blob: 6fc0680a93d04c8d142f24dd76b8a9f08375ef23 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/smiapp/smiapp-core.c
*
* Generic driver for SMIA/SMIA++ compliant camera modules
*
* Copyright (C) 2010--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@iki.fi>
*
* Based on smiapp driver by Vimarsh Zutshi
* Based on jt8ev1.c by Vimarsh Zutshi
* Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/smiapp.h>
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-device.h>
#include "smiapp.h"
#define SMIAPP_ALIGN_DIM(dim, flags) \
((flags) & V4L2_SEL_FLAG_GE \
? ALIGN((dim), 2) \
: (dim) & ~1)
/*
* smiapp_module_idents - supported camera modules
*/
static const struct smiapp_module_ident smiapp_module_idents[] = {
SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
};
/*
*
* Dynamic Capability Identification
*
*/
static u32 smiapp_get_limit(struct smiapp_sensor *sensor,
unsigned int limit)
{
if (WARN_ON(limit >= SMIAPP_LIMIT_LAST))
return 1;
return sensor->limits[limit];
}
#define SMIA_LIM(sensor, limit) \
smiapp_get_limit(sensor, SMIAPP_LIMIT_##limit)
static int smiapp_read_all_smia_limits(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int i;
int rval;
for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
u32 val;
rval = smiapp_read(
sensor, smiapp_reg_limits[i].addr, &val);
if (rval)
return rval;
sensor->limits[i] = val;
dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
smiapp_reg_limits[i].addr,
smiapp_reg_limits[i].what, val, val);
}
if (SMIA_LIM(sensor, SCALER_N_MIN) == 0)
smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
return 0;
}
static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
unsigned int i;
int pixel_count = 0;
int line_count = 0;
int rval;
rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
&fmt_model_type);
if (rval)
return rval;
rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
&fmt_model_subtype);
if (rval)
return rval;
ncol_desc = (fmt_model_subtype
& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
nrow_desc = fmt_model_subtype
& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
dev_dbg(&client->dev, "format_model_type %s\n",
fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
? "2 byte" :
fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
? "4 byte" : "is simply bad");
for (i = 0; i < ncol_desc + nrow_desc; i++) {
u32 desc;
u32 pixelcode;
u32 pixels;
char *which;
char *what;
u32 reg;
if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
rval = smiapp_read(sensor, reg, &desc);
if (rval)
return rval;
pixelcode =
(desc
& SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
} else if (fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
rval = smiapp_read(sensor, reg, &desc);
if (rval)
return rval;
pixelcode =
(desc
& SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
} else {
dev_dbg(&client->dev,
"invalid frame format model type %d\n",
fmt_model_type);
return -EINVAL;
}
if (i < ncol_desc)
which = "columns";
else
which = "rows";
switch (pixelcode) {
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
what = "embedded";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
what = "dummy";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
what = "black";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
what = "dark";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
what = "visible";
break;
default:
what = "invalid";
break;
}
dev_dbg(&client->dev,
"0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
what, pixels, which, pixelcode);
if (i < ncol_desc) {
if (pixelcode ==
SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
sensor->visible_pixel_start = pixel_count;
pixel_count += pixels;
continue;
}
/* Handle row descriptors */
switch (pixelcode) {
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
if (sensor->embedded_end)
break;
sensor->embedded_start = line_count;
sensor->embedded_end = line_count + pixels;
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
sensor->image_start = line_count;
break;
}
line_count += pixels;
}
if (sensor->embedded_end > sensor->image_start) {
dev_dbg(&client->dev,
"adjusting image start line to %u (was %u)\n",
sensor->embedded_end, sensor->image_start);
sensor->image_start = sensor->embedded_end;
}
dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
sensor->embedded_start, sensor->embedded_end);
dev_dbg(&client->dev, "image data starts at line %d\n",
sensor->image_start);
return 0;
}
static int smiapp_pll_configure(struct smiapp_sensor *sensor)
{
struct smiapp_pll *pll = &sensor->pll;
int rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
if (rval < 0)
return rval;
/* Lane op clock ratio does not apply here. */
rval = smiapp_write(
sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
if (rval < 0)
return rval;
return smiapp_write(
sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
}
static int smiapp_pll_try(struct smiapp_sensor *sensor,
struct smiapp_pll *pll)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct smiapp_pll_limits lim = {
.min_pre_pll_clk_div = SMIA_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
.max_pre_pll_clk_div = SMIA_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
.min_pll_ip_freq_hz = SMIA_LIM(sensor, MIN_PLL_IP_FREQ_HZ),
.max_pll_ip_freq_hz = SMIA_LIM(sensor, MAX_PLL_IP_FREQ_HZ),
.min_pll_multiplier = SMIA_LIM(sensor, MIN_PLL_MULTIPLIER),
.max_pll_multiplier = SMIA_LIM(sensor, MAX_PLL_MULTIPLIER),
.min_pll_op_freq_hz = SMIA_LIM(sensor, MIN_PLL_OP_FREQ_HZ),
.max_pll_op_freq_hz = SMIA_LIM(sensor, MAX_PLL_OP_FREQ_HZ),
.op.min_sys_clk_div = SMIA_LIM(sensor, MIN_OP_SYS_CLK_DIV),
.op.max_sys_clk_div = SMIA_LIM(sensor, MAX_OP_SYS_CLK_DIV),
.op.min_pix_clk_div = SMIA_LIM(sensor, MIN_OP_PIX_CLK_DIV),
.op.max_pix_clk_div = SMIA_LIM(sensor, MAX_OP_PIX_CLK_DIV),
.op.min_sys_clk_freq_hz = SMIA_LIM(sensor, MIN_OP_SYS_CLK_FREQ_HZ),
.op.max_sys_clk_freq_hz = SMIA_LIM(sensor, MAX_OP_SYS_CLK_FREQ_HZ),
.op.min_pix_clk_freq_hz = SMIA_LIM(sensor, MIN_OP_PIX_CLK_FREQ_HZ),
.op.max_pix_clk_freq_hz = SMIA_LIM(sensor, MAX_OP_PIX_CLK_FREQ_HZ),
.vt.min_sys_clk_div = SMIA_LIM(sensor, MIN_VT_SYS_CLK_DIV),
.vt.max_sys_clk_div = SMIA_LIM(sensor, MAX_VT_SYS_CLK_DIV),
.vt.min_pix_clk_div = SMIA_LIM(sensor, MIN_VT_PIX_CLK_DIV),
.vt.max_pix_clk_div = SMIA_LIM(sensor, MAX_VT_PIX_CLK_DIV),
.vt.min_sys_clk_freq_hz = SMIA_LIM(sensor, MIN_VT_SYS_CLK_FREQ_HZ),
.vt.max_sys_clk_freq_hz = SMIA_LIM(sensor, MAX_VT_SYS_CLK_FREQ_HZ),
.vt.min_pix_clk_freq_hz = SMIA_LIM(sensor, MIN_VT_PIX_CLK_FREQ_HZ),
.vt.max_pix_clk_freq_hz = SMIA_LIM(sensor, MAX_VT_PIX_CLK_FREQ_HZ),
.min_line_length_pck_bin = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
.min_line_length_pck = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK),
};
return smiapp_pll_calculate(&client->dev, &lim, pll);
}
static int smiapp_pll_update(struct smiapp_sensor *sensor)
{
struct smiapp_pll *pll = &sensor->pll;
int rval;
pll->binning_horizontal = sensor->binning_horizontal;
pll->binning_vertical = sensor->binning_vertical;
pll->link_freq =
sensor->link_freq->qmenu_int[sensor->link_freq->val];
pll->scale_m = sensor->scale_m;
pll->bits_per_pixel = sensor->csi_format->compressed;
rval = smiapp_pll_try(sensor, pll);
if (rval < 0)
return rval;
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
pll->pixel_rate_pixel_array);
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
return 0;
}
/*
*
* V4L2 Controls handling
*
*/
static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
{
struct v4l2_ctrl *ctrl = sensor->exposure;
int max;
max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ sensor->vblank->val
- SMIA_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
}
/*
* Order matters.
