blob: aceebf58422530e7d946a397eb699830a92aa888 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <asm/div64.h>
#if IS_ENABLED(CONFIG_X86_64)
#include <asm/intel-family.h>
#endif
#include <drm/amdgpu_drm.h>
#include "ppatomctrl.h"
#include "atombios.h"
#include "pptable_v1_0.h"
#include "pppcielanes.h"
#include "amd_pcie_helpers.h"
#include "hardwaremanager.h"
#include "process_pptables_v1_0.h"
#include "cgs_common.h"
#include "smu7_common.h"
#include "hwmgr.h"
#include "smu7_hwmgr.h"
#include "smu_ucode_xfer_vi.h"
#include "smu7_powertune.h"
#include "smu7_dyn_defaults.h"
#include "smu7_thermal.h"
#include "smu7_clockpowergating.h"
#include "processpptables.h"
#include "pp_thermal.h"
#include "smu7_baco.h"
#include "smu7_smumgr.h"
#include "polaris10_smumgr.h"
#include "ivsrcid/ivsrcid_vislands30.h"
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
#define MC_CG_SEQ_DRAMCONF_S0 0x05
#define MC_CG_SEQ_DRAMCONF_S1 0x06
#define MC_CG_SEQ_YCLK_SUSPEND 0x04
#define MC_CG_SEQ_YCLK_RESUME 0x0a
#define SMC_CG_IND_START 0xc0030000
#define SMC_CG_IND_END 0xc0040000
#define MEM_FREQ_LOW_LATENCY 25000
#define MEM_FREQ_HIGH_LATENCY 80000
#define MEM_LATENCY_HIGH 45
#define MEM_LATENCY_LOW 35
#define MEM_LATENCY_ERR 0xFFFF
#define MC_SEQ_MISC0_GDDR5_SHIFT 28
#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
#define MC_SEQ_MISC0_GDDR5_VALUE 5
#define PCIE_BUS_CLK 10000
#define TCLK (PCIE_BUS_CLK / 10)
static struct profile_mode_setting smu7_profiling[7] =
{{0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 100, 30, 1, 0, 100, 10},
{1, 10, 0, 30, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 10, 16, 31},
{1, 0, 11, 50, 1, 0, 100, 10},
{1, 0, 5, 30, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0},
};
#define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310)
#define ixPWR_SVI2_PLANE1_LOAD 0xC0200280
#define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L
#define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L
#define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005
#define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006
#define STRAP_EVV_REVISION_MSB 2211
#define STRAP_EVV_REVISION_LSB 2208
/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
enum DPM_EVENT_SRC {
DPM_EVENT_SRC_ANALOG = 0,
DPM_EVENT_SRC_EXTERNAL = 1,
DPM_EVENT_SRC_DIGITAL = 2,
DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
};
#define ixDIDT_SQ_EDC_CTRL 0x0013
#define ixDIDT_SQ_EDC_THRESHOLD 0x0014
#define ixDIDT_SQ_EDC_STALL_PATTERN_1_2 0x0015
#define ixDIDT_SQ_EDC_STALL_PATTERN_3_4 0x0016
#define ixDIDT_SQ_EDC_STALL_PATTERN_5_6 0x0017
#define ixDIDT_SQ_EDC_STALL_PATTERN_7 0x0018
#define ixDIDT_TD_EDC_CTRL 0x0053
#define ixDIDT_TD_EDC_THRESHOLD 0x0054
#define ixDIDT_TD_EDC_STALL_PATTERN_1_2 0x0055
#define ixDIDT_TD_EDC_STALL_PATTERN_3_4 0x0056
#define ixDIDT_TD_EDC_STALL_PATTERN_5_6 0x0057
#define ixDIDT_TD_EDC_STALL_PATTERN_7 0x0058
#define ixDIDT_TCP_EDC_CTRL 0x0073
#define ixDIDT_TCP_EDC_THRESHOLD 0x0074
#define ixDIDT_TCP_EDC_STALL_PATTERN_1_2 0x0075
#define ixDIDT_TCP_EDC_STALL_PATTERN_3_4 0x0076
#define ixDIDT_TCP_EDC_STALL_PATTERN_5_6 0x0077
#define ixDIDT_TCP_EDC_STALL_PATTERN_7 0x0078
#define ixDIDT_DB_EDC_CTRL 0x0033
#define ixDIDT_DB_EDC_THRESHOLD 0x0034
#define ixDIDT_DB_EDC_STALL_PATTERN_1_2 0x0035
#define ixDIDT_DB_EDC_STALL_PATTERN_3_4 0x0036
#define ixDIDT_DB_EDC_STALL_PATTERN_5_6 0x0037
#define ixDIDT_DB_EDC_STALL_PATTERN_7 0x0038
uint32_t DIDTEDCConfig_P12[] = {
ixDIDT_SQ_EDC_STALL_PATTERN_1_2,
ixDIDT_SQ_EDC_STALL_PATTERN_3_4,
ixDIDT_SQ_EDC_STALL_PATTERN_5_6,
ixDIDT_SQ_EDC_STALL_PATTERN_7,
ixDIDT_SQ_EDC_THRESHOLD,
ixDIDT_SQ_EDC_CTRL,
ixDIDT_TD_EDC_STALL_PATTERN_1_2,
ixDIDT_TD_EDC_STALL_PATTERN_3_4,
ixDIDT_TD_EDC_STALL_PATTERN_5_6,
ixDIDT_TD_EDC_STALL_PATTERN_7,
ixDIDT_TD_EDC_THRESHOLD,
ixDIDT_TD_EDC_CTRL,
ixDIDT_TCP_EDC_STALL_PATTERN_1_2,
ixDIDT_TCP_EDC_STALL_PATTERN_3_4,
ixDIDT_TCP_EDC_STALL_PATTERN_5_6,
ixDIDT_TCP_EDC_STALL_PATTERN_7,
ixDIDT_TCP_EDC_THRESHOLD,
ixDIDT_TCP_EDC_CTRL,
ixDIDT_DB_EDC_STALL_PATTERN_1_2,
ixDIDT_DB_EDC_STALL_PATTERN_3_4,
ixDIDT_DB_EDC_STALL_PATTERN_5_6,
ixDIDT_DB_EDC_STALL_PATTERN_7,
ixDIDT_DB_EDC_THRESHOLD,
ixDIDT_DB_EDC_CTRL,
0xFFFFFFFF // End of list
};
static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask);
static int smu7_notify_has_display(struct pp_hwmgr *hwmgr);
static struct smu7_power_state *cast_phw_smu7_power_state(
struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL);
return (struct smu7_power_state *)hw_ps;
}
static const struct smu7_power_state *cast_const_phw_smu7_power_state(
const struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL);
return (const struct smu7_power_state *)hw_ps;
}
/**
* smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
{
cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
return 0;
}
static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
uint32_t speedCntl = 0;
/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
ixPCIE_LC_SPEED_CNTL);
return((uint16_t)PHM_GET_FIELD(speedCntl,
PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}
static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
{
uint32_t link_width;
/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
PP_ASSERT_WITH_CODE((7 >= link_width),
"Invalid PCIe lane width!", return 0);
return decode_pcie_lane_width(link_width);
}
/**
* smu7_enable_smc_voltage_controller - Enable voltage control
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always PP_Result_OK
*/
static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
{
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM) {
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
}
if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
return 0;
}
/**
* smu7_voltage_control - Checks if we want to support voltage control
*
* @hwmgr: the address of the powerplay hardware manager.
*/
static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
{
const struct smu7_hwmgr *data =
(const struct smu7_hwmgr *)(hwmgr->backend);
return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
}
/**
* smu7_enable_voltage_control - Enable voltage control
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
{
/* enable voltage control */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
return 0;
}
static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
struct phm_clock_voltage_dependency_table *voltage_dependency_table
)
{
uint32_t i;
PP_ASSERT_WITH_CODE((NULL != voltage_table),
"Voltage Dependency Table empty.", return -EINVAL;);
voltage_table->mask_low = 0;
voltage_table->phase_delay = 0;
voltage_table->count = voltage_dependency_table->count;
for (i = 0; i < voltage_dependency_table->count; i++) {
voltage_table->entries[i].value =
voltage_dependency_table->entries[i].v;
voltage_table->entries[i].smio_low = 0;
}
return 0;
}
/**
* smu7_construct_voltage_tables - Create Voltage Tables.
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
int result = 0;
uint32_t tmp;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
&(data->mvdd_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve MVDD table.",
return result);
} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
if (hwmgr->pp_table_version == PP_TABLE_V1)
result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
table_info->vdd_dep_on_mclk);
else if (hwmgr->pp_table_version == PP_TABLE_V0)
result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
hwmgr->dyn_state.mvdd_dependency_on_mclk);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 MVDD table from dependency table.",
return result;);
}
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
&(data->vddci_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve VDDCI table.",
return result);
} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
if (hwmgr->pp_table_version == PP_TABLE_V1)
result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
table_info->vdd_dep_on_mclk);
else if (hwmgr->pp_table_version == PP_TABLE_V0)
result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
hwmgr->dyn_state.vddci_dependency_on_mclk);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDCI table from dependency table.",
return result);
}
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
/* VDDGFX has only SVI2 voltage control */
result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
table_info->vddgfx_lookup_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
}
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
&data->vddc_voltage_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve VDDC table.", return result;);
} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
if (hwmgr->pp_table_version == PP_TABLE_V0)
result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
hwmgr->dyn_state.vddc_dependency_on_mclk);
else if (hwmgr->pp_table_version == PP_TABLE_V1)
result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
table_info->vddc_lookup_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
}
tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
PP_ASSERT_WITH_CODE(
(data->vddc_voltage_table.count <= tmp),
"Too many voltage values for VDDC. Trimming to fit state table.",
phm_trim_voltage_table_to_fit_state_table(tmp,
&(data->vddc_voltage_table)));
tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
PP_ASSERT_WITH_CODE(
(data->vddgfx_voltage_table.count <= tmp),
"Too many voltage values for VDDC. Trimming to fit state table.",
phm_trim_voltage_table_to_fit_state_table(tmp,
&(data->vddgfx_voltage_table)));
tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
PP_ASSERT_WITH_CODE(
(data->vddci_voltage_table.count <= tmp),
"Too many voltage values for VDDCI. Trimming to fit state table.",
phm_trim_voltage_table_to_fit_state_table(tmp,
&(data->vddci_voltage_table)));
tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
PP_ASSERT_WITH_CODE(
(data->mvdd_voltage_table.count <= tmp),
"Too many voltage values for MVDD. Trimming to fit state table.",
phm_trim_voltage_table_to_fit_state_table(tmp,
&(data->mvdd_voltage_table)));
return 0;
}
/**
* smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_program_static_screen_threshold_parameters(
struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
/* Set static screen threshold unit */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
data->static_screen_threshold_unit);
/* Set static screen threshold */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
data->static_screen_threshold);
return 0;
}
/**
* smu7_enable_display_gap - Setup display gap for glitch free memory clock switching.
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
{
uint32_t display_gap =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_DISPLAY_GAP_CNTL);
display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
DISP_GAP, DISPLAY_GAP_IGNORE);
display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_DISPLAY_GAP_CNTL, display_gap);
return 0;
}
/**
* smu7_program_voting_clients - Programs activity state transition voting clients
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int i;
/* Clear reset for voting clients before enabling DPM */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
for (i = 0; i < 8; i++)
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_0 + i * 4,
data->voting_rights_clients[i]);
return 0;
}
static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
{
int i;
/* Reset voting clients before disabling DPM */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
for (i = 0; i < 8; i++)
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
return 0;
}
/* Copy one arb setting to another and then switch the active set.
* arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
*/
static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
uint32_t arb_src, uint32_t arb_dest)
{
uint32_t mc_arb_dram_timing;
uint32_t mc_arb_dram_timing2;
uint32_t burst_time;
uint32_t mc_cg_config;
switch (arb_src) {
case MC_CG_ARB_FREQ_F0:
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
break;
case MC_CG_ARB_FREQ_F1:
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
break;
default:
return -EINVAL;
}
switch (arb_dest) {
case MC_CG_ARB_FREQ_F0:
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
break;
case MC_CG_ARB_FREQ_F1:
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
break;
default:
return -EINVAL;
}
mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
mc_cg_config |= 0x0000000F;
cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
return 0;
}
static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
{
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
}
/**
* smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
* This function is to be called from the SetPowerState table.
*/
static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
{
return smu7_copy_and_switch_arb_sets(hwmgr,
MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}
static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
{
uint32_t tmp;
tmp = (cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
0x0000ff00) >> 8;
if (tmp == MC_CG_ARB_FREQ_F0)
return 0;
return smu7_copy_and_switch_arb_sets(hwmgr,
tmp, MC_CG_ARB_FREQ_F0);
}
static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
uint16_t pcie_gen = 0;
if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 &&
adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4)
pcie_gen = 3;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 &&
adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3)
pcie_gen = 2;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 &&
adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2)
pcie_gen = 1;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 &&
adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1)
pcie_gen = 0;
return pcie_gen;
}
static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
uint16_t pcie_width = 0;
if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
pcie_width = 16;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
pcie_width = 12;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
pcie_width = 8;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
pcie_width = 4;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
pcie_width = 2;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
pcie_width = 1;
return pcie_width;
}
static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = NULL;
uint32_t i, max_entry;
uint32_t tmp;
PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
data->use_pcie_power_saving_levels), "No pcie performance levels!",
return -EINVAL);
if (table_info != NULL)
pcie_table = table_info->pcie_table;
if (data->use_pcie_performance_levels &&
!data->use_pcie_power_saving_levels) {
data->pcie_gen_power_saving = data->pcie_gen_performance;
data->pcie_lane_power_saving = data->pcie_lane_performance;
} else if (!data->use_pcie_performance_levels &&
data->use_pcie_power_saving_levels) {
data->pcie_gen_performance = data->pcie_gen_power_saving;
data->pcie_lane_performance = data->pcie_lane_power_saving;
}
tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
tmp,
MAX_REGULAR_DPM_NUMBER);
if (pcie_table != NULL) {
/* max_entry is used to make sure we reserve one PCIE level
* for boot level (fix for A+A PSPP issue).
