_wrapped); | 
|  | ch->flags |= FLAG_REPROGRAM; /* force reprogram */ | 
|  |  | 
|  | if (has_wrapped) { | 
|  | /* we're competing with the interrupt handler. | 
|  | *  -> let the interrupt handler reprogram the timer. | 
|  | *  -> interrupt number two handles the event. | 
|  | */ | 
|  | ch->flags |= FLAG_SKIPEVENT; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (absolute) | 
|  | now = 0; | 
|  |  | 
|  | do { | 
|  | /* reprogram the timer hardware, | 
|  | * but don't save the new match value yet. | 
|  | */ | 
|  | new_match = now + value + delay; | 
|  | if (new_match > ch->max_match_value) | 
|  | new_match = ch->max_match_value; | 
|  |  | 
|  | sh_cmt_write_cmcor(ch, new_match); | 
|  |  | 
|  | now = sh_cmt_get_counter(ch, &has_wrapped); | 
|  | if (has_wrapped && (new_match > ch->match_value)) { | 
|  | /* we are changing to a greater match value, | 
|  | * so this wrap must be caused by the counter | 
|  | * matching the old value. | 
|  | * -> first interrupt reprograms the timer. | 
|  | * -> interrupt number two handles the event. | 
|  | */ | 
|  | ch->flags |= FLAG_SKIPEVENT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (has_wrapped) { | 
|  | /* we are changing to a smaller match value, | 
|  | * so the wrap must be caused by the counter | 
|  | * matching the new value. | 
|  | * -> save programmed match value. | 
|  | * -> let isr handle the event. | 
|  | */ | 
|  | ch->match_value = new_match; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* be safe: verify hardware settings */ | 
|  | if (now < new_match) { | 
|  | /* timer value is below match value, all good. | 
|  | * this makes sure we won't miss any match events. | 
|  | * -> save programmed match value. | 
|  | * -> let isr handle the event. | 
|  | */ | 
|  | ch->match_value = new_match; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* the counter has reached a value greater | 
|  | * than our new match value. and since the | 
|  | * has_wrapped flag isn't set we must have | 
|  | * programmed a too close event. | 
|  | * -> increase delay and retry. | 
|  | */ | 
|  | if (delay) | 
|  | delay <<= 1; | 
|  | else | 
|  | delay = 1; | 
|  |  | 
|  | if (!delay) | 
|  | dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n", | 
|  | ch->index); | 
|  |  | 
|  | } while (delay); | 
|  | } | 
|  |  | 
|  | static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) | 
|  | { | 
|  | if (delta > ch->max_match_value) | 
|  | dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n", | 
|  | ch->index); | 
|  |  | 
|  | ch->next_match_value = delta; | 
|  | sh_cmt_clock_event_program_verify(ch, 0); | 
|  | } | 
|  |  | 
|  | static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&ch->lock, flags); | 
|  | __sh_cmt_set_next(ch, delta); | 
|  | raw_spin_unlock_irqrestore(&ch->lock, flags); | 
|  | } | 
|  |  | 
|  | static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct sh_cmt_channel *ch = dev_id; | 
|  |  | 
|  | /* clear flags */ | 
|  | sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) & | 
|  | ch->cmt->info->clear_bits); | 
|  |  | 
|  | /* update clock source counter to begin with if enabled | 
|  | * the wrap flag should be cleared by the timer specific | 
|  | * isr before we end up here. | 
|  | */ | 
|  | if (ch->flags & FLAG_CLOCKSOURCE) | 
|  | ch->total_cycles += ch->match_value + 1; | 
|  |  | 
|  | if (!(ch->flags & FLAG_REPROGRAM)) | 
|  | ch->next_match_value = ch->max_match_value; | 
|  |  | 
|  | ch->flags |= FLAG_IRQCONTEXT; | 
|  |  | 
|  | if (ch->flags & FLAG_CLOCKEVENT) { | 
|  | if (!(ch->flags & FLAG_SKIPEVENT)) { | 
|  | if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) { | 
|  | ch->next_match_value = ch->max_match_value; | 
|  | ch->flags |= FLAG_REPROGRAM; | 
|  | } | 
|  |  | 
|  | ch->ced.event_handler(&ch->ced); | 
|  | } | 
|  | } | 
|  |  | 
|  | ch->flags &= ~FLAG_SKIPEVENT; | 
|  |  | 
|  | if (ch->flags & FLAG_REPROGRAM) { | 
|  | ch->flags &= ~FLAG_REPROGRAM; | 
|  | sh_cmt_clock_event_program_verify(ch, 1); | 
|  |  | 
|  | if (ch->flags & FLAG_CLOCKEVENT) | 
|  | if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN) | 