*
* 1. Bits-per-pixel, descending.
* 2. Bits-per-pixel compressed, descending.
* 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
* orders must be defined.
*/
static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
};
static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
#define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
- (unsigned long)smiapp_csi_data_formats) \
/ sizeof(*smiapp_csi_data_formats))
static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int flip = 0;
if (sensor->hflip) {
if (sensor->hflip->val)
flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
if (sensor->vflip->val)
flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
}
flip ^= sensor->hvflip_inv_mask;
dev_dbg(&client->dev, "flip %d\n", flip);
return sensor->default_pixel_order ^ flip;
}
static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int csi_format_idx =
to_csi_format_idx(sensor->csi_format) & ~3;
unsigned int internal_csi_format_idx =
to_csi_format_idx(sensor->internal_csi_format) & ~3;
unsigned int pixel_order = smiapp_pixel_order(sensor);
sensor->mbus_frame_fmts =
sensor->default_mbus_frame_fmts << pixel_order;
sensor->csi_format =
&smiapp_csi_data_formats[csi_format_idx + pixel_order];
sensor->internal_csi_format =
&smiapp_csi_data_formats[internal_csi_format_idx
+ pixel_order];
BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
>= ARRAY_SIZE(smiapp_csi_data_formats));
dev_dbg(&client->dev, "new pixel order %s\n",
pixel_order_str[pixel_order]);
}
static const char * const smiapp_test_patterns[] = {
"Disabled",
"Solid Colour",
"Eight Vertical Colour Bars",
"Colour Bars With Fade to Grey",
"Pseudorandom Sequence (PN9)",
};
static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct smiapp_sensor *sensor =
container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
->sensor;
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int pm_status;
u32 orient = 0;
unsigned int i;
int exposure;
int rval;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
case V4L2_CID_VFLIP:
if (sensor->streaming)
return -EBUSY;
if (sensor->hflip->val)
orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
if (sensor->vflip->val)
orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
orient ^= sensor->hvflip_inv_mask;
smiapp_update_mbus_formats(sensor);
break;
case V4L2_CID_VBLANK:
exposure = sensor->exposure->val;
__smiapp_update_exposure_limits(sensor);
if (exposure > sensor->exposure->maximum) {
sensor->exposure->val = sensor->exposure->maximum;
rval = smiapp_set_ctrl(sensor->exposure);
if (rval < 0)
return rval;
}
break;
case V4L2_CID_LINK_FREQ:
if (sensor->streaming)
return -EBUSY;
rval = smiapp_pll_update(sensor);
if (rval)
return rval;
return 0;
case V4L2_CID_TEST_PATTERN:
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
v4l2_ctrl_activate(
sensor->test_data[i],
ctrl->val ==
V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
break;
}
pm_status = pm_runtime_get_if_active(&client->dev, true);
if (!pm_status)
return 0;
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
rval = smiapp_write(
sensor,
SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
break;
case V4L2_CID_EXPOSURE:
rval = smiapp_write(
sensor,
SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
break;
case V4L2_CID_HFLIP:
case V4L2_CID_VFLIP:
rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
orient);
break;
case V4L2_CID_VBLANK:
rval = smiapp_write(
sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ ctrl->val);
break;
case V4L2_CID_HBLANK:
rval = smiapp_write(
sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
+ ctrl->val);
break;
case V4L2_CID_TEST_PATTERN:
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_RED:
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_GREENR:
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_BLUE:
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN_GREENB:
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
break;
case V4L2_CID_PIXEL_RATE:
/* For v4l2_ctrl_s_ctrl_int64() used internally. */
rval = 0;
break;
default:
rval = -EINVAL;
}
if (pm_status > 0) {
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
}
return rval;
}
static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
.s_ctrl = smiapp_set_ctrl,
};
static int smiapp_init_controls(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
if (rval)
return rval;
sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
sensor->analog_gain = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN,
SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MIN),
SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MAX),
max(SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_STEP), 1U),
SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MIN));
/* Exposure limits will be updated soon, use just something here. */
sensor->exposure = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_EXPOSURE, 0, 0, 1, 0);
sensor->hflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
sensor->vflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
sensor->vblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_VBLANK, 0, 1, 1, 0);
if (sensor->vblank)
sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->hblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_HBLANK, 0, 1, 1, 0);
if (sensor->hblank)
sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->pixel_rate_parray = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(smiapp_test_patterns) - 1,
0, 0, smiapp_test_patterns);
if (sensor->pixel_array->ctrl_handler.error) {
dev_err(&client->dev,
"pixel array controls initialization failed (%d)\n",
sensor->pixel_array->ctrl_handler.error);
return sensor->pixel_array->ctrl_handler.error;
}
sensor->pixel_array->sd.ctrl_handler =
&sensor->pixel_array->ctrl_handler;
v4l2_ctrl_cluster(2, &sensor->hflip);
rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
if (rval)
return rval;
sensor->src->ctrl_handler.lock = &sensor->mutex;
sensor->pixel_rate_csi = v4l2_ctrl_new_std(
&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
if (sensor->src->ctrl_handler.error) {
dev_err(&client->dev,
"src controls initialization failed (%d)\n",
sensor->src->ctrl_handler.error);
return sensor->src->ctrl_handler.error;
}
sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
return 0;
}
/*
* For controls that require information on available media bus codes
* and linke frequencies.