* If PCIE table from PPTable have ULV entry + 8 entries,
* then ignore the last entry.*/
max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
for (i = 1; i < max_entry; i++) {
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
get_pcie_gen_support(data->pcie_gen_cap,
pcie_table->entries[i].gen_speed),
get_pcie_lane_support(data->pcie_lane_cap,
pcie_table->entries[i].lane_width));
}
data->dpm_table.pcie_speed_table.count = max_entry - 1;
smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
} else {
/* Hardcode Pcie Table */
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
data->dpm_table.pcie_speed_table.count = 6;
}
/* Populate last level for boot PCIE level, but do not increment count. */
if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
data->vbios_boot_state.pcie_lane_bootup_value);
} else {
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
data->dpm_table.pcie_speed_table.count,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
if (data->pcie_dpm_key_disabled)
phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
data->dpm_table.pcie_speed_table.count,
smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr));
}
return 0;
}
static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
phm_reset_single_dpm_table(
&data->dpm_table.sclk_table,
smum_get_mac_definition(hwmgr,
SMU_MAX_LEVELS_GRAPHICS),
MAX_REGULAR_DPM_NUMBER);
phm_reset_single_dpm_table(
&data->dpm_table.mclk_table,
smum_get_mac_definition(hwmgr,
SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
phm_reset_single_dpm_table(
&data->dpm_table.vddc_table,
smum_get_mac_definition(hwmgr,
SMU_MAX_LEVELS_VDDC),
MAX_REGULAR_DPM_NUMBER);
phm_reset_single_dpm_table(
&data->dpm_table.vddci_table,
smum_get_mac_definition(hwmgr,
SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
phm_reset_single_dpm_table(
&data->dpm_table.mvdd_table,
smum_get_mac_definition(hwmgr,
SMU_MAX_LEVELS_MVDD),
MAX_REGULAR_DPM_NUMBER);
return 0;
}
/*
* This function is to initialize all DPM state tables
* for SMU7 based on the dependency table.
* Dynamic state patching function will then trim these
* state tables to the allowed range based
* on the power policy or external client requests,
* such as UVD request, etc.
*/
static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
hwmgr->dyn_state.vddc_dependency_on_mclk;
struct phm_cac_leakage_table *std_voltage_table =
hwmgr->dyn_state.cac_leakage_table;
uint32_t i;
PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
"SCLK dependency table is missing. This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
"SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
"VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
/* Initialize Sclk DPM table based on allow Sclk values*/
data->dpm_table.sclk_table.count = 0;
for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
allowed_vdd_sclk_table->entries[i].clk) {
data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
allowed_vdd_sclk_table->entries[i].clk;
data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
data->dpm_table.sclk_table.count++;
}
}
PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
/* Initialize Mclk DPM table based on allow Mclk values */
data->dpm_table.mclk_table.count = 0;
for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
allowed_vdd_mclk_table->entries[i].clk) {
data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
allowed_vdd_mclk_table->entries[i].clk;
data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
data->dpm_table.mclk_table.count++;
}
}
/* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
/* param1 is for corresponding std voltage */
data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
}
data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
if (NULL != allowed_vdd_mclk_table) {
/* Initialize Vddci DPM table based on allow Mclk values */
for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
}
data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
}
allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
if (NULL != allowed_vdd_mclk_table) {
/*
* Initialize MVDD DPM table based on allow Mclk
* values
*/
for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
}
data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
}
return 0;
}
static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
if (table_info == NULL)
return -EINVAL;
dep_sclk_table = table_info->vdd_dep_on_sclk;
dep_mclk_table = table_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
"SCLK dependency table is missing.",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
"SCLK dependency table count is 0.",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
"MCLK dependency table is missing.",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
"MCLK dependency table count is 0",
return -EINVAL);
/* Initialize Sclk DPM table based on allow Sclk values */
data->dpm_table.sclk_table.count = 0;
for (i = 0; i < dep_sclk_table->count; i++) {
if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
dep_sclk_table->entries[i].clk) {
data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
dep_sclk_table->entries[i].clk;
data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
(i == 0) ? true : false;
data->dpm_table.sclk_table.count++;
}
}
if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
/* Initialize Mclk DPM table based on allow Mclk values */
data->dpm_table.mclk_table.count = 0;
for (i = 0; i < dep_mclk_table->count; i++) {
if (i == 0 || data->dpm_table.mclk_table.dpm_levels
[data->dpm_table.mclk_table.count - 1].value !=
dep_mclk_table->entries[i].clk) {
data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
dep_mclk_table->entries[i].clk;
data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
(i == 0) ? true : false;
data->dpm_table.mclk_table.count++;
}
}
if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
return 0;
}
static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
struct phm_odn_performance_level *entries;
if (table_info == NULL)
return -EINVAL;
dep_sclk_table = table_info->vdd_dep_on_sclk;
dep_mclk_table = table_info->vdd_dep_on_mclk;
odn_table->odn_core_clock_dpm_levels.num_of_pl =
data->golden_dpm_table.sclk_table.count;
entries = odn_table->odn_core_clock_dpm_levels.entries;
for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) {
entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
entries[i].enabled = true;
entries[i].vddc = dep_sclk_table->entries[i].vddc;
}
smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
odn_table->odn_memory_clock_dpm_levels.num_of_pl =
data->golden_dpm_table.mclk_table.count;
entries = odn_table->odn_memory_clock_dpm_levels.entries;
for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) {
entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
entries[i].enabled = true;
entries[i].vddc = dep_mclk_table->entries[i].vddc;
}
smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
return 0;
}
static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t min_vddc = 0;
uint32_t max_vddc = 0;
if (!table_info)
return;
dep_sclk_table = table_info->vdd_dep_on_sclk;
atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
if (min_vddc == 0 || min_vddc > 2000
|| min_vddc > dep_sclk_table->entries[0].vddc)
min_vddc = dep_sclk_table->entries[0].vddc;
if (max_vddc == 0 || max_vddc > 2000
|| max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
data->odn_dpm_table.min_vddc = min_vddc;
data->odn_dpm_table.max_vddc = max_vddc;
}
static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
if (table_info == NULL)
return;
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
data->dpm_table.sclk_table.dpm_levels[i].value) {
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
break;
}
}
for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
data->dpm_table.mclk_table.dpm_levels[i].value) {
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
break;
}
}
dep_table = table_info->vdd_dep_on_mclk;
odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
return;
}
}
dep_table = table_info->vdd_dep_on_sclk;
odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
return;
}
}
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
}
}
static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
smu7_reset_dpm_tables(hwmgr);
if (hwmgr->pp_table_version == PP_TABLE_V1)
smu7_setup_dpm_tables_v1(hwmgr);
else if (hwmgr->pp_table_version == PP_TABLE_V0)
smu7_setup_dpm_tables_v0(hwmgr);
smu7_setup_default_pcie_table(hwmgr);
/* save a copy of the default DPM table */
memcpy(&(data->golden_dpm_table), &(data->dpm_table),
sizeof(struct smu7_dpm_table));
/* initialize ODN table */
if (hwmgr->od_enabled) {
if (data->odn_dpm_table.max_vddc) {
smu7_check_dpm_table_updated(hwmgr);
} else {
smu7_setup_voltage_range_from_vbios(hwmgr);
smu7_odn_initial_default_setting(hwmgr);
}
}
return 0;
}
static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
{
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot))
return smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_EnableVRHotGPIOInterrupt,
NULL);
return 0;
}
static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
{
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
SCLK_PWRMGT_OFF, 0);
return 0;
}
static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->ulv_supported)
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
return 0;
}
static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->ulv_supported)
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
return 0;
}
static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep)) {
if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
PP_ASSERT_WITH_CODE(false,
"Attempt to enable Master Deep Sleep switch failed!",
return -EINVAL);
} else {
if (smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_MASTER_DeepSleep_OFF,
NULL)) {
PP_ASSERT_WITH_CODE(false,
"Attempt to disable Master Deep Sleep switch failed!",
return -EINVAL);
}
}
return 0;
}
static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep)) {
if (smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_MASTER_DeepSleep_OFF,
NULL)) {
PP_ASSERT_WITH_CODE(false,
"Attempt to disable Master Deep Sleep switch failed!",
return -EINVAL);
}
}
return 0;
}
static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t soft_register_value = 0;
uint32_t handshake_disables_offset = data->soft_regs_start
+ smum_get_offsetof(hwmgr,
SMU_SoftRegisters, HandshakeDisables);
soft_register_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, handshake_disables_offset);
soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
handshake_disables_offset, soft_register_value);
return 0;
}
static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t soft_register_value = 0;
uint32_t handshake_disables_offset = data->soft_regs_start
+ smum_get_offsetof(hwmgr,
SMU_SoftRegisters, HandshakeDisables);
soft_register_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, handshake_disables_offset);
soft_register_value |= smum_get_mac_definition(hwmgr,
SMU_UVD_MCLK_HANDSHAKE_DISABLE);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
handshake_disables_offset, soft_register_value);
return 0;
}
static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
/* enable SCLK dpm */
if (!data->sclk_dpm_key_disabled) {
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM)
smu7_disable_sclk_vce_handshake(hwmgr);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
"Failed to enable SCLK DPM during DPM Start Function!",
return -EINVAL);
}
/* enable MCLK dpm */
if (0 == data->mclk_dpm_key_disabled) {
if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
smu7_disable_handshake_uvd(hwmgr);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_MCLKDPM_Enable,
NULL)),
"Failed to enable MCLK DPM during DPM Start Function!",
return -EINVAL);
if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) ||
(hwmgr->chip_id == CHIP_POLARIS10) ||
(hwmgr->chip_id == CHIP_POLARIS11) ||
(hwmgr->chip_id == CHIP_POLARIS12) ||
(hwmgr->chip_id == CHIP_TONGA) ||
(hwmgr->chip_id == CHIP_TOPAZ))
PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
udelay(10);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
} else {
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
udelay(10);
if (hwmgr->chip_id == CHIP_VEGAM) {
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
} else {
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
}
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
}
}
return 0;
}
static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
/*enable general power management */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
GLOBAL_PWRMGT_EN, 1);
/* enable sclk deep sleep */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
DYNAMIC_PM_EN, 1);
/* prepare for PCIE DPM */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
smum_get_offsetof(hwmgr, SMU_SoftRegisters,
VoltageChangeTimeout), 0x1000);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
SWRST_COMMAND_1, RESETLC, 0x0);
if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
cgs_write_register(hwmgr->device, 0x1488,
(cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
pr_err("Failed to enable Sclk DPM and Mclk DPM!");
return -EINVAL;
}
/* enable PCIE dpm */
if (0 == data->pcie_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_PCIeDPM_Enable,
NULL)),
"Failed to enable pcie DPM during DPM Start Function!",
return -EINVAL);
} else {
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_PCIeDPM_Disable,
NULL)),
"Failed to disable pcie DPM during DPM Start Function!",
return -EINVAL);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition)) {
PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_EnableACDCGPIOInterrupt,
NULL)),
"Failed to enable AC DC GPIO Interrupt!",
);
}
return 0;
}
static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
/* disable SCLK dpm */
if (!data->sclk_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
"Trying to disable SCLK DPM when DPM is disabled",
return 0);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
}
/* disable MCLK dpm */
if (!data->mclk_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
"Trying to disable MCLK DPM when DPM is disabled",
return 0);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
}
return 0;
}
static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
/* disable general power management */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
GLOBAL_PWRMGT_EN, 0);
/* disable sclk deep sleep */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
DYNAMIC_PM_EN, 0);
/* disable PCIE dpm */
if (!data->pcie_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(
(smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_PCIeDPM_Disable,
NULL) == 0),
"Failed to disable pcie DPM during DPM Stop Function!",
return -EINVAL);
}
smu7_disable_sclk_mclk_dpm(hwmgr);
PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
"Trying to disable voltage DPM when DPM is disabled",
return 0);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
return 0;
}
static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
{
bool protection;
enum DPM_EVENT_SRC src;
switch (sources) {
default:
pr_err("Unknown throttling event sources.");
fallthrough;
case 0:
protection = false;
/* src is unused */
break;
case (1 << PHM_AutoThrottleSource_Thermal):
protection = true;
src = DPM_EVENT_SRC_DIGITAL;
break;
case (1 << PHM_AutoThrottleSource_External):
protection = true;
src = DPM_EVENT_SRC_EXTERNAL;
break;
case (1 << PHM_AutoThrottleSource_External) |
(1 << PHM_AutoThrottleSource_Thermal):
protection = true;
src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
break;
}
/* Order matters - don't enable thermal protection for the wrong source. */
if (protection) {
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
DPM_EVENT_SRC, src);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
THERMAL_PROTECTION_DIS,
!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalController));
} else
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
THERMAL_PROTECTION_DIS, 1);
}
static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