|  | || (ch->match_value == ch->next_match_value)) | 
|  | ch->flags &= ~FLAG_REPROGRAM; | 
|  | } | 
|  |  | 
|  | ch->flags &= ~FLAG_IRQCONTEXT; | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&ch->lock, flags); | 
|  |  | 
|  | if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) | 
|  | ret = sh_cmt_enable(ch, &ch->rate); | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  | ch->flags |= flag; | 
|  |  | 
|  | /* setup timeout if no clockevent */ | 
|  | if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT))) | 
|  | __sh_cmt_set_next(ch, ch->max_match_value); | 
|  | out: | 
|  | raw_spin_unlock_irqrestore(&ch->lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long f; | 
|  |  | 
|  | raw_spin_lock_irqsave(&ch->lock, flags); | 
|  |  | 
|  | f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE); | 
|  | ch->flags &= ~flag; | 
|  |  | 
|  | if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) | 
|  | sh_cmt_disable(ch); | 
|  |  | 
|  | /* adjust the timeout to maximum if only clocksource left */ | 
|  | if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE)) | 
|  | __sh_cmt_set_next(ch, ch->max_match_value); | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&ch->lock, flags); | 
|  | } | 
|  |  | 
|  | static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs) | 
|  | { | 
|  | return container_of(cs, struct sh_cmt_channel, cs); | 
|  | } | 
|  |  | 
|  | static cycle_t sh_cmt_clocksource_read(struct clocksource *cs) | 
|  | { | 
|  | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); | 
|  | unsigned long flags, raw; | 
|  | unsigned long value; | 
|  | int has_wrapped; | 
|  |  | 
|  | raw_spin_lock_irqsave(&ch->lock, flags); | 
|  | value = ch->total_cycles; | 
|  | raw = sh_cmt_get_counter(ch, &has_wrapped); | 
|  |  | 
|  | if (unlikely(has_wrapped)) | 
|  | raw += ch->match_value + 1; | 
|  | raw_spin_unlock_irqrestore(&ch->lock, flags); | 
|  |  | 
|  | return value + raw; | 
|  | } | 
|  |  | 
|  | static int sh_cmt_clocksource_enable(struct clocksource *cs) | 
|  | { | 
|  | int ret; | 
|  | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); | 
|  |  | 
|  | WARN_ON(ch->cs_enabled); | 
|  |  | 
|  | ch->total_cycles = 0; | 
|  |  | 
|  | ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE); | 
|  | if (!ret) { | 
|  | __clocksource_updatefreq_hz(cs, ch->rate); | 
|  | ch->cs_enabled = true; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sh_cmt_clocksource_disable(struct clocksource *cs) | 
|  | { | 
|  | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); | 
|  |  | 
|  | WARN_ON(!ch->cs_enabled); | 
|  |  | 
|  | sh_cmt_stop(ch, FLAG_CLOCKSOURCE); | 
|  | ch->cs_enabled = false; | 
|  | } | 
|  |  | 
|  | static void sh_cmt_clocksource_suspend(struct clocksource *cs) | 
|  | { | 
|  | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); | 
|  |  | 
|  | sh_cmt_stop(ch, FLAG_CLOCKSOURCE); | 
|  | pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); | 
|  | } | 
|  |  | 
|  | static void sh_cmt_clocksource_resume(struct clocksource *cs) | 
|  | { | 
|  | struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); | 
|  |  | 
|  | pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); | 
|  | sh_cmt_start(ch, FLAG_CLOCKSOURCE); | 
|  | } | 
|  |  | 
|  | static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch, | 
|  | const char *name) | 
|  | { | 
|  | struct clocksource *cs = &ch->cs; | 
|  |  | 
|  | cs->name = name; | 
|  | cs->rating = 125; | 
|  | cs->read = sh_cmt_clocksource_read; | 
|  | cs->enable = sh_cmt_clocksource_enable; | 
|  | cs->disable = sh_cmt_clocksource_disable; | 
|  | cs->suspend = sh_cmt_clocksource_suspend; | 
|  | cs->resume = sh_cmt_clocksource_resume; | 
|  | cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8); | 
|  | cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; | 
|  |  | 
|  | dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n", | 
|  | ch->index); | 
|  |  | 
|  | /* Register with dummy 1 Hz value, gets updated in ->enable() */ | 
|  | clocksource_register_hz(cs, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced) | 