*/
static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
{
unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
sensor->csi_format->compressed - sensor->compressed_min_bpp];
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
int max_value = (1 << sensor->csi_format->width) - 1;
sensor->test_data[i] = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler,
&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
0, max_value, 1, max_value);
}
sensor->link_freq = v4l2_ctrl_new_int_menu(
&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
__ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
return sensor->src->ctrl_handler.error;
}
static void smiapp_free_controls(struct smiapp_sensor *sensor)
{
unsigned int i;
for (i = 0; i < sensor->ssds_used; i++)
v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
}
static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct smiapp_pll *pll = &sensor->pll;
u8 compressed_max_bpp = 0;
unsigned int type, n;
unsigned int i, pixel_order;
int rval;
rval = smiapp_read(
sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
if (rval)
return rval;
dev_dbg(&client->dev, "data_format_model_type %d\n", type);
rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
&pixel_order);
if (rval)
return rval;
if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
return -EINVAL;
}
dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
pixel_order_str[pixel_order]);
switch (type) {
case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
break;
case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
break;
default:
return -EINVAL;
}
sensor->default_pixel_order = pixel_order;
sensor->mbus_frame_fmts = 0;
for (i = 0; i < n; i++) {
unsigned int fmt, j;
rval = smiapp_read(
sensor,
SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
if (rval)
return rval;
dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
i, fmt >> 8, (u8)fmt);
for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
const struct smiapp_csi_data_format *f =
&smiapp_csi_data_formats[j];
if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
continue;
if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
continue;
dev_dbg(&client->dev, "jolly good! %d\n", j);
sensor->default_mbus_frame_fmts |= 1 << j;
}
}
/* Figure out which BPP values can be used with which formats. */
pll->binning_horizontal = 1;
pll->binning_vertical = 1;
pll->scale_m = sensor->scale_m;
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
sensor->compressed_min_bpp =
min(smiapp_csi_data_formats[i].compressed,
sensor->compressed_min_bpp);
compressed_max_bpp =
max(smiapp_csi_data_formats[i].compressed,
compressed_max_bpp);
}
sensor->valid_link_freqs = devm_kcalloc(
&client->dev,
compressed_max_bpp - sensor->compressed_min_bpp + 1,
sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
if (!sensor->valid_link_freqs)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
const struct smiapp_csi_data_format *f =
&smiapp_csi_data_formats[i];
unsigned long *valid_link_freqs =
&sensor->valid_link_freqs[
f->compressed - sensor->compressed_min_bpp];
unsigned int j;
if (!(sensor->default_mbus_frame_fmts & 1 << i))
continue;
pll->bits_per_pixel = f->compressed;
for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
pll->link_freq = sensor->hwcfg->op_sys_clock[j];
rval = smiapp_pll_try(sensor, pll);
dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
pll->link_freq, pll->bits_per_pixel,
rval ? "not ok" : "ok");
if (rval)
continue;
set_bit(j, valid_link_freqs);
}
if (!*valid_link_freqs) {
dev_info(&client->dev,
"no valid link frequencies for %u bpp\n",
f->compressed);
sensor->default_mbus_frame_fmts &= ~BIT(i);
continue;
}
if (!sensor->csi_format
|| f->width > sensor->csi_format->width
|| (f->width == sensor->csi_format->width
&& f->compressed > sensor->csi_format->compressed)) {
sensor->csi_format = f;
sensor->internal_csi_format = f;
}
}
if (!sensor->csi_format) {
dev_err(&client->dev, "no supported mbus code found\n");
return -EINVAL;
}
smiapp_update_mbus_formats(sensor);
return 0;
}
static void smiapp_update_blanking(struct smiapp_sensor *sensor)
{
struct v4l2_ctrl *vblank = sensor->vblank;
struct v4l2_ctrl *hblank = sensor->hblank;
uint16_t min_fll, max_fll, min_llp, max_llp, min_lbp;
int min, max;
if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
min_fll = SMIA_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
max_fll = SMIA_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
min_llp = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
max_llp = SMIA_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
min_lbp = SMIA_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
} else {
min_fll = SMIA_LIM(sensor, MIN_FRAME_LENGTH_LINES);
max_fll = SMIA_LIM(sensor, MAX_FRAME_LENGTH_LINES);
min_llp = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK);
max_llp = SMIA_LIM(sensor, MAX_LINE_LENGTH_PCK);
min_lbp = SMIA_LIM(sensor, MIN_LINE_BLANKING_PCK);
}
min = max_t(int,
SMIA_LIM(sensor, MIN_FRAME_BLANKING_LINES),
min_fll -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
max = max_fll - sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
min = max_t(int,
min_llp -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
min_lbp);
max = max_llp - sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
__smiapp_update_exposure_limits(sensor);
}
static int smiapp_pll_blanking_update(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
rval = smiapp_pll_update(sensor);
if (rval < 0)
return rval;
/* Output from pixel array, including blanking */
smiapp_update_blanking(sensor);
dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
sensor->pll.pixel_rate_pixel_array /
((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
+ sensor->hblank->val) *
(sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ sensor->vblank->val) / 100));
return 0;
}
/*
*
* SMIA++ NVM handling
*
*/
static int smiapp_read_nvm_page(struct smiapp_sensor *sensor, u32 p, u8 *nvm,
u8 *status)
{
unsigned int i;
int rval;
u32 s;
*status = 0;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
if (rval)
return rval;
rval = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN);
if (rval)
return rval;
rval = smiapp_read(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS,
&s);
if (rval)
return rval;
if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_EUSAGE) {
*status = s;
return -ENODATA;
}
if (SMIA_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
SMIAPP_DATA_TRANSFER_IF_CAPABILITY_POLL) {
for (i = 1000; i > 0; i--) {
if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
break;
rval = smiapp_read(
sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS,
&s);
if (rval)
return rval;
}
if (!i)
return -ETIMEDOUT;
}
for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
u32 v;
rval = smiapp_read(sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
&v);
if (rval)
return rval;
*nvm++ = v;
}
return 0;
}
static int smiapp_read_nvm(struct smiapp_sensor *sensor, unsigned char *nvm,
size_t nvm_size)
{
u8 status = 0;
u32 p;
int rval = 0, rval2;
for (p = 0; p < nvm_size / SMIAPP_NVM_PAGE_SIZE && !rval; p++) {
rval = smiapp_read_nvm_page(sensor, p, nvm, &status);
nvm += SMIAPP_NVM_PAGE_SIZE;
}
if (rval == -ENODATA &&
status & SMIAPP_DATA_TRANSFER_IF_1_STATUS_EUSAGE)
rval = 0;
rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
if (rval < 0)
return rval;
else
return rval2 ?: p * SMIAPP_NVM_PAGE_SIZE;
}
/*
*
* SMIA++ CCI address control
*
*/
static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
u32 val;
client->addr = sensor->hwcfg->i2c_addr_dfl;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
sensor->hwcfg->i2c_addr_alt << 1);
if (rval)
return rval;
client->addr = sensor->hwcfg->i2c_addr_alt;
/* verify addr change went ok */
rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
if (rval)
return rval;
if (val != sensor->hwcfg->i2c_addr_alt << 1)
return -ENODEV;
return 0;
}
/*
*
* SMIA++ Mode Control
*
*/
static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
{
struct smiapp_flash_strobe_parms *strobe_setup;
unsigned int ext_freq = sensor->hwcfg->ext_clk;
u32 tmp;
u32 strobe_adjustment;
u32 strobe_width_high_rs;
int rval;
strobe_setup = sensor->hwcfg->strobe_setup;
/*
* How to calculate registers related to strobe length. Please
* do not change, or if you do at least know what you're
* doing. :-)
*
* Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
*
* flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
* / EXTCLK freq [Hz]) * flash_strobe_adjustment
*
* tFlash_strobe_width_ctrl E N, [1 - 0xffff]
* flash_strobe_adjustment E N, [1 - 0xff]
*
* The formula above is written as below to keep it on one
* line:
*
* l / 10^6 = w / e * a
*
* Let's mark w * a by x:
*
* x = w * a
*
* Thus, we get:
*
* x = l * e / 10^6
*
* The strobe width must be at least as long as requested,
* thus rounding upwards is needed.