PHM_AutoThrottleSource source)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (!(data->active_auto_throttle_sources & (1 << source))) {
data->active_auto_throttle_sources |= 1 << source;
smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
}
return 0;
}
static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
{
return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
}
static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
PHM_AutoThrottleSource source)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->active_auto_throttle_sources & (1 << source)) {
data->active_auto_throttle_sources &= ~(1 << source);
smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
}
return 0;
}
static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
{
return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
}
static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
data->pcie_performance_request = true;
return 0;
}
static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr,
uint32_t *cac_config_regs,
AtomCtrl_EDCLeakgeTable *edc_leakage_table)
{
uint32_t data, i = 0;
while (cac_config_regs[i] != 0xFFFFFFFF) {
data = edc_leakage_table->DIDT_REG[i];
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__DIDT,
cac_config_regs[i],
data);
i++;
}
return 0;
}
static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int ret = 0;
if (!data->disable_edc_leakage_controller &&
data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
ret = smu7_program_edc_didt_registers(hwmgr,
DIDTEDCConfig_P12,
&data->edc_leakage_table);
if (ret)
return ret;
ret = smum_send_msg_to_smc(hwmgr,
(PPSMC_Msg)PPSMC_MSG_EnableEDCController,
NULL);
} else {
ret = smum_send_msg_to_smc(hwmgr,
(PPSMC_Msg)PPSMC_MSG_DisableEDCController,
NULL);
}
return ret;
}
static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result = 0;
int result = 0;
if (smu7_voltage_control(hwmgr)) {
tmp_result = smu7_enable_voltage_control(hwmgr);
PP_ASSERT_WITH_CODE(tmp_result == 0,
"Failed to enable voltage control!",
result = tmp_result);
tmp_result = smu7_construct_voltage_tables(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to construct voltage tables!",
result = tmp_result);
}
smum_initialize_mc_reg_table(hwmgr);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport))
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalController))
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to program static screen threshold parameters!",
result = tmp_result);
tmp_result = smu7_enable_display_gap(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable display gap!", result = tmp_result);
tmp_result = smu7_program_voting_clients(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to program voting clients!", result = tmp_result);
tmp_result = smum_process_firmware_header(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to process firmware header!", result = tmp_result);
if (hwmgr->chip_id != CHIP_VEGAM) {
tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize switch from ArbF0 to F1!",
result = tmp_result);
}
result = smu7_setup_default_dpm_tables(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to setup default DPM tables!", return result);
tmp_result = smum_init_smc_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize SMC table!", result = tmp_result);
tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM) {
tmp_result = smu7_notify_has_display(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable display setting!", result = tmp_result);
} else {
smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
}
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM) {
tmp_result = smu7_populate_edc_leakage_registers(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to populate edc leakage registers!", result = tmp_result);
}
tmp_result = smu7_enable_sclk_control(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable SCLK control!", result = tmp_result);
tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable voltage control!", result = tmp_result);
tmp_result = smu7_enable_ulv(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable ULV!", result = tmp_result);
tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable deep sleep master switch!", result = tmp_result);
tmp_result = smu7_enable_didt_config(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to enable deep sleep master switch!", result = tmp_result);
tmp_result = smu7_start_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to start DPM!", result = tmp_result);
tmp_result = smu7_enable_smc_cac(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable SMC CAC!", result = tmp_result);
tmp_result = smu7_enable_power_containment(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable power containment!", result = tmp_result);
tmp_result = smu7_power_control_set_level(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to power control set level!", result = tmp_result);
tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable thermal auto throttle!", result = tmp_result);
tmp_result = smu7_pcie_performance_request(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"pcie performance request failed!", result = tmp_result);
return 0;
}
static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
{
if (!hwmgr->avfs_supported)
return 0;
if (enable) {
if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
hwmgr, PPSMC_MSG_EnableAvfs, NULL),
"Failed to enable AVFS!",
return -EINVAL);
}
} else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
hwmgr, PPSMC_MSG_DisableAvfs, NULL),
"Failed to disable AVFS!",
return -EINVAL);
}
return 0;
}
static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (!hwmgr->avfs_supported)
return 0;
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
smu7_avfs_control(hwmgr, false);
} else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
smu7_avfs_control(hwmgr, false);
smu7_avfs_control(hwmgr, true);
} else {
smu7_avfs_control(hwmgr, true);
}
return 0;
}
static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalController))
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
tmp_result = smu7_disable_power_containment(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable power containment!", result = tmp_result);
tmp_result = smu7_disable_smc_cac(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable SMC CAC!", result = tmp_result);
tmp_result = smu7_disable_didt_config(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable DIDT!", result = tmp_result);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable thermal auto throttle!", result = tmp_result);
tmp_result = smu7_avfs_control(hwmgr, false);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable AVFS!", result = tmp_result);
tmp_result = smu7_stop_dpm(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to stop DPM!", result = tmp_result);
tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable deep sleep master switch!", result = tmp_result);
tmp_result = smu7_disable_ulv(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable ULV!", result = tmp_result);
tmp_result = smu7_clear_voting_clients(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to clear voting clients!", result = tmp_result);
tmp_result = smu7_reset_to_default(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to reset to default!", result = tmp_result);
tmp_result = smum_stop_smc(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to stop smc!", result = tmp_result);
tmp_result = smu7_force_switch_to_arbf0(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to force to switch arbf0!", result = tmp_result);
return result;
}
static bool intel_core_rkl_chk(void)
{
#if IS_ENABLED(CONFIG_X86_64)
struct cpuinfo_x86 *c = &cpu_data(0);
return (c->x86 == 6 && c->x86_model == INTEL_FAM6_ROCKETLAKE);
#else
return false;
#endif
}
static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct amdgpu_device *adev = hwmgr->adev;
uint8_t tmp1, tmp2;
uint16_t tmp3 = 0;
data->dll_default_on = false;
data->mclk_dpm0_activity_target = 0xa;
data->vddc_vddgfx_delta = 300;
data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
data->pcie_dpm_key_disabled =
intel_core_rkl_chk() || !(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
/* need to set voltage control types before EVV patching */
data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
data->enable_tdc_limit_feature = true;
data->enable_pkg_pwr_tracking_feature = true;
data->force_pcie_gen = PP_PCIEGenInvalid;
data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
data->current_profile_setting.bupdate_sclk = 1;
data->current_profile_setting.sclk_up_hyst = 0;
data->current_profile_setting.sclk_down_hyst = 100;
data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
data->current_profile_setting.bupdate_mclk = 1;
if (hwmgr->chip_id >= CHIP_POLARIS10) {
if (adev->gmc.vram_width == 256) {
data->current_profile_setting.mclk_up_hyst = 10;
data->current_profile_setting.mclk_down_hyst = 60;
data->current_profile_setting.mclk_activity = 25;
} else if (adev->gmc.vram_width == 128) {
data->current_profile_setting.mclk_up_hyst = 5;
data->current_profile_setting.mclk_down_hyst = 16;
data->current_profile_setting.mclk_activity = 20;
} else if (adev->gmc.vram_width == 64) {
data->current_profile_setting.mclk_up_hyst = 3;
data->current_profile_setting.mclk_down_hyst = 16;
data->current_profile_setting.mclk_activity = 20;
}
} else {
data->current_profile_setting.mclk_up_hyst = 0;
data->current_profile_setting.mclk_down_hyst = 100;
data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
}
hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
if (hwmgr->chip_id == CHIP_HAWAII) {
data->thermal_temp_setting.temperature_low = 94500;
data->thermal_temp_setting.temperature_high = 95000;
data->thermal_temp_setting.temperature_shutdown = 104000;
} else {
data->thermal_temp_setting.temperature_low = 99500;
data->thermal_temp_setting.temperature_high = 100000;
data->thermal_temp_setting.temperature_shutdown = 104000;
}
data->fast_watermark_threshold = 100;
if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDGFX)) {
if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
}
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableMVDDControl)) {
if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
}
if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDGFX);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI)) {
if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
}
if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableMVDDControl);
if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI);
data->vddc_phase_shed_control = 1;
if ((hwmgr->chip_id == CHIP_POLARIS12) ||
ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) ||
ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
&tmp3);
tmp3 = (tmp3 >> 5) & 0x3;
data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
}
} else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
data->vddc_phase_shed_control = 1;
}
if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
&& (table_info->cac_dtp_table->usClockStretchAmount != 0))
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
data->pcie_gen_performance.max = PP_PCIEGen1;
data->pcie_gen_performance.min = PP_PCIEGen3;
data->pcie_gen_power_saving.max = PP_PCIEGen1;
data->pcie_gen_power_saving.min = PP_PCIEGen3;
data->pcie_lane_performance.max = 0;
data->pcie_lane_performance.min = 16;
data->pcie_lane_power_saving.max = 0;
data->pcie_lane_power_saving.min = 16;
if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
data->disable_edc_leakage_controller = true;
if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) ||
((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) ||
(adev->asic_type == CHIP_POLARIS12) ||
(adev->asic_type == CHIP_VEGAM))
data->disable_edc_leakage_controller = false;
if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MemorySpreadSpectrumSupport);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport);
}
if ((adev->pdev->device == 0x699F) &&
(adev->pdev->revision == 0xCF)) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment);
data->enable_tdc_limit_feature = false;
data->enable_pkg_pwr_tracking_feature = false;
data->disable_edc_leakage_controller = true;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
}
}
static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
uint32_t asicrev1, evv_revision, max = 0, min = 0;
atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB,
&evv_revision);
atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1);
if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) {
min = 1200;
max = 2500;
} else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
min = 900;
max= 2100;
} else if (hwmgr->chip_id == CHIP_POLARIS10) {
if (adev->pdev->subsystem_vendor == 0x106B) {
min = 1000;
max = 2300;
} else {
if (evv_revision == 0) {
min = 1000;
max = 2300;
} else if (evv_revision == 1) {
if (asicrev1 == 326) {
min = 1200;
max = 2500;
/* TODO: PATCH RO in VBIOS */
} else {
min = 1200;
max = 2000;
}
} else if (evv_revision == 2) {
min = 1200;
max = 2500;
}
}
} else {
min = 1100;
max = 2100;
}
data->ro_range_minimum = min;
data->ro_range_maximum = max;
/* TODO: PATCH RO in VBIOS here */
return 0;
}
/**
* smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID.
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint16_t vv_id;
uint16_t vddc = 0;
uint16_t vddgfx = 0;
uint16_t i, j;
uint32_t sclk = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
if (hwmgr->chip_id == CHIP_POLARIS10 ||
hwmgr->chip_id == CHIP_POLARIS11 ||
hwmgr->chip_id == CHIP_POLARIS12)
smu7_calculate_ro_range(hwmgr);
for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
if ((hwmgr->pp_table_version == PP_TABLE_V1)
&& !phm_get_sclk_for_voltage_evv(hwmgr,
table_info->vddgfx_lookup_table, vv_id, &sclk)) {
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
sclk_table = table_info->vdd_dep_on_sclk;
for (j = 1; j < sclk_table->count; j++) {
if (sclk_table->entries[j].clk == sclk &&
sclk_table->entries[j].cks_enable == 0) {
sclk += 5000;
break;
}
}
}
if (0 == atomctrl_get_voltage_evv_on_sclk
(hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
vv_id, &vddgfx)) {
/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
/* the voltage should not be zero nor equal to leakage ID */
if (vddgfx != 0 && vddgfx != vv_id) {
data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
data->vddcgfx_leakage.count++;
}
} else {
pr_info("Error retrieving EVV voltage value!\n");
}
}
} else {
if ((hwmgr->pp_table_version == PP_TABLE_V0)
|| !phm_get_sclk_for_voltage_evv(hwmgr,
table_info->vddc_lookup_table, vv_id, &sclk)) {
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
if (table_info == NULL)
return -EINVAL;
sclk_table = table_info->vdd_dep_on_sclk;
for (j = 1; j < sclk_table->count; j++) {
if (sclk_table->entries[j].clk == sclk &&
sclk_table->entries[j].cks_enable == 0) {
sclk += 5000;
break;
}
}
}
if (phm_get_voltage_evv_on_sclk(hwmgr,
VOLTAGE_TYPE_VDDC,
sclk, vv_id, &vddc) == 0) {
if (vddc >= 2000 || vddc == 0)
return -EINVAL;
} else {
pr_debug("failed to retrieving EVV voltage!\n");
continue;
}
/* the voltage should not be zero nor equal to leakage ID */
if (vddc != 0 && vddc != vv_id) {
data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
data->vddc_leakage.count++;
}
}
}
}
return 0;
}
/**
* smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value.
*
* @hwmgr: the address of the powerplay hardware manager.
* @voltage: pointer to changing voltage
* @leakage_table: pointer to leakage table
*/
static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
{
uint32_t index;
/* search for leakage voltage ID 0xff01 ~ 0xff08 */
for (index = 0; index < leakage_table->count; index++) {
/* if this voltage matches a leakage voltage ID */
/* patch with actual leakage voltage */
if (leakage_table->leakage_id[index] == *voltage) {
*voltage = leakage_table->actual_voltage[index];
break;
}
}
if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
}
/**
* smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
*
* @hwmgr: the address of the powerplay hardware manager.