|  | { | 
|  | return container_of(ced, struct sh_cmt_channel, ced); | 
|  | } | 
|  |  | 
|  | static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic) | 
|  | { | 
|  | struct clock_event_device *ced = &ch->ced; | 
|  |  | 
|  | sh_cmt_start(ch, FLAG_CLOCKEVENT); | 
|  |  | 
|  | /* TODO: calculate good shift from rate and counter bit width */ | 
|  |  | 
|  | ced->shift = 32; | 
|  | ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift); | 
|  | ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced); | 
|  | ced->min_delta_ns = clockevent_delta2ns(0x1f, ced); | 
|  |  | 
|  | if (periodic) | 
|  | sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1); | 
|  | else | 
|  | sh_cmt_set_next(ch, ch->max_match_value); | 
|  | } | 
|  |  | 
|  | static void sh_cmt_clock_event_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *ced) | 
|  | { | 
|  | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); | 
|  |  | 
|  | /* deal with old setting first */ | 
|  | switch (ced->mode) { | 
|  | case CLOCK_EVT_MODE_PERIODIC: | 
|  | case CLOCK_EVT_MODE_ONESHOT: | 
|  | sh_cmt_stop(ch, FLAG_CLOCKEVENT); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (mode) { | 
|  | case CLOCK_EVT_MODE_PERIODIC: | 
|  | dev_info(&ch->cmt->pdev->dev, | 
|  | "ch%u: used for periodic clock events\n", ch->index); | 
|  | sh_cmt_clock_event_start(ch, 1); | 
|  | break; | 
|  | case CLOCK_EVT_MODE_ONESHOT: | 
|  | dev_info(&ch->cmt->pdev->dev, | 
|  | "ch%u: used for oneshot clock events\n", ch->index); | 
|  | sh_cmt_clock_event_start(ch, 0); | 
|  | break; | 
|  | case CLOCK_EVT_MODE_SHUTDOWN: | 
|  | case CLOCK_EVT_MODE_UNUSED: | 
|  | sh_cmt_stop(ch, FLAG_CLOCKEVENT); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sh_cmt_clock_event_next(unsigned long delta, | 
|  | struct clock_event_device *ced) | 
|  | { | 
|  | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); | 
|  |  | 
|  | BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); | 
|  | if (likely(ch->flags & FLAG_IRQCONTEXT)) | 
|  | ch->next_match_value = delta - 1; | 
|  | else | 
|  | sh_cmt_set_next(ch, delta - 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sh_cmt_clock_event_suspend(struct clock_event_device *ced) | 
|  | { | 
|  | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); | 
|  |  | 
|  | pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); | 
|  | clk_unprepare(ch->cmt->clk); | 
|  | } | 
|  |  | 
|  | static void sh_cmt_clock_event_resume(struct clock_event_device *ced) | 
|  | { | 
|  | struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); | 
|  |  | 
|  | clk_prepare(ch->cmt->clk); | 
|  | pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); | 
|  | } | 
|  |  | 
|  | static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch, | 
|  | const char *name) | 
|  | { | 
|  | struct clock_event_device *ced = &ch->ced; | 
|  | int irq; | 
|  | int ret; | 
|  |  | 
|  | irq = platform_get_irq(ch->cmt->pdev, ch->index); | 
|  | if (irq < 0) { | 
|  | dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n", | 
|  | ch->index); | 
|  | return irq; | 
|  | } | 
|  |  | 
|  | ret = request_irq(irq, sh_cmt_interrupt, | 
|  | IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, | 
|  | dev_name(&ch->cmt->pdev->dev), ch); | 
|  | if (ret) { | 
|  | dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n", | 
|  | ch->index, irq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ced->name = name; | 
|  | ced->features = CLOCK_EVT_FEAT_PERIODIC; | 
|  | ced->features |= CLOCK_EVT_FEAT_ONESHOT; | 
|  | ced->rating = 125; | 
|  | ced->cpumask = cpu_possible_mask; | 
|  | ced->set_next_event = sh_cmt_clock_event_next; | 
|  | ced->set_mode = sh_cmt_clock_event_mode; | 
|  | ced->suspend = sh_cmt_clock_event_suspend; | 
|  | ced->resume = sh_cmt_clock_event_resume; | 
|  |  | 
|  | dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n", | 
|  | ch->index); | 
|  | clockevents_register_device(ced); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name, | 
|  | bool clockevent, bool clocksource) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (clockevent) { | 