*
* x = (l * e + 10^6 - 1) / 10^6
* -----------------------------
*
* Maximum possible accuracy is wanted at all times. Thus keep
* a as small as possible.
*
* Calculate a, assuming maximum w, with rounding upwards:
*
* a = (x + (2^16 - 1) - 1) / (2^16 - 1)
* -------------------------------------
*
* Thus, we also get w, with that a, with rounding upwards:
*
* w = (x + a - 1) / a
* -------------------
*
* To get limits:
*
* x E [1, (2^16 - 1) * (2^8 - 1)]
*
* Substituting maximum x to the original formula (with rounding),
* the maximum l is thus
*
* (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
*
* l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
* --------------------------------------------------
*
* flash_strobe_length must be clamped between 1 and
* (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
*
* Then,
*
* flash_strobe_adjustment = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
*
* tFlash_strobe_width_ctrl = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 +
* flash_strobe_adjustment - 1) / flash_strobe_adjustment
*/
tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1000000 + 1, ext_freq);
strobe_setup->strobe_width_high_us =
clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1000000 - 1), 1000000ULL);
strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
strobe_adjustment;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
strobe_setup->mode);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
strobe_adjustment);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
strobe_width_high_rs);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
strobe_setup->strobe_delay);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
strobe_setup->stobe_start_point);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
strobe_setup->trigger);
out:
sensor->hwcfg->strobe_setup->trigger = 0;
return rval;
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int smiapp_power_on(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
/*
* The sub-device related to the I2C device is always the
* source one, i.e. ssds[0].
*/
struct smiapp_sensor *sensor =
container_of(ssd, struct smiapp_sensor, ssds[0]);
unsigned int sleep;
int rval;
rval = regulator_enable(sensor->vana);
if (rval) {
dev_err(&client->dev, "failed to enable vana regulator\n");
return rval;
}
usleep_range(1000, 1000);
rval = clk_prepare_enable(sensor->ext_clk);
if (rval < 0) {
dev_dbg(&client->dev, "failed to enable xclk\n");
goto out_xclk_fail;
}
usleep_range(1000, 1000);
gpiod_set_value(sensor->xshutdown, 1);
sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
usleep_range(sleep, sleep);
/*
* Failures to respond to the address change command have been noticed.
* Those failures seem to be caused by the sensor requiring a longer
* boot time than advertised. An additional 10ms delay seems to work
* around the issue, but the SMIA++ I2C write retry hack makes the delay
* unnecessary. The failures need to be investigated to find a proper
* fix, and a delay will likely need to be added here if the I2C write
* retry hack is reverted before the root cause of the boot time issue
* is found.
*/
if (sensor->hwcfg->i2c_addr_alt) {
rval = smiapp_change_cci_addr(sensor);
if (rval) {
dev_err(&client->dev, "cci address change error\n");
goto out_cci_addr_fail;
}
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
SMIAPP_SOFTWARE_RESET);
if (rval < 0) {
dev_err(&client->dev, "software reset failed\n");
goto out_cci_addr_fail;
}
if (sensor->hwcfg->i2c_addr_alt) {
rval = smiapp_change_cci_addr(sensor);
if (rval) {
dev_err(&client->dev, "cci address change error\n");
goto out_cci_addr_fail;
}
}
rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
if (rval) {
dev_err(&client->dev, "compression mode set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(
sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
if (rval) {
dev_err(&client->dev, "extclk frequency set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
sensor->hwcfg->lanes - 1);
if (rval) {
dev_err(&client->dev, "csi lane mode set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
if (rval) {
dev_err(&client->dev, "fast standby set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
sensor->hwcfg->csi_signalling_mode);
if (rval) {
dev_err(&client->dev, "csi signalling mode set failed\n");
goto out_cci_addr_fail;
}
/* DPHY control done by sensor based on requested link rate */
rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
SMIAPP_DPHY_CTRL_UI);
if (rval < 0)
goto out_cci_addr_fail;
rval = smiapp_call_quirk(sensor, post_poweron);
if (rval) {
dev_err(&client->dev, "post_poweron quirks failed\n");
goto out_cci_addr_fail;
}
return 0;
out_cci_addr_fail:
gpiod_set_value(sensor->xshutdown, 0);
clk_disable_unprepare(sensor->ext_clk);
out_xclk_fail:
regulator_disable(sensor->vana);
return rval;
}
static int smiapp_power_off(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct smiapp_sensor *sensor =
container_of(ssd, struct smiapp_sensor, ssds[0]);
/*
* Currently power/clock to lens are enable/disabled separately
* but they are essentially the same signals. So if the sensor is
* powered off while the lens is powered on the sensor does not
* really see a power off and next time the cci address change
* will fail. So do a soft reset explicitly here.
*/
if (sensor->hwcfg->i2c_addr_alt)
smiapp_write(sensor,
SMIAPP_REG_U8_SOFTWARE_RESET,
SMIAPP_SOFTWARE_RESET);
gpiod_set_value(sensor->xshutdown, 0);
clk_disable_unprepare(sensor->ext_clk);
usleep_range(5000, 5000);
regulator_disable(sensor->vana);
sensor->streaming = false;
return 0;
}
/* -----------------------------------------------------------------------------
* Video stream management
*/
static int smiapp_start_streaming(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int binning_mode;
int rval;
mutex_lock(&sensor->mutex);
rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
(sensor->csi_format->width << 8) |
sensor->csi_format->compressed);
if (rval)
goto out;
/* Binning configuration */
if (sensor->binning_horizontal == 1 &&
sensor->binning_vertical == 1) {
binning_mode = 0;
} else {
u8 binning_type =
(sensor->binning_horizontal << 4)
| sensor->binning_vertical;
rval = smiapp_write(
sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
if (rval < 0)
goto out;
binning_mode = 1;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
if (rval < 0)
goto out;
/* Set up PLL */
rval = smiapp_pll_configure(sensor);
if (rval)
goto out;
/* Analog crop start coordinates */
rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
if (rval < 0)
goto out;
/* Analog crop end coordinates */
rval = smiapp_write(
sensor, SMIAPP_REG_U16_X_ADDR_END,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_Y_ADDR_END,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
if (rval < 0)
goto out;
/*
* Output from pixel array, including blanking, is set using
* controls below. No need to set here.