* @lookup_table: pointer to voltage lookup table
* @leakage_table: pointer to leakage table
* Return: always 0
*/
static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
struct smu7_leakage_voltage *leakage_table)
{
uint32_t i;
for (i = 0; i < lookup_table->count; i++)
smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
&lookup_table->entries[i].us_vdd, leakage_table);
return 0;
}
static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
uint16_t *vddc)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
table_info->max_clock_voltage_on_dc.vddc;
return 0;
}
static int smu7_patch_voltage_dependency_tables_with_lookup_table(
struct pp_hwmgr *hwmgr)
{
uint8_t entry_id;
uint8_t voltage_id;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
table_info->vdd_dep_on_mclk;
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
voltage_id = sclk_table->entries[entry_id].vddInd;
sclk_table->entries[entry_id].vddgfx =
table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
}
} else {
for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
voltage_id = sclk_table->entries[entry_id].vddInd;
sclk_table->entries[entry_id].vddc =
table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
}
}
for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
voltage_id = mclk_table->entries[entry_id].vddInd;
mclk_table->entries[entry_id].vddc =
table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
}
for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
voltage_id = mm_table->entries[entry_id].vddcInd;
mm_table->entries[entry_id].vddc =
table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
}
return 0;
}
static int phm_add_voltage(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *look_up_table,
phm_ppt_v1_voltage_lookup_record *record)
{
uint32_t i;
PP_ASSERT_WITH_CODE((NULL != look_up_table),
"Lookup Table empty.", return -EINVAL);
PP_ASSERT_WITH_CODE((0 != look_up_table->count),
"Lookup Table empty.", return -EINVAL);
i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
PP_ASSERT_WITH_CODE((i >= look_up_table->count),
"Lookup Table is full.", return -EINVAL);
/* This is to avoid entering duplicate calculated records. */
for (i = 0; i < look_up_table->count; i++) {
if (look_up_table->entries[i].us_vdd == record->us_vdd) {
if (look_up_table->entries[i].us_calculated == 1)
return 0;
break;
}
}
look_up_table->entries[i].us_calculated = 1;
look_up_table->entries[i].us_vdd = record->us_vdd;
look_up_table->entries[i].us_cac_low = record->us_cac_low;
look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
look_up_table->entries[i].us_cac_high = record->us_cac_high;
/* Only increment the count when we're appending, not replacing duplicate entry. */
if (i == look_up_table->count)
look_up_table->count++;
return 0;
}
static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
{
uint8_t entry_id;
struct phm_ppt_v1_voltage_lookup_record v_record;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
else
v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
sclk_table->entries[entry_id].vdd_offset;
sclk_table->entries[entry_id].vddc =
v_record.us_cac_low = v_record.us_cac_mid =
v_record.us_cac_high = v_record.us_vdd;
phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
}
for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
v_record.us_vdd = mclk_table->entries[entry_id].vddc +
mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
else
v_record.us_vdd = mclk_table->entries[entry_id].vddc +
mclk_table->entries[entry_id].vdd_offset;
mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
}
}
return 0;
}
static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
{
uint8_t entry_id;
struct phm_ppt_v1_voltage_lookup_record v_record;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
v_record.us_vdd = mm_table->entries[entry_id].vddc +
mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
else
v_record.us_vdd = mm_table->entries[entry_id].vddc +
mm_table->entries[entry_id].vddgfx_offset;
/* Add the calculated VDDGFX to the VDDGFX lookup table */
mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
}
}
return 0;
}
static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
uint32_t table_size, i, j;
table_size = lookup_table->count;
PP_ASSERT_WITH_CODE(0 != lookup_table->count,
"Lookup table is empty", return -EINVAL);
/* Sorting voltages */
for (i = 0; i < table_size - 1; i++) {
for (j = i + 1; j > 0; j--) {
if (lookup_table->entries[j].us_vdd <
lookup_table->entries[j - 1].us_vdd) {
swap(lookup_table->entries[j - 1],
lookup_table->entries[j]);
}
}
}
return 0;
}
static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
{
int result = 0;
int tmp_result;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
if (tmp_result != 0)
result = tmp_result;
smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
&table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
} else {
tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
table_info->vddc_lookup_table, &(data->vddc_leakage));
if (tmp_result)
result = tmp_result;
tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
if (tmp_result)
result = tmp_result;
}
tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
if (tmp_result)
result = tmp_result;
tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
if (tmp_result)
result = tmp_result;
tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
if (tmp_result)
result = tmp_result;
tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
if (tmp_result)
result = tmp_result;
tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
if (tmp_result)
result = tmp_result;
return result;
}
static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
table_info->vdd_dep_on_sclk;
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
table_info->vddc_lookup_table;
uint16_t highest_voltage;
uint32_t i;
highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
for (i = 0; i < lookup_table->count; i++) {
if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 &&
lookup_table->entries[i].us_vdd > highest_voltage)
highest_voltage = lookup_table->entries[i].us_vdd;
}
return highest_voltage;
}
static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
table_info->vdd_dep_on_sclk;
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
table_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
"VDD dependency on SCLK table is missing.",
return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
"VDD dependency on SCLK table has to have is missing.",
return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
"VDD dependency on MCLK table is missing",
return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
"VDD dependency on MCLK table has to have is missing.",
return -EINVAL);
table_info->max_clock_voltage_on_ac.sclk =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
table_info->max_clock_voltage_on_ac.mclk =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
table_info->max_clock_voltage_on_ac.vddc =
smu7_find_highest_vddc(hwmgr);
else
table_info->max_clock_voltage_on_ac.vddc =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
table_info->max_clock_voltage_on_ac.vddci =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
return 0;
}
static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
struct phm_ppt_v1_voltage_lookup_table *lookup_table;
uint32_t i;
uint32_t hw_revision, sub_vendor_id, sub_sys_id;
struct amdgpu_device *adev = hwmgr->adev;
if (table_info != NULL) {
dep_mclk_table = table_info->vdd_dep_on_mclk;
lookup_table = table_info->vddc_lookup_table;
} else
return 0;
hw_revision = adev->pdev->revision;
sub_sys_id = adev->pdev->subsystem_device;
sub_vendor_id = adev->pdev->subsystem_vendor;
if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 &&
((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
(sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
(sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC,
PWR_CKS_CNTL,
CKS_STRETCH_AMOUNT,
0x3);
if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
return 0;
for (i = 0; i < lookup_table->count; i++) {
if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
return 0;
}
}
}
return 0;
}
static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
{
struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
uint32_t temp_reg;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
case 0:
temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
break;
case 1:
temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
break;
case 2:
temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
break;
case 3:
temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
break;
case 4:
temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
break;
default:
break;
}
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
}
if (table_info == NULL)
return 0;
if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
(table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
table_info->cac_dtp_table->usOperatingTempStep = 1;
table_info->cac_dtp_table->usOperatingTempHyst = 1;
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
table_info->cac_dtp_table->usOperatingTempMinLimit;
hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
table_info->cac_dtp_table->usOperatingTempMaxLimit;
hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
table_info->cac_dtp_table->usOperatingTempStep;
hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
table_info->cac_dtp_table->usTargetOperatingTemp;
if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODFuzzyFanControlSupport);
}
return 0;
}
/**
* smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value.
*
* @hwmgr: the address of the powerplay hardware manager.
* @voltage: pointer to changing voltage
* @leakage_table: pointer to leakage table
*/
static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
{
uint32_t index;
/* search for leakage voltage ID 0xff01 ~ 0xff08 */
for (index = 0; index < leakage_table->count; index++) {
/* if this voltage matches a leakage voltage ID */
/* patch with actual leakage voltage */
if (leakage_table->leakage_id[index] == *voltage) {
*voltage = leakage_table->actual_voltage[index];
break;
}
}
if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
}
static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
struct phm_clock_voltage_dependency_table *tab)
{
uint16_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab)
for (i = 0; i < tab->count; i++)
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
&data->vddc_leakage);
return 0;
}
static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
struct phm_clock_voltage_dependency_table *tab)
{
uint16_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab)
for (i = 0; i < tab->count; i++)
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
&data->vddci_leakage);
return 0;
}
static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
struct phm_vce_clock_voltage_dependency_table *tab)
{
uint16_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab)
for (i = 0; i < tab->count; i++)
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
&data->vddc_leakage);
return 0;
}
static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
struct phm_uvd_clock_voltage_dependency_table *tab)
{
uint16_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab)
for (i = 0; i < tab->count; i++)
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
&data->vddc_leakage);
return 0;
}
static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
struct phm_phase_shedding_limits_table *tab)
{
uint16_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab)
for (i = 0; i < tab->count; i++)
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
&data->vddc_leakage);
return 0;
}
static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
struct phm_samu_clock_voltage_dependency_table *tab)
{
uint16_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab)
for (i = 0; i < tab->count; i++)
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
&data->vddc_leakage);
return 0;
}
static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
struct phm_acp_clock_voltage_dependency_table *tab)
{
uint16_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab)
for (i = 0; i < tab->count; i++)
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
&data->vddc_leakage);
return 0;
}
static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
struct phm_clock_and_voltage_limits *tab)
{
uint32_t vddc, vddci;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab) {
vddc = tab->vddc;
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
&data->vddc_leakage);
tab->vddc = vddc;
vddci = tab->vddci;
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
&data->vddci_leakage);
tab->vddci = vddci;
}
return 0;
}
static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
{
uint32_t i;
uint32_t vddc;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (tab) {
for (i = 0; i < tab->count; i++) {
vddc = (uint32_t)(tab->entries[i].Vddc);
smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
tab->entries[i].Vddc = (uint16_t)vddc;
}
}
return 0;
}
static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
{
int tmp;
tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
if (tmp)
return -EINVAL;
tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
if (tmp)
return -EINVAL;
tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
if (tmp)
return -EINVAL;
tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
if (tmp)
return -EINVAL;
tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
if (tmp)
return -EINVAL;
tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
if (tmp)
return -EINVAL;
tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
if (tmp)
return -EINVAL;
tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
if (tmp)
return -EINVAL;
tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
if (tmp)
return -EINVAL;
tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
if (tmp)
return -EINVAL;
tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
if (tmp)
return -EINVAL;
tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
if (tmp)
return -EINVAL;
return 0;
}
static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
"VDDC dependency on SCLK table is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
"VDDC dependency on SCLK table has to have is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
"VDDC dependency on MCLK table is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
"VDD dependency on MCLK table has to have is missing. This table is mandatory",
return -EINVAL);
data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
}
if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
return 0;
}
static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
{
uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int i;
if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
virtual_voltage_id,
efuse_voltage_id) == 0) {
if (vddc != 0 && vddc != virtual_voltage_id) {
data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
data->vddc_leakage.count++;
}
if (vddci != 0 && vddci != virtual_voltage_id) {
data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
data->vddci_leakage.count++;
}
}
}
}
return 0;
}
#define LEAKAGE_ID_MSB 463
#define LEAKAGE_ID_LSB 454
static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t efuse;
uint16_t offset;
int ret = 0;
if (data->disable_edc_leakage_controller)
return 0;
ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr,
&data->edc_hilo_leakage_offset_from_vbios);
if (ret)
return ret;
if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse);
if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold)
offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset;
else
offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset;
ret = atomctrl_get_edc_leakage_table(hwmgr,
&data->edc_leakage_table,
offset);
if (ret)
return ret;
}
return ret;
}
static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data;
int result = 0;
data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
smu7_patch_voltage_workaround(hwmgr);
smu7_init_dpm_defaults(hwmgr);
/* Get leakage voltage based on leakage ID. */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EVV)) {
result = smu7_get_evv_voltages(hwmgr);
if (result) {
pr_info("Get EVV Voltage Failed. Abort Driver loading!\n");
return -EINVAL;
}
} else {
smu7_get_elb_voltages(hwmgr);
}
if (hwmgr->pp_table_version == PP_TABLE_V1) {
smu7_complete_dependency_tables(hwmgr);
smu7_set_private_data_based_on_pptable_v1(hwmgr);
} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
smu7_patch_dependency_tables_with_leakage(hwmgr);
smu7_set_private_data_based_on_pptable_v0(hwmgr);
}
/* Initalize Dynamic State Adjustment Rule Settings */
result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
if (0 == result) {
struct amdgpu_device *adev = hwmgr->adev;
data->is_tlu_enabled = false;
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
SMU7_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
data->pcie_gen_cap = adev->pm.pcie_gen_mask;
if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
data->pcie_spc_cap = 20;
else
data->pcie_spc_cap = 16;
data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
smu7_thermal_parameter_init(hwmgr);
} else {
/* Ignore return value in here, we are cleaning up a mess. */