|  | ch->cmt->has_clockevent = true; | 
|  | ret = sh_cmt_register_clockevent(ch, name); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (clocksource) { | 
|  | ch->cmt->has_clocksource = true; | 
|  | sh_cmt_register_clocksource(ch, name); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index, | 
|  | unsigned int hwidx, bool clockevent, | 
|  | bool clocksource, struct sh_cmt_device *cmt) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Skip unused channels. */ | 
|  | if (!clockevent && !clocksource) | 
|  | return 0; | 
|  |  | 
|  | ch->cmt = cmt; | 
|  | ch->index = index; | 
|  | ch->hwidx = hwidx; | 
|  |  | 
|  | /* | 
|  | * Compute the address of the channel control register block. For the | 
|  | * timers with a per-channel start/stop register, compute its address | 
|  | * as well. | 
|  | */ | 
|  | switch (cmt->info->model) { | 
|  | case SH_CMT_16BIT: | 
|  | ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6; | 
|  | break; | 
|  | case SH_CMT_32BIT: | 
|  | case SH_CMT_48BIT: | 
|  | ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10; | 
|  | break; | 
|  | case SH_CMT_32BIT_FAST: | 
|  | /* | 
|  | * The 32-bit "fast" timer has a single channel at hwidx 5 but | 
|  | * is located at offset 0x40 instead of 0x60 for some reason. | 
|  | */ | 
|  | ch->ioctrl = cmt->mapbase + 0x40; | 
|  | break; | 
|  | case SH_CMT_48BIT_GEN2: | 
|  | ch->iostart = cmt->mapbase + ch->hwidx * 0x100; | 
|  | ch->ioctrl = ch->iostart + 0x10; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (cmt->info->width == (sizeof(ch->max_match_value) * 8)) | 
|  | ch->max_match_value = ~0; | 
|  | else | 
|  | ch->max_match_value = (1 << cmt->info->width) - 1; | 
|  |  | 
|  | ch->match_value = ch->max_match_value; | 
|  | raw_spin_lock_init(&ch->lock); | 
|  |  | 
|  | ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx; | 
|  |  | 
|  | ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev), | 
|  | clockevent, clocksource); | 
|  | if (ret) { | 
|  | dev_err(&cmt->pdev->dev, "ch%u: registration failed\n", | 
|  | ch->index); | 
|  | return ret; | 
|  | } | 
|  | ch->cs_enabled = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sh_cmt_map_memory(struct sh_cmt_device *cmt) | 
|  | { | 
|  | struct resource *mem; | 
|  |  | 
|  | mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0); | 
|  | if (!mem) { | 
|  | dev_err(&cmt->pdev->dev, "failed to get I/O memory\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem)); | 
|  | if (cmt->mapbase == NULL) { | 
|  | dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct platform_device_id sh_cmt_id_table[] = { | 
|  | { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] }, | 
|  | { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] }, | 
|  | { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] }, | 
|  | { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] }, | 
|  | { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] }, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(platform, sh_cmt_id_table); | 
|  |  | 
|  | static const struct of_device_id sh_cmt_of_table[] __maybe_unused = { | 
|  | { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] }, | 
|  | { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] }, | 
|  | { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] }, | 
|  | { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] }, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, sh_cmt_of_table); | 
|  |  | 
|  | static int sh_cmt_parse_dt(struct sh_cmt_device *cmt) | 
|  | { | 
|  | struct device_node *np = cmt->pdev->dev.of_node; | 
|  |  | 
|  | return of_property_read_u32(np, "renesas,channels-mask", | 
|  | &cmt->hw_channels); | 
|  | } | 
|  |  | 
|  | static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev) | 
|  | { | 
|  | unsigned int mask; | 
|  | unsigned int i; | 
|  | int ret; | 
|  |  | 
|  | memset(cmt, 0, sizeof(*cmt)); | 
|  | cmt->pdev = pdev; | 
|  | raw_spin_lock_init(&cmt->lock); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { | 
|  | const struct of_device_id *id; | 
|  |  | 
|  | id = of_match_node(sh_cmt_of_table, pdev->dev.of_node); | 