*/
/* Digital crop */
if (SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
sensor->scaler->crop[SMIAPP_PAD_SINK].left);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
sensor->scaler->crop[SMIAPP_PAD_SINK].top);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
sensor->scaler->crop[SMIAPP_PAD_SINK].width);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
sensor->scaler->crop[SMIAPP_PAD_SINK].height);
if (rval < 0)
goto out;
}
/* Scaling */
if (SMIA_LIM(sensor, SCALING_CAPABILITY)
!= SMIAPP_SCALING_CAPABILITY_NONE) {
rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
sensor->scaling_mode);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
sensor->scale_m);
if (rval < 0)
goto out;
}
/* Output size from sensor */
rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
sensor->src->crop[SMIAPP_PAD_SRC].width);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
sensor->src->crop[SMIAPP_PAD_SRC].height);
if (rval < 0)
goto out;
if ((SMIA_LIM(sensor, FLASH_MODE_CAPABILITY) &
(SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
sensor->hwcfg->strobe_setup != NULL &&
sensor->hwcfg->strobe_setup->trigger != 0) {
rval = smiapp_setup_flash_strobe(sensor);
if (rval)
goto out;
}
rval = smiapp_call_quirk(sensor, pre_streamon);
if (rval) {
dev_err(&client->dev, "pre_streamon quirks failed\n");
goto out;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
SMIAPP_MODE_SELECT_STREAMING);
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
mutex_lock(&sensor->mutex);
rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
if (rval)
goto out;
rval = smiapp_call_quirk(sensor, post_streamoff);
if (rval)
dev_err(&client->dev, "post_streamoff quirks failed\n");
out:
mutex_unlock(&sensor->mutex);
return rval;
}
/* -----------------------------------------------------------------------------
* V4L2 subdev video operations
*/
static int smiapp_pm_get_init(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
rval = pm_runtime_get_sync(&client->dev);
if (rval < 0) {
if (rval != -EBUSY && rval != -EAGAIN)
pm_runtime_set_active(&client->dev);
pm_runtime_put_noidle(&client->dev);
return rval;
} else if (!rval) {
rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->
ctrl_handler);
if (rval)
return rval;
return v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
}
return 0;
}
static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
if (sensor->streaming == enable)
return 0;
if (!enable) {
smiapp_stop_streaming(sensor);
sensor->streaming = false;
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
return 0;
}
rval = smiapp_pm_get_init(sensor);
if (rval)
return rval;
sensor->streaming = true;
rval = smiapp_start_streaming(sensor);
if (rval < 0) {
sensor->streaming = false;
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
}
return rval;
}
static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
int idx = -1;
int rval = -EINVAL;
mutex_lock(&sensor->mutex);
dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
subdev->name, code->pad, code->index);
if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
if (code->index)
goto out;
code->code = sensor->internal_csi_format->code;
rval = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i))
idx++;
if (idx == code->index) {
code->code = smiapp_csi_data_formats[i].code;
dev_err(&client->dev, "found index %d, i %d, code %x\n",
code->index, i, code->code);
rval = 0;
break;
}
}
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
unsigned int pad)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
return sensor->csi_format->code;
else
return sensor->internal_csi_format->code;
}
static int __smiapp_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
fmt->pad);
} else {
struct v4l2_rect *r;
if (fmt->pad == ssd->source_pad)
r = &ssd->crop[ssd->source_pad];
else
r = &ssd->sink_fmt;
fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
fmt->format.width = r->width;
fmt->format.height = r->height;
fmt->format.field = V4L2_FIELD_NONE;
}
return 0;
}
static int smiapp_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __smiapp_get_format(subdev, cfg, fmt);
mutex_unlock(&sensor->mutex);
return rval;
}
static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_rect **crops,
struct v4l2_rect **comps, int which)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
unsigned int i;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (crops)
for (i = 0; i < subdev->entity.num_pads; i++)
crops[i] = &ssd->crop[i];
if (comps)
*comps = &ssd->compose;
} else {
if (crops) {
for (i = 0; i < subdev->entity.num_pads; i++) {
crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
BUG_ON(!crops[i]);
}
}
if (comps) {
*comps = v4l2_subdev_get_try_compose(subdev, cfg,
SMIAPP_PAD_SINK);
BUG_ON(!*comps);
}
}
}
/* Changes require propagation only on sink pad. */
static void smiapp_propagate(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg, int which,
int target)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
switch (target) {
case V4L2_SEL_TGT_CROP:
comp->width = crops[SMIAPP_PAD_SINK]->width;
comp->height = crops[SMIAPP_PAD_SINK]->height;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (ssd == sensor->scaler) {
sensor->scale_m =
SMIA_LIM(sensor, SCALER_N_MIN);
sensor->scaling_mode =
SMIAPP_SCALING_MODE_NONE;
} else if (ssd == sensor->binner) {
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
}
}
fallthrough;
case V4L2_SEL_TGT_COMPOSE:
*crops[SMIAPP_PAD_SRC] = *comp;
break;
default:
BUG();
}
}
static const struct smiapp_csi_data_format
*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i)
&& smiapp_csi_data_formats[i].code == code)
return &smiapp_csi_data_formats[i];
}
return sensor->csi_format;
}
static int smiapp_set_format_source(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
const struct smiapp_csi_data_format *csi_format,
*old_csi_format = sensor->csi_format;
unsigned long *valid_link_freqs;
u32 code = fmt->format.code;
unsigned int i;
int rval;
rval = __smiapp_get_format(subdev, cfg, fmt);
if (rval)
return rval;
/*
* Media bus code is changeable on src subdev's source pad. On
* other source pads we just get format here.