smu7_hwmgr_backend_fini(hwmgr);
}
result = smu7_update_edc_leakage_table(hwmgr);
if (result)
return result;
return 0;
}
static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t level, tmp;
if (!data->pcie_dpm_key_disabled) {
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
level = 0;
tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
while (tmp >>= 1)
level++;
if (level)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_PCIeDPM_ForceLevel, level,
NULL);
}
}
if (!data->sclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
level = 0;
tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
while (tmp >>= 1)
level++;
if (level)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
(1 << level),
NULL);
}
}
if (!data->mclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
level = 0;
tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
while (tmp >>= 1)
level++;
if (level)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
(1 << level),
NULL);
}
}
return 0;
}
static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (hwmgr->pp_table_version == PP_TABLE_V1)
phm_apply_dal_min_voltage_request(hwmgr);
/* TO DO for v0 iceland and Ci*/
if (!data->sclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.sclk_dpm_enable_mask,
NULL);
}
if (!data->mclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.mclk_dpm_enable_mask,
NULL);
}
return 0;
}
static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (!smum_is_dpm_running(hwmgr))
return -EINVAL;
if (!data->pcie_dpm_key_disabled) {
smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_PCIeDPM_UnForceLevel,
NULL);
}
return smu7_upload_dpm_level_enable_mask(hwmgr);
}
static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data =
(struct smu7_hwmgr *)(hwmgr->backend);
uint32_t level;
if (!data->sclk_dpm_key_disabled)
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
level = phm_get_lowest_enabled_level(hwmgr,
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
(1 << level),
NULL);
}
if (!data->mclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
level = phm_get_lowest_enabled_level(hwmgr,
data->dpm_level_enable_mask.mclk_dpm_enable_mask);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
(1 << level),
NULL);
}
}
if (!data->pcie_dpm_key_disabled) {
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
level = phm_get_lowest_enabled_level(hwmgr,
data->dpm_level_enable_mask.pcie_dpm_enable_mask);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_PCIeDPM_ForceLevel,
(level),
NULL);
}
}
return 0;
}
static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
{
uint32_t percentage;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
int32_t tmp_mclk;
int32_t tmp_sclk;
int32_t count;
if (golden_dpm_table->mclk_table.count < 1)
return -EINVAL;
percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
if (golden_dpm_table->mclk_table.count == 1) {
percentage = 70;
tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
*mclk_mask = golden_dpm_table->mclk_table.count - 1;
} else {
tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
*mclk_mask = golden_dpm_table->mclk_table.count - 2;
}
tmp_sclk = tmp_mclk * percentage / 100;
if (hwmgr->pp_table_version == PP_TABLE_V0) {
for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
count >= 0; count--) {
if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk;
*sclk_mask = count;
break;
}
}
if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
*sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk;
*sclk_mask = count;
break;
}
}
if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
tmp_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
*mclk_mask = 0;
else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
*mclk_mask = golden_dpm_table->mclk_table.count - 1;
*pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
hwmgr->pstate_sclk = tmp_sclk;
hwmgr->pstate_mclk = tmp_mclk;
return 0;
}
static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask = 0;
uint32_t mclk_mask = 0;
uint32_t pcie_mask = 0;
if (hwmgr->pstate_sclk == 0)
smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = smu7_force_dpm_highest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = smu7_force_dpm_lowest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = smu7_unforce_dpm_levels(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
if (ret)
return ret;
smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
if (!ret) {
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
}
return ret;
}
static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct smu7_power_state);
}
static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
uint32_t vblank_time_us)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t switch_limit_us;
switch (hwmgr->chip_id) {
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12))
switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
else
switch_limit_us = data->is_memory_gddr5 ? 200 : 150;
break;
case CHIP_VEGAM:
switch_limit_us = 30;
break;
default:
switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
break;
}
if (vblank_time_us < switch_limit_us)
return true;
else
return false;
}
static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *request_ps,
const struct pp_power_state *current_ps)
{
struct amdgpu_device *adev = hwmgr->adev;
struct smu7_power_state *smu7_ps =
cast_phw_smu7_power_state(&request_ps->hardware);
uint32_t sclk;
uint32_t mclk;
struct PP_Clocks minimum_clocks = {0};
bool disable_mclk_switching;
bool disable_mclk_switching_for_frame_lock;
bool disable_mclk_switching_for_display;
const struct phm_clock_and_voltage_limits *max_limits;
uint32_t i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
int32_t count;
int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
uint32_t latency;
bool latency_allowed = false;
data->battery_state = (PP_StateUILabel_Battery ==
request_ps->classification.ui_label);
data->mclk_ignore_signal = false;
PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2,
"VI should always have 2 performance levels",
);
max_limits = adev->pm.ac_power ?
&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
&(hwmgr->dyn_state.max_clock_voltage_on_dc);
/* Cap clock DPM tables at DC MAX if it is in DC. */
if (!adev->pm.ac_power) {
for (i = 0; i < smu7_ps->performance_level_count; i++) {
if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
}
}
minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState)) {
max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
stable_pstate_sclk = (max_limits->sclk * 75) / 100;
for (count = table_info->vdd_dep_on_sclk->count - 1;
count >= 0; count--) {
if (stable_pstate_sclk >=
table_info->vdd_dep_on_sclk->entries[count].clk) {
stable_pstate_sclk =
table_info->vdd_dep_on_sclk->entries[count].clk;
break;
}
}
if (count < 0)
stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
stable_pstate_mclk = max_limits->mclk;
minimum_clocks.engineClock = stable_pstate_sclk;
minimum_clocks.memoryClock = stable_pstate_mclk;
}
disable_mclk_switching_for_frame_lock = phm_cap_enabled(
hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) &&
!hwmgr->display_config->multi_monitor_in_sync) ||
(hwmgr->display_config->num_display &&
smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time));
disable_mclk_switching = disable_mclk_switching_for_frame_lock ||
disable_mclk_switching_for_display;
if (hwmgr->display_config->num_display == 0) {
if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
data->mclk_ignore_signal = true;
else
disable_mclk_switching = false;
}
sclk = smu7_ps->performance_levels[0].engine_clock;
mclk = smu7_ps->performance_levels[0].memory_clock;
if (disable_mclk_switching &&
(!(hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM)))
mclk = smu7_ps->performance_levels
[smu7_ps->performance_level_count - 1].memory_clock;
if (sclk < minimum_clocks.engineClock)
sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
max_limits->sclk : minimum_clocks.engineClock;
if (mclk < minimum_clocks.memoryClock)
mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
max_limits->mclk : minimum_clocks.memoryClock;
smu7_ps->performance_levels[0].engine_clock = sclk;
smu7_ps->performance_levels[0].memory_clock = mclk;
smu7_ps->performance_levels[1].engine_clock =
(smu7_ps->performance_levels[1].engine_clock >=
smu7_ps->performance_levels[0].engine_clock) ?
smu7_ps->performance_levels[1].engine_clock :
smu7_ps->performance_levels[0].engine_clock;
if (disable_mclk_switching) {
if (mclk < smu7_ps->performance_levels[1].memory_clock)
mclk = smu7_ps->performance_levels[1].memory_clock;
if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) {
if (disable_mclk_switching_for_display) {
/* Find the lowest MCLK frequency that is within
* the tolerable latency defined in DAL
*/
latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
for (i = 0; i < data->mclk_latency_table.count; i++) {
if (data->mclk_latency_table.entries[i].latency <= latency) {
latency_allowed = true;
if ((data->mclk_latency_table.entries[i].frequency >=
smu7_ps->performance_levels[0].memory_clock) &&
(data->mclk_latency_table.entries[i].frequency <=
smu7_ps->performance_levels[1].memory_clock)) {
mclk = data->mclk_latency_table.entries[i].frequency;
break;
}
}
}
if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) {
data->mclk_ignore_signal = true;
} else {
data->mclk_ignore_signal = false;
}
}
if (disable_mclk_switching_for_frame_lock)
mclk = smu7_ps->performance_levels[1].memory_clock;
}
smu7_ps->performance_levels[0].memory_clock = mclk;
if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM))
smu7_ps->performance_levels[1].memory_clock = mclk;
} else {
if (smu7_ps->performance_levels[1].memory_clock <
smu7_ps->performance_levels[0].memory_clock)
smu7_ps->performance_levels[1].memory_clock =
smu7_ps->performance_levels[0].memory_clock;
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState)) {
for (i = 0; i < smu7_ps->performance_level_count; i++) {
smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
}
}
return 0;
}
static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct smu7_power_state *smu7_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
if (low)
return smu7_ps->performance_levels[0].memory_clock;
else
return smu7_ps->performance_levels
[smu7_ps->performance_level_count-1].memory_clock;
}
static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct smu7_power_state *smu7_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
if (low)
return smu7_ps->performance_levels[0].engine_clock;
else
return smu7_ps->performance_levels
[smu7_ps->performance_level_count-1].engine_clock;
}
static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
ATOM_FIRMWARE_INFO_V2_2 *fw_info;
uint16_t size;
uint8_t frev, crev;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
/* First retrieve the Boot clocks and VDDC from the firmware info table.
* We assume here that fw_info is unchanged if this call fails.
*/
fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
&size, &frev, &crev);
if (!fw_info)
/* During a test, there is no firmware info table. */
return 0;
/* Patch the state. */
data->vbios_boot_state.sclk_bootup_value =
le32_to_cpu(fw_info->ulDefaultEngineClock);
data->vbios_boot_state.mclk_bootup_value =
le32_to_cpu(fw_info->ulDefaultMemoryClock);
data->vbios_boot_state.mvdd_bootup_value =
le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
data->vbios_boot_state.vddc_bootup_value =
le16_to_cpu(fw_info->usBootUpVDDCVoltage);
data->vbios_boot_state.vddci_bootup_value =
le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
data->vbios_boot_state.pcie_gen_bootup_value =
smu7_get_current_pcie_speed(hwmgr);
data->vbios_boot_state.pcie_lane_bootup_value =
(uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
/* set boot power state */
ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
return 0;
}
static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
{
int result;
unsigned long ret = 0;
if (hwmgr->pp_table_version == PP_TABLE_V0) {
result = pp_tables_get_num_of_entries(hwmgr, &ret);
return result ? 0 : ret;
} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
return result;
}
return 0;
}
static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
void *state, struct pp_power_state *power_state,
void *pp_table, uint32_t classification_flag)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_power_state *smu7_power_state =
(struct smu7_power_state *)(&(power_state->hardware));
struct smu7_performance_level *performance_level;
ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
PPTable_Generic_SubTable_Header *sclk_dep_table =
(PPTable_Generic_SubTable_Header *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
(ATOM_Tonga_MCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
/* The following fields are not initialized here: id orderedList allStatesList */
power_state->classification.ui_label =
(le16_to_cpu(state_entry->usClassification) &
ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
power_state->classification.flags = classification_flag;
/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
power_state->classification.temporary_state = false;
power_state->classification.to_be_deleted = false;
power_state->validation.disallowOnDC =
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
ATOM_Tonga_DISALLOW_ON_DC));
power_state->pcie.lanes = 0;
power_state->display.disableFrameModulation = false;
power_state->display.limitRefreshrate = false;
power_state->display.enableVariBright =
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
ATOM_Tonga_ENABLE_VARIBRIGHT));
power_state->validation.supportedPowerLevels = 0;
power_state->uvd_clocks.VCLK = 0;
power_state->uvd_clocks.DCLK = 0;
power_state->temperatures.min = 0;
power_state->temperatures.max = 0;
performance_level = &(smu7_power_state->performance_levels
[smu7_power_state->performance_level_count++]);
PP_ASSERT_WITH_CODE(
(smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
"Performance levels exceeds SMC limit!",
return -EINVAL);
PP_ASSERT_WITH_CODE(
(smu7_power_state->performance_level_count <=
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
"Performance levels exceeds Driver limit!",
return -EINVAL);
/* Performance levels are arranged from low to high. */
performance_level->memory_clock = mclk_dep_table->entries
[state_entry->ucMemoryClockIndexLow].ulMclk;
if (sclk_dep_table->ucRevId == 0)
performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
[state_entry->ucEngineClockIndexLow].ulSclk;
else if (sclk_dep_table->ucRevId == 1)
performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
[state_entry->ucEngineClockIndexLow].ulSclk;
performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
state_entry->ucPCIEGenLow);
performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
state_entry->ucPCIELaneLow);
performance_level = &(smu7_power_state->performance_levels
[smu7_power_state->performance_level_count++]);
performance_level->memory_clock = mclk_dep_table->entries
[state_entry->ucMemoryClockIndexHigh].ulMclk;
if (sclk_dep_table->ucRevId == 0)
performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
[state_entry->ucEngineClockIndexHigh].ulSclk;
else if (sclk_dep_table->ucRevId == 1)
performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
[state_entry->ucEngineClockIndexHigh].ulSclk;
performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
state_entry->ucPCIEGenHigh);
performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
state_entry->ucPCIELaneHigh);
return 0;
}
static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
unsigned long entry_index, struct pp_power_state *state)
{
int result;
struct smu7_power_state *ps;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
table_info->vdd_dep_on_mclk;
state->hardware.magic = PHM_VIslands_Magic;
ps = (struct smu7_power_state *)(&state->hardware);
result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
smu7_get_pp_table_entry_callback_func_v1);
/* This is the earliest time we have all the dependency table and the VBIOS boot state
* as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
* if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
*/
if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
if (dep_mclk_table->entries[0].clk !=
data->vbios_boot_state.mclk_bootup_value)
pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
"does not match VBIOS boot MCLK level");
if (dep_mclk_table->entries[0].vddci !=
data->vbios_boot_state.vddci_bootup_value)
pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
"does not match VBIOS boot VDDCI level");
}
/* set DC compatible flag if this state supports DC */
if (!state->validation.disallowOnDC)
ps->dc_compatible = true;
if (state->classification.flags & PP_StateClassificationFlag_ACPI)
data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
if (!result) {
uint32_t i;
switch (state->classification.ui_label) {
case PP_StateUILabel_Performance:
data->use_pcie_performance_levels = true;
for (i = 0; i < ps->performance_level_count; i++) {
if (data->pcie_gen_performance.max <
ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.max =
ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_performance.min >
ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.min =
ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_performance.max <
ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.max =
ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_performance.min >
ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.min =
ps->performance_levels[i].pcie_lane;
}
break;
case PP_StateUILabel_Battery:
data->use_pcie_power_saving_levels = true;
for (i = 0; i < ps->performance_level_count; i++) {
if (data->pcie_gen_power_saving.max <
ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.max =
ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_power_saving.min >
ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.min =
ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_power_saving.max <
ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.max =
ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_power_saving.min >
ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.min =
ps->performance_levels[i].pcie_lane;
}
break;
default:
break;
}
}
return 0;
}
static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *power_state,
unsigned int index, const void *clock_info)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state);
const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
struct smu7_performance_level *performance_level;
uint32_t engine_clock, memory_clock;
uint16_t pcie_gen_from_bios;
engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
data->highest_mclk = memory_clock;
PP_ASSERT_WITH_CODE(
(ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
"Performance levels exceeds SMC limit!",
return -EINVAL);
PP_ASSERT_WITH_CODE(
(ps->performance_level_count <
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
"Performance levels exceeds Driver limit, Skip!",
return 0);
performance_level = &(ps->performance_levels
[ps->performance_level_count++]);
/* Performance levels are arranged from low to high. */
performance_level->memory_clock = memory_clock;
performance_level->engine_clock = engine_clock;
pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
return 0;
}
static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
unsigned long entry_index, struct pp_power_state *state)
{
int result;
struct smu7_power_state *ps;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_clock_voltage_dependency_table *dep_mclk_table =
hwmgr->dyn_state.vddci_dependency_on_mclk;
memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
state->hardware.magic = PHM_VIslands_Magic;
ps = (struct smu7_power_state *)(&state->hardware);
result = pp_tables_get_entry(hwmgr, entry_index, state,
smu7_get_pp_table_entry_callback_func_v0);
/*
* This is the earliest time we have all the dependency table
* and the VBIOS boot state as
* PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
* state if there is only one VDDCI/MCLK level, check if it's
* the same as VBIOS boot state
*/
if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
if (dep_mclk_table->entries[0].clk !=
data->vbios_boot_state.mclk_bootup_value)
pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
"does not match VBIOS boot MCLK level");
if (dep_mclk_table->entries[0].v !=
data->vbios_boot_state.vddci_bootup_value)
pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
"does not match VBIOS boot VDDCI level");
}
/* set DC compatible flag if this state supports DC */
if (!state->validation.disallowOnDC)
ps->dc_compatible = true;
if (state->classification.flags & PP_StateClassificationFlag_ACPI)
data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
if (!result) {
uint32_t i;
switch (state->classification.ui_label) {
case PP_StateUILabel_Performance:
data->use_pcie_performance_levels = true;
for (i = 0; i < ps->performance_level_count; i++) {
if (data->pcie_gen_performance.max <
ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.max =
ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_performance.min >
ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.min =
ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_performance.max <
ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.max =
ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_performance.min >
ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.min =
ps->performance_levels[i].pcie_lane;
}
break;
case PP_StateUILabel_Battery:
data->use_pcie_power_saving_levels = true;
for (i = 0; i < ps->performance_level_count; i++) {
if (data->pcie_gen_power_saving.max <
ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.max =
ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_power_saving.min >
ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.min =
ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_power_saving.max <
ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.max =
ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_power_saving.min >
ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.min =
ps->performance_levels[i].pcie_lane;
}
break;
default:
break;
}
}
return 0;
}
static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry_index, struct pp_power_state *state)
{
if (hwmgr->pp_table_version == PP_TABLE_V0)
return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
else if (hwmgr->pp_table_version == PP_TABLE_V1)
return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
return 0;
}
static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
{
struct amdgpu_device *adev = hwmgr->adev;
int i;
u32 tmp = 0;
if (!query)
return -EINVAL;
/*
* PPSMC_MSG_GetCurrPkgPwr is not supported on:
* - Hawaii
* - Bonaire
* - Fiji
* - Tonga
*/
if ((adev->asic_type != CHIP_HAWAII) &&
(adev->asic_type != CHIP_BONAIRE) &&
(adev->asic_type != CHIP_FIJI) &&
(adev->asic_type != CHIP_TONGA)) {
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
*query = tmp;
if (tmp != 0)
return 0;
}
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_PM_STATUS_95, 0);
for (i = 0; i < 10; i++) {
msleep(500);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
tmp = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC,
ixSMU_PM_STATUS_95);
if (tmp != 0)
break;
}
*query = tmp;
return 0;
}
static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
uint32_t sclk, mclk, activity_percent;
uint32_t offset, val_vid;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
/* size must be at least 4 bytes for all sensors */
if (*size < 4)
return -EINVAL;
switch (idx) {
case AMDGPU_PP_SENSOR_GFX_SCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
*((uint32_t *)value) = sclk;
*size = 4;
return 0;
case AMDGPU_PP_SENSOR_GFX_MCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
*((uint32_t *)value) = mclk;
*size = 4;
return 0;
case AMDGPU_PP_SENSOR_GPU_LOAD:
case AMDGPU_PP_SENSOR_MEM_LOAD:
offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
SMU_SoftRegisters,
(idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
AverageGraphicsActivity:
AverageMemoryActivity);
activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
activity_percent += 0x80;
activity_percent >>= 8;
*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
*size = 4;
return 0;
case AMDGPU_PP_SENSOR_GPU_TEMP:
*((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
*size = 4;
return 0;
case AMDGPU_PP_SENSOR_UVD_POWER:
*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
*size = 4;
return 0;
case AMDGPU_PP_SENSOR_VCE_POWER:
*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
*size = 4;
return 0;
case AMDGPU_PP_SENSOR_GPU_POWER:
return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
case AMDGPU_PP_SENSOR_VDDGFX:
if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
(VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
else
val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
*((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
const struct smu7_power_state *smu7_ps =
cast_const_phw_smu7_power_state(states->pnew_state);
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
uint32_t sclk = smu7_ps->performance_levels
[smu7_ps->performance_level_count - 1].engine_clock;
struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
uint32_t mclk = smu7_ps->performance_levels
[smu7_ps->performance_level_count - 1].memory_clock;
struct PP_Clocks min_clocks = {0};
uint32_t i;
for (i = 0; i < sclk_table->count; i++) {
if (sclk == sclk_table->dpm_levels[i].value)
break;
}
if (i >= sclk_table->count) {
if (sclk > sclk_table->dpm_levels[i-1].value) {
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
sclk_table->dpm_levels[i-1].value = sclk;
}
} else {
/* TODO: Check SCLK in DAL's minimum clocks
* in case DeepSleep divider update is required.
*/
if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
(min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
}
for (i = 0; i < mclk_table->count; i++) {
if (mclk == mclk_table->dpm_levels[i].value)
break;
}
if (i >= mclk_table->count) {
if (mclk > mclk_table->dpm_levels[i-1].value) {
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
mclk_table->dpm_levels[i-1].value = mclk;
}
}
if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
return 0;
}
static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
const struct smu7_power_state *smu7_ps)
{
uint32_t i;
uint32_t sclk, max_sclk = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
for (i = 0; i < smu7_ps->performance_level_count; i++) {
sclk = smu7_ps->performance_levels[i].engine_clock;
if (max_sclk < sclk)
max_sclk = sclk;
}
for (i = 0; i < dpm_table->sclk_table.count; i++) {
if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
dpm_table->pcie_speed_table.dpm_levels
[dpm_table->pcie_speed_table.count - 1].value :
dpm_table->pcie_speed_table.dpm_levels[i].value);
}
return 0;
}
static int smu7_request_link_speed_change_before_state_change(
struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
const struct smu7_power_state *smu7_nps =
cast_const_phw_smu7_power_state(states->pnew_state);
const struct smu7_power_state *polaris10_cps =
cast_const_phw_smu7_power_state(states->pcurrent_state);
uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
uint16_t current_link_speed;
if (data->force_pcie_gen == PP_PCIEGenInvalid)
current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
else
current_link_speed = data->force_pcie_gen;
data->force_pcie_gen = PP_PCIEGenInvalid;
data->pspp_notify_required = false;
if (target_link_speed > current_link_speed) {
switch (target_link_speed) {
#ifdef CONFIG_ACPI
case PP_PCIEGen3:
if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
break;
data->force_pcie_gen = PP_PCIEGen2;
if (current_link_speed == PP_PCIEGen2)
break;
fallthrough;
case PP_PCIEGen2:
if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
break;
fallthrough;
#endif
default:
data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
break;
}
} else {
if (target_link_speed < current_link_speed)
data->pspp_notify_required = true;
}
return 0;
}
static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (0 == data->need_update_smu7_dpm_table)
return 0;
if ((0 == data->sclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
"Trying to freeze SCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_SCLKDPM_FreezeLevel,
NULL),
"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
return -EINVAL);
}
if ((0 == data->mclk_dpm_key_disabled) &&
!data->mclk_ignore_signal &&
(data->need_update_smu7_dpm_table &
DPMTABLE_OD_UPDATE_MCLK)) {
PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
"Trying to freeze MCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_MCLKDPM_FreezeLevel,
NULL),
"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
return -EINVAL);
}
return 0;
}
static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
struct pp_hwmgr *hwmgr, const void *input)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
uint32_t count;
struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
if (0 == data->need_update_smu7_dpm_table)
return 0;
if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
for (count = 0; count < dpm_table->sclk_table.count; count++) {
dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
}
}
if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
for (count = 0; count < dpm_table->mclk_table.count; count++) {
dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
}
}
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
result = smum_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
return result);
}
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
/*populate MCLK dpm table to SMU7 */
result = smum_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
return result);
}
return result;
}
static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
struct smu7_single_dpm_table *dpm_table,
uint32_t low_limit, uint32_t high_limit)
{
uint32_t i;
/* force the trim if mclk_switching is disabled to prevent flicker */
bool force_trim = (low_limit == high_limit);
for (i = 0; i < dpm_table->count; i++) {
/*skip the trim if od is enabled*/
if ((!hwmgr->od_enabled || force_trim)
&& (dpm_table->dpm_levels[i].value < low_limit
|| dpm_table->dpm_levels[i].value > high_limit))
dpm_table->dpm_levels[i].enabled = false;
else
dpm_table->dpm_levels[i].enabled = true;
}
return 0;
}
static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
const struct smu7_power_state *smu7_ps)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t high_limit_count;
PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
"power state did not have any performance level",
return -EINVAL);
high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
smu7_trim_single_dpm_states(hwmgr,
&(data->dpm_table.sclk_table),
smu7_ps->performance_levels[0].engine_clock,
smu7_ps->performance_levels[high_limit_count].engine_clock);
smu7_trim_single_dpm_states(hwmgr,
&(data->dpm_table.mclk_table),
smu7_ps->performance_levels[0].memory_clock,
smu7_ps->performance_levels[high_limit_count].memory_clock);
return 0;
}
static int smu7_generate_dpm_level_enable_mask(
struct pp_hwmgr *hwmgr, const void *input)
{
int result = 0;
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
const struct smu7_power_state *smu7_ps =
cast_const_phw_smu7_power_state(states->pnew_state);
result = smu7_trim_dpm_states(hwmgr, smu7_ps);
if (result)
return result;
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
return 0;
}
static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (0 == data->need_update_smu7_dpm_table)
return 0;
if ((0 == data->sclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
"Trying to Unfreeze SCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_SCLKDPM_UnfreezeLevel,
NULL),
"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
return -EINVAL);
}
if ((0 == data->mclk_dpm_key_disabled) &&
!data->mclk_ignore_signal &&
(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
"Trying to Unfreeze MCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_MCLKDPM_UnfreezeLevel,
NULL),
"Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
return -EINVAL);
}
data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
return 0;
}
static int smu7_notify_link_speed_change_after_state_change(
struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
const struct smu7_power_state *smu7_ps =
cast_const_phw_smu7_power_state(states->pnew_state);
uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
uint8_t request;
if (data->pspp_notify_required) {
if (target_link_speed == PP_PCIEGen3)
request = PCIE_PERF_REQ_GEN3;
else if (target_link_speed == PP_PCIEGen2)
request = PCIE_PERF_REQ_GEN2;
else
request = PCIE_PERF_REQ_GEN1;
if (request == PCIE_PERF_REQ_GEN1 &&
smu7_get_current_pcie_speed(hwmgr) > 0)
return 0;
#ifdef CONFIG_ACPI
if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
if (PP_PCIEGen2 == target_link_speed)
pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
else
pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
}
#endif
}
return 0;
}
static int smu7_notify_no_display(struct pp_hwmgr *hwmgr)
{
return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ? 0 : -EINVAL;
}
static int smu7_notify_has_display(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
if (hwmgr->chip_id == CHIP_VEGAM)
smum_send_msg_to_smc_with_parameter(hwmgr,
(PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
NULL);
else
smum_send_msg_to_smc_with_parameter(hwmgr,
(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
NULL);
data->last_sent_vbi_timeout = data->frame_time_x2;
}
return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ? 0 : -EINVAL;
}
static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int result = 0;
if (data->mclk_ignore_signal)
result = smu7_notify_no_display(hwmgr);
else
result = smu7_notify_has_display(hwmgr);
return result;
}
static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
{
int tmp_result, result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to find DPM states clocks in DPM table!",
result = tmp_result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PCIEPerformanceRequest)) {
tmp_result =
smu7_request_link_speed_change_before_state_change(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to request link speed change before state change!",
result = tmp_result);
}
tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to populate and upload SCLK MCLK DPM levels!",
result = tmp_result);
/*
* If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
* That effectively disables AVFS feature.