|  | cmt->info = id->data; | 
|  |  | 
|  | ret = sh_cmt_parse_dt(cmt); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } else if (pdev->dev.platform_data) { | 
|  | struct sh_timer_config *cfg = pdev->dev.platform_data; | 
|  | const struct platform_device_id *id = pdev->id_entry; | 
|  |  | 
|  | cmt->info = (const struct sh_cmt_info *)id->driver_data; | 
|  | cmt->hw_channels = cfg->channels_mask; | 
|  | } else { | 
|  | dev_err(&cmt->pdev->dev, "missing platform data\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Get hold of clock. */ | 
|  | cmt->clk = clk_get(&cmt->pdev->dev, "fck"); | 
|  | if (IS_ERR(cmt->clk)) { | 
|  | dev_err(&cmt->pdev->dev, "cannot get clock\n"); | 
|  | return PTR_ERR(cmt->clk); | 
|  | } | 
|  |  | 
|  | ret = clk_prepare(cmt->clk); | 
|  | if (ret < 0) | 
|  | goto err_clk_put; | 
|  |  | 
|  | /* Map the memory resource(s). */ | 
|  | ret = sh_cmt_map_memory(cmt); | 
|  | if (ret < 0) | 
|  | goto err_clk_unprepare; | 
|  |  | 
|  | /* Allocate and setup the channels. */ | 
|  | cmt->num_channels = hweight8(cmt->hw_channels); | 
|  | cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels), | 
|  | GFP_KERNEL); | 
|  | if (cmt->channels == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto err_unmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the first channel as a clock event device and the second channel | 
|  | * as a clock source. If only one channel is available use it for both. | 
|  | */ | 
|  | for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) { | 
|  | unsigned int hwidx = ffs(mask) - 1; | 
|  | bool clocksource = i == 1 || cmt->num_channels == 1; | 
|  | bool clockevent = i == 0; | 
|  |  | 
|  | ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx, | 
|  | clockevent, clocksource, cmt); | 
|  | if (ret < 0) | 
|  | goto err_unmap; | 
|  |  | 
|  | mask &= ~(1 << hwidx); | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, cmt); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unmap: | 
|  | kfree(cmt->channels); | 
|  | iounmap(cmt->mapbase); | 
|  | err_clk_unprepare: | 
|  | clk_unprepare(cmt->clk); | 
|  | err_clk_put: | 
|  | clk_put(cmt->clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sh_cmt_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct sh_cmt_device *cmt = platform_get_drvdata(pdev); | 
|  | int ret; | 
|  |  | 
|  | if (!is_early_platform_device(pdev)) { | 
|  | pm_runtime_set_active(&pdev->dev); | 
|  | pm_runtime_enable(&pdev->dev); | 
|  | } | 
|  |  | 
|  | if (cmt) { | 
|  | dev_info(&pdev->dev, "kept as earlytimer\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cmt = kzalloc(sizeof(*cmt), GFP_KERNEL); | 
|  | if (cmt == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = sh_cmt_setup(cmt, pdev); | 
|  | if (ret) { | 
|  | kfree(cmt); | 
|  | pm_runtime_idle(&pdev->dev); | 
|  | return ret; | 
|  | } | 
|  | if (is_early_platform_device(pdev)) | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | if (cmt->has_clockevent || cmt->has_clocksource) | 
|  | pm_runtime_irq_safe(&pdev->dev); | 
|  | else | 
|  | pm_runtime_idle(&pdev->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sh_cmt_remove(struct platform_device *pdev) | 
|  | { | 
|  | return -EBUSY; /* cannot unregister clockevent and clocksource */ | 
|  | } | 
|  |  | 
|  | static struct platform_driver sh_cmt_device_driver = { | 
|  | .probe		= sh_cmt_probe, | 
|  | .remove		= sh_cmt_remove, | 
|  | .driver		= { | 
|  | .name	= "sh_cmt", | 
|  | .of_match_table = of_match_ptr(sh_cmt_of_table), | 
|  | }, | 
|  | .id_table	= sh_cmt_id_table, | 
|  | }; | 
|  |  | 
|  | static int __init sh_cmt_init(void) | 
|  | { | 
|  | return platform_driver_register(&sh_cmt_device_driver); | 
|  | } | 
|  |  | 
|  | static void __exit sh_cmt_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&sh_cmt_device_driver); | 
|  | } | 
|  |  | 
|  | early_platform_init("earlytimer", &sh_cmt_device_driver); | 
|  | subsys_initcall(sh_cmt_init); | 
|  | module_exit(sh_cmt_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Magnus Damm"); | 
|  | MODULE_DESCRIPTION("SuperH CMT Timer Driver"); | 
|  | MODULE_LICENSE("GPL v2"); |