*/
if (subdev != &sensor->src->sd)
return 0;
csi_format = smiapp_validate_csi_data_format(sensor, code);
fmt->format.code = csi_format->code;
if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
return 0;
sensor->csi_format = csi_format;
if (csi_format->width != old_csi_format->width)
for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
__v4l2_ctrl_modify_range(
sensor->test_data[i], 0,
(1 << csi_format->width) - 1, 1, 0);
if (csi_format->compressed == old_csi_format->compressed)
return 0;
valid_link_freqs =
&sensor->valid_link_freqs[sensor->csi_format->compressed
- sensor->compressed_min_bpp];
__v4l2_ctrl_modify_range(
sensor->link_freq, 0,
__fls(*valid_link_freqs), ~*valid_link_freqs,
__ffs(*valid_link_freqs));
return smiapp_pll_update(sensor);
}
static int smiapp_set_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *crops[SMIAPP_PADS];
mutex_lock(&sensor->mutex);
if (fmt->pad == ssd->source_pad) {
int rval;
rval = smiapp_set_format_source(subdev, cfg, fmt);
mutex_unlock(&sensor->mutex);
return rval;
}
/* Sink pad. Width and height are changeable here. */
fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
fmt->format.width &= ~1;
fmt->format.height &= ~1;
fmt->format.field = V4L2_FIELD_NONE;
fmt->format.width =
clamp(fmt->format.width,
SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE),
SMIA_LIM(sensor, MAX_X_OUTPUT_SIZE));
fmt->format.height =
clamp(fmt->format.height,
SMIA_LIM(sensor, MIN_Y_OUTPUT_SIZE),
SMIA_LIM(sensor, MAX_Y_OUTPUT_SIZE));
smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
crops[ssd->sink_pad]->left = 0;
crops[ssd->sink_pad]->top = 0;
crops[ssd->sink_pad]->width = fmt->format.width;
crops[ssd->sink_pad]->height = fmt->format.height;
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
ssd->sink_fmt = *crops[ssd->sink_pad];
smiapp_propagate(subdev, cfg, fmt->which,
V4L2_SEL_TGT_CROP);
mutex_unlock(&sensor->mutex);
return 0;
}
/*
* Calculate goodness of scaled image size compared to expected image
* size and flags provided.
*/
#define SCALING_GOODNESS 100000
#define SCALING_GOODNESS_EXTREME 100000000
static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
int h, int ask_h, u32 flags)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int val = 0;
w &= ~1;
ask_w &= ~1;
h &= ~1;
ask_h &= ~1;
if (flags & V4L2_SEL_FLAG_GE) {
if (w < ask_w)
val -= SCALING_GOODNESS;
if (h < ask_h)
val -= SCALING_GOODNESS;
}
if (flags & V4L2_SEL_FLAG_LE) {
if (w > ask_w)
val -= SCALING_GOODNESS;
if (h > ask_h)
val -= SCALING_GOODNESS;
}
val -= abs(w - ask_w);
val -= abs(h - ask_h);
if (w < SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE))
val -= SCALING_GOODNESS_EXTREME;
dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
w, ask_w, h, ask_h, val);
return val;
}
static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
unsigned int binh = 1, binv = 1;
int best = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width, sel->r.width,
crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
int this = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width
/ sensor->binning_subtypes[i].horizontal,
sel->r.width,
crops[SMIAPP_PAD_SINK]->height
/ sensor->binning_subtypes[i].vertical,
sel->r.height, sel->flags);
if (this > best) {
binh = sensor->binning_subtypes[i].horizontal;
binv = sensor->binning_subtypes[i].vertical;
best = this;
}
}
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->binning_vertical = binv;
sensor->binning_horizontal = binh;
}
sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
}
/*
* Calculate best scaling ratio and mode for given output resolution.
*
* Try all of these: horizontal ratio, vertical ratio and smallest
* size possible (horizontally).
*
* Also try whether horizontal scaler or full scaler gives a better
* result.
*/
static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
u32 min, max, a, b, max_m;
u32 scale_m = SMIA_LIM(sensor, SCALER_N_MIN);
int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
u32 try[4];
u32 ntry = 0;
unsigned int i;
int best = INT_MIN;
sel->r.width = min_t(unsigned int, sel->r.width,
crops[SMIAPP_PAD_SINK]->width);
sel->r.height = min_t(unsigned int, sel->r.height,
crops[SMIAPP_PAD_SINK]->height);
a = crops[SMIAPP_PAD_SINK]->width
* SMIA_LIM(sensor, SCALER_N_MIN) / sel->r.width;
b = crops[SMIAPP_PAD_SINK]->height
* SMIA_LIM(sensor, SCALER_N_MIN) / sel->r.height;
max_m = crops[SMIAPP_PAD_SINK]->width
* SMIA_LIM(sensor, SCALER_N_MIN)
/ SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE);
a = clamp(a, SMIA_LIM(sensor, SCALER_M_MIN),
SMIA_LIM(sensor, SCALER_M_MAX));
b = clamp(b, SMIA_LIM(sensor, SCALER_M_MIN),
SMIA_LIM(sensor, SCALER_M_MAX));
max_m = clamp(max_m, SMIA_LIM(sensor, SCALER_M_MIN),
SMIA_LIM(sensor, SCALER_M_MAX));
dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
min = min(max_m, min(a, b));
max = min(max_m, max(a, b));
try[ntry] = min;
ntry++;
if (min != max) {
try[ntry] = max;
ntry++;
}
if (max != max_m) {
try[ntry] = min + 1;
ntry++;
if (min != max) {
try[ntry] = max + 1;
ntry++;
}
}
for (i = 0; i < ntry; i++) {
int this = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width
/ try[i]
* SMIA_LIM(sensor, SCALER_N_MIN),
sel->r.width,
crops[SMIAPP_PAD_SINK]->height,
sel->r.height,
sel->flags);
dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
if (this > best) {
scale_m = try[i];
mode = SMIAPP_SCALING_MODE_HORIZONTAL;
best = this;
}
if (SMIA_LIM(sensor, SCALING_CAPABILITY)
== SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
continue;
this = scaling_goodness(
subdev, crops[SMIAPP_PAD_SINK]->width
/ try[i]
* SMIA_LIM(sensor, SCALER_N_MIN),
sel->r.width,
crops[SMIAPP_PAD_SINK]->height
/ try[i]
* SMIA_LIM(sensor, SCALER_N_MIN),
sel->r.height,
sel->flags);
if (this > best) {
scale_m = try[i];
mode = SMIAPP_SCALING_MODE_BOTH;
best = this;
}
}
sel->r.width =
(crops[SMIAPP_PAD_SINK]->width
/ scale_m
* SMIA_LIM(sensor, SCALER_N_MIN)) & ~1;
if (mode == SMIAPP_SCALING_MODE_BOTH)
sel->r.height =
(crops[SMIAPP_PAD_SINK]->height
/ scale_m
* SMIA_LIM(sensor, SCALER_N_MIN))
& ~1;
else
sel->r.height = crops[SMIAPP_PAD_SINK]->height;
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->scale_m = scale_m;
sensor->scaling_mode = mode;
}
}
/* We're only called on source pads. This function sets scaling. */
static int smiapp_set_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
sel->r.top = 0;
sel->r.left = 0;
if (ssd == sensor->binner)
smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
else
smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
*comp = sel->r;
smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
return smiapp_pll_blanking_update(sensor);
return 0;
}
static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
/* We only implement crop in three places. */
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_CROP_BOUNDS:
if (ssd == sensor->pixel_array
&& sel->pad == SMIAPP_PA_PAD_SRC)
return 0;
if (ssd == sensor->src
&& sel->pad == SMIAPP_PAD_SRC)
return 0;
if (ssd == sensor->scaler
&& sel->pad == SMIAPP_PAD_SINK
&& SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
return 0;
return -EINVAL;
case V4L2_SEL_TGT_NATIVE_SIZE:
if (ssd == sensor->pixel_array
&& sel->pad == SMIAPP_PA_PAD_SRC)
return 0;
return -EINVAL;
case V4L2_SEL_TGT_COMPOSE:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
if (sel->pad == ssd->source_pad)
return -EINVAL;
if (ssd == sensor->binner)
return 0;
if (ssd == sensor->scaler
&& SMIA_LIM(sensor, SCALING_CAPABILITY)
!= SMIAPP_SCALING_CAPABILITY_NONE)
return 0;
fallthrough;
default:
return -EINVAL;
}
}
static int smiapp_set_crop(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
struct v4l2_rect _r;
smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (sel->pad == ssd->sink_pad)
src_size = &ssd->sink_fmt;
else
src_size = &ssd->compose;
} else {
if (sel->pad == ssd->sink_pad) {
_r.left = 0;
_r.top = 0;
_r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
->width;
_r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
->height;
src_size = &_r;
} else {
src_size = v4l2_subdev_get_try_compose(
subdev, cfg, ssd->sink_pad);
}
}
if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
sel->r.left = 0;
sel->r.top = 0;
}
sel->r.width = min(sel->r.width, src_size->width);
sel->r.height = min(sel->r.height, src_size->height);
sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
*crops[sel->pad] = sel->r;
if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
smiapp_propagate(subdev, cfg, sel->which,
V4L2_SEL_TGT_CROP);
return 0;
}
static void smiapp_get_native_size(struct smiapp_subdev *ssd,
struct v4l2_rect *r)
{
r->top = 0;
r->left = 0;
r->width = SMIA_LIM(ssd->sensor, X_ADDR_MAX) + 1;
r->height = SMIA_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
}
static int __smiapp_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
struct v4l2_rect sink_fmt;
int ret;
ret = __smiapp_sel_supported(subdev, sel);
if (ret)
return ret;
smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sink_fmt = ssd->sink_fmt;
} else {
struct v4l2_mbus_framefmt *fmt =
v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
sink_fmt.left = 0;
sink_fmt.top = 0;
sink_fmt.width = fmt->width;
sink_fmt.height = fmt->height;
}
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
case V4L2_SEL_TGT_NATIVE_SIZE:
if (ssd == sensor->pixel_array)
smiapp_get_native_size(ssd, &sel->r);
else if (sel->pad == ssd->sink_pad)
sel->r = sink_fmt;
else
sel->r = *comp;
break;
case V4L2_SEL_TGT_CROP:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
sel->r = *crops[sel->pad];
break;
case V4L2_SEL_TGT_COMPOSE:
sel->r = *comp;
break;
}
return 0;
}
static int smiapp_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __smiapp_get_selection(subdev, cfg, sel);
mutex_unlock(&sensor->mutex);
return rval;
}
static int smiapp_set_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int ret;
ret = __smiapp_sel_supported(subdev, sel);
if (ret)
return ret;
mutex_lock(&sensor->mutex);
sel->r.left = max(0, sel->r.left & ~1);
sel->r.top = max(0, sel->r.top & ~1);
sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
sel->r.width = max_t(unsigned int,
SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE),
sel->r.width);
sel->r.height = max_t(unsigned int,
SMIA_LIM(sensor, MIN_Y_OUTPUT_SIZE),
sel->r.height);
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
ret = smiapp_set_crop(subdev, cfg, sel);
break;
case V4L2_SEL_TGT_COMPOSE:
ret = smiapp_set_compose(subdev, cfg, sel);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&sensor->mutex);
return ret;
}
static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
*frames = sensor->frame_skip;
return 0;
}
static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
*lines = sensor->image_start;
return 0;
}
/* -----------------------------------------------------------------------------
* sysfs attributes
*/
static ssize_t
smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
if (!sensor->dev_init_done)
return -EBUSY;
rval = smiapp_pm_get_init(sensor);
if (rval < 0)
return -ENODEV;
rval = smiapp_read_nvm(sensor, buf, PAGE_SIZE);
if (rval < 0) {
pm_runtime_put(&client->dev);
dev_err(&client->dev, "nvm read failed\n");
return -ENODEV;
}
pm_runtime_mark_last_busy(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
/*
* NVM is still way below a PAGE_SIZE, so we can safely
* assume this for now.
*/
return rval;
}
static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
static ssize_t
smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_module_info *minfo = &sensor->minfo;
return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
minfo->manufacturer_id, minfo->model_id,
minfo->revision_number_major) + 1;
}
static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
/* -----------------------------------------------------------------------------
* V4L2 subdev core operations
*/
static int smiapp_identify_module(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct smiapp_module_info *minfo = &sensor->minfo;
unsigned int i;
int rval = 0;
minfo->name = SMIAPP_NAME;
/* Module info */
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
&minfo->manufacturer_id);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
&minfo->model_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
&minfo->revision_number_major);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
&minfo->revision_number_minor);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_MODULE_DATE_YEAR,
&minfo->module_year);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_MODULE_DATE_MONTH,
&minfo->module_month);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
&minfo->module_day);
/* Sensor info */
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
&minfo->sensor_manufacturer_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U16_SENSOR_MODEL_ID,
&minfo->sensor_model_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
&minfo->sensor_revision_number);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
&minfo->sensor_firmware_version);
/* SMIA */
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
&minfo->smia_version);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
&minfo->smiapp_version);
if (rval) {
dev_err(&client->dev, "sensor detection failed\n");
return -ENODEV;
}
dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
minfo->manufacturer_id, minfo->model_id);
dev_dbg(&client->dev,
"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
minfo->revision_number_major, minfo->revision_number_minor,
minfo->module_year, minfo->module_month, minfo->module_day);
dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
minfo->sensor_manufacturer_id, minfo->sensor_model_id);
dev_dbg(&client->dev,
"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
minfo->sensor_revision_number, minfo->sensor_firmware_version);
dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
minfo->smia_version, minfo->smiapp_version);
/*
* Some modules have bad data in the lvalues below. Hope the
* rvalues have better stuff. The lvalues are module
* parameters whereas the rvalues are sensor parameters.