*/
if (hwmgr->hardcode_pp_table != NULL)
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
tmp_result = smu7_update_avfs(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to update avfs voltages!",
result = tmp_result);
tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to generate DPM level enabled mask!",
result = tmp_result);
tmp_result = smum_update_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to update SCLK threshold!",
result = tmp_result);
tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to unfreeze SCLK MCLK DPM!",
result = tmp_result);
tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to upload DPM level enabled mask!",
result = tmp_result);
tmp_result = smu7_notify_smc_display(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to notify smc display settings!",
result = tmp_result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PCIEPerformanceRequest)) {
tmp_result =
smu7_notify_link_speed_change_after_state_change(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to notify link speed change after state change!",
result = tmp_result);
}
data->apply_optimized_settings = false;
return result;
}
static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
{
hwmgr->thermal_controller.
advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
NULL);
}
static int
smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
{
return 0;
}
/**
* smu7_program_display_gap - Programs the display gap
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always OK
*/
static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
uint32_t display_gap2;
uint32_t pre_vbi_time_in_us;
uint32_t frame_time_in_us;
uint32_t ref_clock, refresh_rate;
display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
refresh_rate = hwmgr->display_config->vrefresh;
if (0 == refresh_rate)
refresh_rate = 60;
frame_time_in_us = 1000000 / refresh_rate;
pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
data->frame_time_x2 = frame_time_in_us * 2 / 100;
if (data->frame_time_x2 < 280) {
pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
data->frame_time_x2 = 280;
}
display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start + smum_get_offsetof(hwmgr,
SMU_SoftRegisters,
PreVBlankGap), 0x64);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start + smum_get_offsetof(hwmgr,
SMU_SoftRegisters,
VBlankTimeout),
(frame_time_in_us - pre_vbi_time_in_us));
return 0;
}
static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
return smu7_program_display_gap(hwmgr);
}
/**
* smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM
*
* @hwmgr: the address of the powerplay hardware manager.
* @us_max_fan_rpm: max operating fan RPM value.
* Return: The response that came from the SMC.
*/
static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
{
hwmgr->thermal_controller.
advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
NULL);
}
static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
.process = phm_irq_process,
};
static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
{
struct amdgpu_irq_src *source =
kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
if (!source)
return -ENOMEM;
source->funcs = &smu7_irq_funcs;
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
AMDGPU_IRQ_CLIENTID_LEGACY,
VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
source);
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
AMDGPU_IRQ_CLIENTID_LEGACY,
VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
source);
/* Register CTF(GPIO_19) interrupt */
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
AMDGPU_IRQ_CLIENTID_LEGACY,
VISLANDS30_IV_SRCID_GPIO_19,
source);
return 0;
}
static bool
smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
bool is_update_required = false;
if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
is_update_required = true;
if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
is_update_required = true;
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM &&
data->last_sent_vbi_timeout != data->frame_time_x2)
is_update_required = true;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
(data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
is_update_required = true;
}
return is_update_required;
}
static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
const struct smu7_performance_level *pl2)
{
return ((pl1->memory_clock == pl2->memory_clock) &&
(pl1->engine_clock == pl2->engine_clock) &&
(pl1->pcie_gen == pl2->pcie_gen) &&
(pl1->pcie_lane == pl2->pcie_lane));
}
static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
const struct pp_hw_power_state *pstate1,
const struct pp_hw_power_state *pstate2, bool *equal)
{
const struct smu7_power_state *psa;
const struct smu7_power_state *psb;
int i;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
return -EINVAL;
psa = cast_const_phw_smu7_power_state(pstate1);
psb = cast_const_phw_smu7_power_state(pstate2);
/* If the two states don't even have the same number of performance levels they cannot be the same state. */
if (psa->performance_level_count != psb->performance_level_count) {
*equal = false;
return 0;
}
for (i = 0; i < psa->performance_level_count; i++) {
if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
/* If we have found even one performance level pair that is different the states are different. */
*equal = false;
return 0;
}
}
/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
*equal &= (psa->sclk_threshold == psb->sclk_threshold);
/* For OD call, set value based on flag */
*equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
DPMTABLE_OD_UPDATE_MCLK |
DPMTABLE_OD_UPDATE_VDDC));
return 0;
}
static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t tmp;
/* Read MC indirect register offset 0x9F bits [3:0] to see
* if VBIOS has already loaded a full version of MC ucode
* or not.
*/
smu7_get_mc_microcode_version(hwmgr);
data->need_long_memory_training = false;
cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
ixMC_IO_DEBUG_UP_13);
tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
if (tmp & (1 << 23)) {
data->mem_latency_high = MEM_LATENCY_HIGH;
data->mem_latency_low = MEM_LATENCY_LOW;
if ((hwmgr->chip_id == CHIP_POLARIS10) ||
(hwmgr->chip_id == CHIP_POLARIS11) ||
(hwmgr->chip_id == CHIP_POLARIS12))
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
} else {
data->mem_latency_high = 330;
data->mem_latency_low = 330;
if ((hwmgr->chip_id == CHIP_POLARIS10) ||
(hwmgr->chip_id == CHIP_POLARIS11) ||
(hwmgr->chip_id == CHIP_POLARIS12))
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
}
return 0;
}
static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
data->clock_registers.vCG_SPLL_FUNC_CNTL =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
data->clock_registers.vDLL_CNTL =
cgs_read_register(hwmgr->device, mmDLL_CNTL);
data->clock_registers.vMCLK_PWRMGT_CNTL =
cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
data->clock_registers.vMPLL_AD_FUNC_CNTL =
cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
data->clock_registers.vMPLL_DQ_FUNC_CNTL =
cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
data->clock_registers.vMPLL_FUNC_CNTL =
cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
data->clock_registers.vMPLL_FUNC_CNTL_1 =
cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
data->clock_registers.vMPLL_FUNC_CNTL_2 =
cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
data->clock_registers.vMPLL_SS1 =
cgs_read_register(hwmgr->device, mmMPLL_SS1);
data->clock_registers.vMPLL_SS2 =
cgs_read_register(hwmgr->device, mmMPLL_SS2);
return 0;
}
/**
* smu7_get_memory_type - Find out if memory is GDDR5.
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
return 0;
}
/**
* smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
{
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, STATIC_PM_EN, 1);
return 0;
}
/**
* smu7_init_power_gate_state - Initialize PowerGating States for different engines
*
* @hwmgr: the address of the powerplay hardware manager.
* Return: always 0
*/
static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
data->uvd_power_gated = false;
data->vce_power_gated = false;
return 0;
}
static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
data->low_sclk_interrupt_threshold = 0;
return 0;
}
static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
smu7_check_mc_firmware(hwmgr);
tmp_result = smu7_read_clock_registers(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to read clock registers!", result = tmp_result);
tmp_result = smu7_get_memory_type(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to get memory type!", result = tmp_result);
tmp_result = smu7_enable_acpi_power_management(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable ACPI power management!", result = tmp_result);
tmp_result = smu7_init_power_gate_state(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to init power gate state!", result = tmp_result);
tmp_result = smu7_get_mc_microcode_version(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to get MC microcode version!", result = tmp_result);
tmp_result = smu7_init_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to init sclk threshold!", result = tmp_result);
return result;
}
static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (mask == 0)
return -EINVAL;
switch (type) {
case PP_SCLK:
if (!data->sclk_dpm_key_disabled)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
NULL);
break;
case PP_MCLK:
if (!data->mclk_dpm_key_disabled)
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
NULL);
break;
case PP_PCIE:
{
uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
if (!data->pcie_dpm_key_disabled) {
if (fls(tmp) != ffs(tmp))
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
NULL);
else
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_PCIeDPM_ForceLevel,
fls(tmp) - 1,
NULL);
}
break;
}
default:
break;
}
return 0;
}
static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
int size = 0;
uint32_t i, now, clock, pcie_speed;
phm_get_sysfs_buf(&buf, &size);
switch (type) {
case PP_SCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
for (i = 0; i < sclk_table->count; i++) {
if (clock > sclk_table->dpm_levels[i].value)
continue;
break;
}
now = i;
for (i = 0; i < sclk_table->count; i++)
size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n",
i, sclk_table->dpm_levels[i].value / 100,
(i == now) ? "*" : "");
break;
case PP_MCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
for (i = 0; i < mclk_table->count; i++) {
if (clock > mclk_table->dpm_levels[i].value)
continue;
break;
}
now = i;
for (i = 0; i < mclk_table->count; i++)
size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n",
i, mclk_table->dpm_levels[i].value / 100,
(i == now) ? "*" : "");
break;
case PP_PCIE:
pcie_speed = smu7_get_current_pcie_speed(hwmgr);
for (i = 0; i < pcie_table->count; i++) {
if (pcie_speed != pcie_table->dpm_levels[i].value)
continue;
break;
}
now = i;
for (i = 0; i < pcie_table->count; i++)
size += sysfs_emit_at(buf, size, "%d: %s %s\n", i,
(pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
(pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
(pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
(i == now) ? "*" : "");
break;
case OD_SCLK:
if (hwmgr->od_enabled) {
size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK");
for (i = 0; i < odn_sclk_table->num_of_pl; i++)
size += sysfs_emit_at(buf, size, "%d: %10uMHz %10umV\n",
i, odn_sclk_table->entries[i].clock/100,
odn_sclk_table->entries[i].vddc);
}
break;
case OD_MCLK:
if (hwmgr->od_enabled) {
size += sysfs_emit_at(buf, size, "%s:\n", "OD_MCLK");
for (i = 0; i < odn_mclk_table->num_of_pl; i++)
size += sysfs_emit_at(buf, size, "%d: %10uMHz %10umV\n",
i, odn_mclk_table->entries[i].clock/100,
odn_mclk_table->entries[i].vddc);
}
break;
case OD_RANGE:
if (hwmgr->od_enabled) {
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
size += sysfs_emit_at(buf, size, "SCLK: %7uMHz %10uMHz\n",
data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
size += sysfs_emit_at(buf, size, "MCLK: %7uMHz %10uMHz\n",
data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
size += sysfs_emit_at(buf, size, "VDDC: %7umV %11umV\n",
data->odn_dpm_table.min_vddc,
data->odn_dpm_table.max_vddc);
}
break;
default:
break;
}
return size;
}
static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
switch (mode) {
case AMD_FAN_CTRL_NONE:
smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
break;
case AMD_FAN_CTRL_MANUAL:
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl))
smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
break;
case AMD_FAN_CTRL_AUTO:
if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
smu7_fan_ctrl_start_smc_fan_control(hwmgr);
break;
default:
break;
}
}
static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
}
static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
struct smu7_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.sclk_table);
int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
int golden_value = golden_sclk_table->dpm_levels
[golden_sclk_table->count - 1].value;
value -= golden_value;
value = DIV_ROUND_UP(value * 100, golden_value);
return value;
}
static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.sclk_table);
struct pp_power_state *ps;
struct smu7_power_state *smu7_ps;
if (value > 20)
value = 20;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
value / 100 +
golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
return 0;
}
static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
struct smu7_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mclk_table);
int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
int golden_value = golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value;
value -= golden_value;
value = DIV_ROUND_UP(value * 100, golden_value);
return value;
}
static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mclk_table);
struct pp_power_state *ps;
struct smu7_power_state *smu7_ps;
if (value > 20)
value = 20;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
value / 100 +
golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
return 0;
}
static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
struct phm_clock_voltage_dependency_table *sclk_table;
int i;
if (hwmgr->pp_table_version == PP_TABLE_V1) {
if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
return -EINVAL;
dep_sclk_table = table_info->vdd_dep_on_sclk;
for (i = 0; i < dep_sclk_table->count; i++)
clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
clocks->count = dep_sclk_table->count;
} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
for (i = 0; i < sclk_table->count; i++)
clocks->clock[i] = sclk_table->entries[i].clk * 10;
clocks->count = sclk_table->count;
}
return 0;
}
static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
return data->mem_latency_high;
else if (clk >= MEM_FREQ_HIGH_LATENCY)
return data->mem_latency_low;
else
return MEM_LATENCY_ERR;
}
static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
int i;
struct phm_clock_voltage_dependency_table *mclk_table;
if (hwmgr->pp_table_version == PP_TABLE_V1) {
if (table_info == NULL)
return -EINVAL;
dep_mclk_table = table_info->vdd_dep_on_mclk;
for (i = 0; i < dep_mclk_table->count; i++) {
clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
clocks->latency[i] = smu7_get_mem_latency(hwmgr,
dep_mclk_table->entries[i].clk);
}
clocks->count = dep_mclk_table->count;
} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
for (i = 0; i < mclk_table->count; i++)
clocks->clock[i] = mclk_table->entries[i].clk * 10;
clocks->count = mclk_table->count;
}
return 0;
}
static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
struct amd_pp_clocks *clocks)
{
switch (type) {
case amd_pp_sys_clock:
smu7_get_sclks(hwmgr, clocks);
break;
case amd_pp_mem_clock:
smu7_get_mclks(hwmgr, clocks);
break;
default:
return -EINVAL;
}
return 0;
}
static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
table_info->vdd_dep_on_sclk;
int i;
clocks->num_levels = 0;
for (i = 0; i < dep_sclk_table->count; i++) {
if (dep_sclk_table->entries[i].clk) {
clocks->data[clocks->num_levels].clocks_in_khz =
dep_sclk_table->entries[i].clk * 10;
clocks->num_levels++;
}
}
return 0;
}
static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
table_info->vdd_dep_on_mclk;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int i;
clocks->num_levels = 0;
data->mclk_latency_table.count = 0;
for (i = 0; i < dep_mclk_table->count; i++) {
if (dep_mclk_table->entries[i].clk) {
clocks->data[clocks->num_levels].clocks_in_khz =
dep_mclk_table->entries[i].clk * 10;
data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency =
dep_mclk_table->entries[i].clk;
clocks->data[clocks->num_levels].latency_in_us =
data->mclk_latency_table.entries[data->mclk_latency_table.count].latency =
smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk);
clocks->num_levels++;
data->mclk_latency_table.count++;
}
}
return 0;
}
static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM))
return -EINVAL;
switch (type) {
case amd_pp_sys_clock:
smu7_get_sclks_with_latency(hwmgr, clocks);
break;
case amd_pp_mem_clock:
smu7_get_mclks_with_latency(hwmgr, clocks);
break;
default:
return -EINVAL;
}
return 0;
}
static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
void *clock_range)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
table_info->vdd_dep_on_mclk;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
table_info->vdd_dep_on_sclk;
struct polaris10_smumgr *smu_data =
(struct polaris10_smumgr *)(hwmgr->smu_backend);
SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table);
struct dm_pp_wm_sets_with_clock_ranges *watermarks =
(struct dm_pp_wm_sets_with_clock_ranges *)clock_range;
uint32_t i, j, k;
bool valid_entry;
if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM))
return -EINVAL;
for (i = 0; i < dep_mclk_table->count; i++) {
for (j = 0; j < dep_sclk_table->count; j++) {
valid_entry = false;
for (k = 0; k < watermarks->num_wm_sets; k++) {
if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 &&
dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 &&
dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 &&
dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) {
valid_entry = true;
table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id;
break;
}
}
PP_ASSERT_WITH_CODE(valid_entry,
"Clock is not in range of specified clock range for watermark from DAL! Using highest water mark set.",
table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id);
}
}
return smu7_copy_bytes_to_smc(hwmgr,
smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark),
(uint8_t *)table->DisplayWatermark,
sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS,
SMC_RAM_END);
}
static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
uint32_t virtual_addr_low,
uint32_t virtual_addr_hi,
uint32_t mc_addr_low,
uint32_t mc_addr_hi,
uint32_t size)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
smum_get_offsetof(hwmgr,
SMU_SoftRegisters, DRAM_LOG_ADDR_H),
mc_addr_hi);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
smum_get_offsetof(hwmgr,
SMU_SoftRegisters, DRAM_LOG_ADDR_L),
mc_addr_low);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
smum_get_offsetof(hwmgr,
SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
virtual_addr_hi);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
smum_get_offsetof(hwmgr,
SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
virtual_addr_low);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
smum_get_offsetof(hwmgr,
SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
size);
return 0;
}
static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *clocks)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
if (clocks == NULL)
return -EINVAL;
clocks->memory_max_clock = mclk_table->count > 1 ?
mclk_table->dpm_levels[mclk_table->count-1].value :
mclk_table->dpm_levels[0].value;
clocks->engine_max_clock = sclk_table->count > 1 ?
sclk_table->dpm_levels[sclk_table->count-1].value :
sclk_table->dpm_levels[0].value;
return 0;
}
static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
struct PP_TemperatureRange *thermal_data)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
if (hwmgr->pp_table_version == PP_TABLE_V1)
thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
else if (hwmgr->pp_table_version == PP_TABLE_V0)
thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
enum PP_OD_DPM_TABLE_COMMAND type,
uint32_t clk,
uint32_t voltage)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
pr_info("OD voltage is out of range [%d - %d] mV\n",
data->odn_dpm_table.min_vddc,
data->odn_dpm_table.max_vddc);
return false;
}
if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
pr_info("OD engine clock is out of range [%d - %d] MHz\n",
data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
return false;
}
} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
pr_info("OD memory clock is out of range [%d - %d] MHz\n",
data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
return false;
}
} else {
return false;
}
return true;
}
static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
enum PP_OD_DPM_TABLE_COMMAND type,
long *input, uint32_t size)
{
uint32_t i;
struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t input_clk;
uint32_t input_vol;
uint32_t input_level;
PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
return -EINVAL);
if (!hwmgr->od_enabled) {
pr_info("OverDrive feature not enabled\n");
return -EINVAL;
}
if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
"Failed to get ODN SCLK and Voltage tables",
return -EINVAL);
} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
"Failed to get ODN MCLK and Voltage tables",
return -EINVAL);
} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
smu7_odn_initial_default_setting(hwmgr);
return 0;
} else if (PP_OD_COMMIT_DPM_TABLE == type) {
smu7_check_dpm_table_updated(hwmgr);
return 0;
} else {
return -EINVAL;
}
for (i = 0; i < size; i += 3) {
if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
pr_info("invalid clock voltage input \n");
return 0;
}
input_level = input[i];
input_clk = input[i+1] * 100;
input_vol = input[i+2];
if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
} else {
return -EINVAL;
}
}
return 0;
}
static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t i, size = 0;
uint32_t len;
static const char *profile_name[7] = {"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[8] = {"NUM",
"MODE_NAME",
"SCLK_UP_HYST",
"SCLK_DOWN_HYST",
"SCLK_ACTIVE_LEVEL",
"MCLK_UP_HYST",
"MCLK_DOWN_HYST",
"MCLK_ACTIVE_LEVEL"};
if (!buf)
return -EINVAL;
phm_get_sysfs_buf(&buf, &size);
size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
title[0], title[1], title[2], title[3],
title[4], title[5], title[6], title[7]);
len = ARRAY_SIZE(smu7_profiling);
for (i = 0; i < len; i++) {
if (i == hwmgr->power_profile_mode) {
size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
i, profile_name[i], "*",
data->current_profile_setting.sclk_up_hyst,
data->current_profile_setting.sclk_down_hyst,
data->current_profile_setting.sclk_activity,
data->current_profile_setting.mclk_up_hyst,
data->current_profile_setting.mclk_down_hyst,
data->current_profile_setting.mclk_activity);
continue;
}
if (smu7_profiling[i].bupdate_sclk)
size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ",
i, profile_name[i], smu7_profiling[i].sclk_up_hyst,
smu7_profiling[i].sclk_down_hyst,
smu7_profiling[i].sclk_activity);
else
size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ",
i, profile_name[i], "-", "-", "-");
if (smu7_profiling[i].bupdate_mclk)
size += sysfs_emit_at(buf, size, "%16d %16d %16d\n",
smu7_profiling[i].mclk_up_hyst,
smu7_profiling[i].mclk_down_hyst,
smu7_profiling[i].mclk_activity);
else
size += sysfs_emit_at(buf, size, "%16s %16s %16s\n",
"-", "-", "-");
}
return size;
}
static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
enum PP_SMC_POWER_PROFILE requst)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t tmp, level;
if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
level = 0;
tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
while (tmp >>= 1)
level++;
if (level > 0)
smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
}
} else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
}
}
static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct profile_mode_setting tmp;
enum PP_SMC_POWER_PROFILE mode;
if (input == NULL)
return -EINVAL;
mode = input[size];
switch (mode) {
case PP_SMC_POWER_PROFILE_CUSTOM:
if (size < 8 && size != 0)
return -EINVAL;
/* If only CUSTOM is passed in, use the saved values. Check
* that we actually have a CUSTOM profile by ensuring that
* the "use sclk" or the "use mclk" bits are set
*/
tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
if (size == 0) {
if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
return -EINVAL;
} else {
tmp.bupdate_sclk = input[0];
tmp.sclk_up_hyst = input[1];
tmp.sclk_down_hyst = input[2];
tmp.sclk_activity = input[3];
tmp.bupdate_mclk = input[4];
tmp.mclk_up_hyst = input[5];
tmp.mclk_down_hyst = input[6];
tmp.mclk_activity = input[7];
smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
}
if (!smum_update_dpm_settings(hwmgr, &tmp)) {
memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
hwmgr->power_profile_mode = mode;
}
break;
case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
case PP_SMC_POWER_PROFILE_POWERSAVING:
case PP_SMC_POWER_PROFILE_VIDEO:
case PP_SMC_POWER_PROFILE_VR:
case PP_SMC_POWER_PROFILE_COMPUTE:
if (mode == hwmgr->power_profile_mode)
return 0;
memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
if (!smum_update_dpm_settings(hwmgr, &tmp)) {
if (tmp.bupdate_sclk) {
data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
data->current_profile_setting.sclk_activity = tmp.sclk_activity;
}
if (tmp.bupdate_mclk) {
data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
data->current_profile_setting.mclk_activity = tmp.mclk_activity;
}
smu7_patch_compute_profile_mode(hwmgr, mode);
hwmgr->power_profile_mode = mode;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
PHM_PerformanceLevelDesignation designation, uint32_t index,
PHM_PerformanceLevel *level)
{
const struct smu7_power_state *ps;
uint32_t i;
if (level == NULL || hwmgr == NULL || state == NULL)
return -EINVAL;
ps = cast_const_phw_smu7_power_state(state);
i = index > ps->performance_level_count - 1 ?
ps->performance_level_count - 1 : index;
level->coreClock = ps->performance_levels[i].engine_clock;
level->memory_clock = ps->performance_levels[i].memory_clock;
return 0;
}
static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
{
int result;
result = smu7_disable_dpm_tasks(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"[disable_dpm_tasks] Failed to disable DPM!",
);
return result;
}
static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
.backend_init = &smu7_hwmgr_backend_init,
.backend_fini = &smu7_hwmgr_backend_fini,
.asic_setup = &smu7_setup_asic_task,
.dynamic_state_management_enable = &smu7_enable_dpm_tasks,
.apply_state_adjust_rules = smu7_apply_state_adjust_rules,
.force_dpm_level = &smu7_force_dpm_level,
.power_state_set = smu7_set_power_state_tasks,
.get_power_state_size = smu7_get_power_state_size,
.get_mclk = smu7_dpm_get_mclk,
.get_sclk = smu7_dpm_get_sclk,
.patch_boot_state = smu7_dpm_patch_boot_state,
.get_pp_table_entry = smu7_get_pp_table_entry,
.get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
.powerdown_uvd = smu7_powerdown_uvd,
.powergate_uvd = smu7_powergate_uvd,
.powergate_vce = smu7_powergate_vce,
.disable_clock_power_gating = smu7_disable_clock_power_gating,
.update_clock_gatings = smu7_update_clock_gatings,
.notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
.display_config_changed = smu7_display_configuration_changed_task,
.set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
.set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
.stop_thermal_controller = smu7_thermal_stop_thermal_controller,
.get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
.get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm,
.set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm,
.reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
.get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
.set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
.uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
.register_irq_handlers = smu7_register_irq_handlers,
.check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
.check_states_equal = smu7_check_states_equal,
.set_fan_control_mode = smu7_set_fan_control_mode,
.get_fan_control_mode = smu7_get_fan_control_mode,
.force_clock_level = smu7_force_clock_level,
.print_clock_levels = smu7_print_clock_levels,
.powergate_gfx = smu7_powergate_gfx,
.get_sclk_od = smu7_get_sclk_od,
.set_sclk_od = smu7_set_sclk_od,
.get_mclk_od = smu7_get_mclk_od,
.set_mclk_od = smu7_set_mclk_od,
.get_clock_by_type = smu7_get_clock_by_type,
.get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency,
.set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges,
.read_sensor = smu7_read_sensor,
.dynamic_state_management_disable = smu7_disable_dpm_tasks,
.avfs_control = smu7_avfs_control,
.disable_smc_firmware_ctf = smu7_thermal_disable_alert,
.start_thermal_controller = smu7_start_thermal_controller,
.notify_cac_buffer_info = smu7_notify_cac_buffer_info,
.get_max_high_clocks = smu7_get_max_high_clocks,
.get_thermal_temperature_range = smu7_get_thermal_temperature_range,
.odn_edit_dpm_table = smu7_odn_edit_dpm_table,
.set_power_limit = smu7_set_power_limit,
.get_power_profile_mode = smu7_get_power_profile_mode,
.set_power_profile_mode = smu7_set_power_profile_mode,
.get_performance_level = smu7_get_performance_level,
.get_asic_baco_capability = smu7_baco_get_capability,
.get_asic_baco_state = smu7_baco_get_state,
.set_asic_baco_state = smu7_baco_set_state,
.power_off_asic = smu7_power_off_asic,
};
uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
uint32_t clock_insr)
{
uint8_t i;
uint32_t temp;
uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
temp = clock >> i;
if (temp >= min || i == 0)
break;
}
return i;
}
int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
if (hwmgr->pp_table_version == PP_TABLE_V0)
hwmgr->pptable_func = &pptable_funcs;
else if (hwmgr->pp_table_version == PP_TABLE_V1)
hwmgr->pptable_func = &pptable_v1_0_funcs;
return 0;
}