*/
if (!minfo->manufacturer_id && !minfo->model_id) {
minfo->manufacturer_id = minfo->sensor_manufacturer_id;
minfo->model_id = minfo->sensor_model_id;
minfo->revision_number_major = minfo->sensor_revision_number;
}
for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
if (smiapp_module_idents[i].manufacturer_id
!= minfo->manufacturer_id)
continue;
if (smiapp_module_idents[i].model_id != minfo->model_id)
continue;
if (smiapp_module_idents[i].flags
& SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
if (smiapp_module_idents[i].revision_number_major
< minfo->revision_number_major)
continue;
} else {
if (smiapp_module_idents[i].revision_number_major
!= minfo->revision_number_major)
continue;
}
minfo->name = smiapp_module_idents[i].name;
minfo->quirk = smiapp_module_idents[i].quirk;
break;
}
if (i >= ARRAY_SIZE(smiapp_module_idents))
dev_warn(&client->dev,
"no quirks for this module; let's hope it's fully compliant\n");
dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
minfo->name, minfo->manufacturer_id, minfo->model_id,
minfo->revision_number_major);
return 0;
}
static const struct v4l2_subdev_ops smiapp_ops;
static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
static const struct media_entity_operations smiapp_entity_ops;
static int smiapp_register_subdev(struct smiapp_sensor *sensor,
struct smiapp_subdev *ssd,
struct smiapp_subdev *sink_ssd,
u16 source_pad, u16 sink_pad, u32 link_flags)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
if (!sink_ssd)
return 0;
rval = media_entity_pads_init(&ssd->sd.entity,
ssd->npads, ssd->pads);
if (rval) {
dev_err(&client->dev,
"media_entity_pads_init failed\n");
return rval;
}
rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
&ssd->sd);
if (rval) {
dev_err(&client->dev,
"v4l2_device_register_subdev failed\n");
return rval;
}
rval = media_create_pad_link(&ssd->sd.entity, source_pad,
&sink_ssd->sd.entity, sink_pad,
link_flags);
if (rval) {
dev_err(&client->dev,
"media_create_pad_link failed\n");
v4l2_device_unregister_subdev(&ssd->sd);
return rval;
}
return 0;
}
static void smiapp_unregistered(struct v4l2_subdev *subdev)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
for (i = 1; i < sensor->ssds_used; i++)
v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
}
static int smiapp_registered(struct v4l2_subdev *subdev)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
if (sensor->scaler) {
rval = smiapp_register_subdev(
sensor, sensor->binner, sensor->scaler,
SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
if (rval < 0)
return rval;
}
rval = smiapp_register_subdev(
sensor, sensor->pixel_array, sensor->binner,
SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
if (rval)
goto out_err;
return 0;
out_err:
smiapp_unregistered(subdev);
return rval;
}
static void smiapp_cleanup(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
device_remove_file(&client->dev, &dev_attr_nvm);
device_remove_file(&client->dev, &dev_attr_ident);
smiapp_free_controls(sensor);
}
static void smiapp_create_subdev(struct smiapp_sensor *sensor,
struct smiapp_subdev *ssd, const char *name,
unsigned short num_pads)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
if (!ssd)
return;
if (ssd != sensor->src)
v4l2_subdev_init(&ssd->sd, &smiapp_ops);
ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
ssd->sensor = sensor;
ssd->npads = num_pads;
ssd->source_pad = num_pads - 1;
v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
smiapp_get_native_size(ssd, &ssd->sink_fmt);
ssd->compose.width = ssd->sink_fmt.width;
ssd->compose.height = ssd->sink_fmt.height;
ssd->crop[ssd->source_pad] = ssd->compose;
ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
if (ssd != sensor->pixel_array) {
ssd->crop[ssd->sink_pad] = ssd->compose;
ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
}
ssd->sd.entity.ops = &smiapp_entity_ops;
if (ssd == sensor->src)
return;
ssd->sd.internal_ops = &smiapp_internal_ops;
ssd->sd.owner = THIS_MODULE;
ssd->sd.dev = &client->dev;
v4l2_set_subdevdata(&ssd->sd, client);
}
static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
struct smiapp_sensor *sensor = ssd->sensor;
unsigned int i;
mutex_lock(&sensor->mutex);
for (i = 0; i < ssd->npads; i++) {
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->pad, i);
struct v4l2_rect *try_crop =
v4l2_subdev_get_try_crop(sd, fh->pad, i);
struct v4l2_rect *try_comp;
smiapp_get_native_size(ssd, try_crop);
try_fmt->width = try_crop->width;
try_fmt->height = try_crop->height;
try_fmt->code = sensor->internal_csi_format->code;
try_fmt->field = V4L2_FIELD_NONE;
if (ssd != sensor->pixel_array)
continue;
try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
*try_comp = *try_crop;
}
mutex_unlock(&sensor->mutex);
return 0;
}
static const struct v4l2_subdev_video_ops smiapp_video_ops = {
.s_stream = smiapp_set_stream,
};
static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
.enum_mbus_code = smiapp_enum_mbus_code,
.get_fmt = smiapp_get_format,
.set_fmt = smiapp_set_format,
.get_selection = smiapp_get_selection,
.set_selection = smiapp_set_selection,
};
static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
.g_skip_frames = smiapp_get_skip_frames,
.g_skip_top_lines = smiapp_get_skip_top_lines,
};
static const struct v4l2_subdev_ops smiapp_ops = {
.video = &smiapp_video_ops,
.pad = &smiapp_pad_ops,
.sensor = &smiapp_sensor_ops,
};
static const struct media_entity_operations smiapp_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
.registered = smiapp_registered,
.unregistered = smiapp_unregistered,
.open = smiapp_open,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
.open = smiapp_open,
};
/* -----------------------------------------------------------------------------
* I2C Driver
*/
static int __maybe_unused smiapp_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
bool streaming = sensor->streaming;
int rval;
rval = pm_runtime_get_sync(dev);
if (rval < 0) {
if (rval != -EBUSY && rval != -EAGAIN)
pm_runtime_set_active(&client->dev);
pm_runtime_put(dev);
return -EAGAIN;
}
if (sensor->streaming)
smiapp_stop_streaming(sensor);
/* save state for resume */
sensor->streaming = streaming;
return 0;
}
static int __maybe_unused smiapp_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval = 0;
pm_runtime_put(dev);
if (sensor->streaming)
rval = smiapp_start_streaming(sensor);
return rval;
}
static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
{
struct smiapp_hwconfig *hwcfg;
struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
struct fwnode_handle *ep;
struct fwnode_handle *fwnode = dev_fwnode(dev);
u32 rotation;
int i;
int rval;
if (!fwnode)
return dev->platform_data;
ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
if (!ep)
return NULL;
bus_cfg.bus_type = V4L2_MBUS_CSI2_DPHY;
rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
if (rval == -ENXIO) {
bus_cfg = (struct v4l2_fwnode_endpoint)
{ .bus_type = V4L2_MBUS_CCP2 };
rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
}
if (rval)
goto out_err;
hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
if (!hwcfg)
goto out_err;
switch (bus_cfg.bus_type) {
case V4L2_MBUS_CSI2_DPHY:
hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
break;
case V4L2_MBUS_CCP2:
hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
hwcfg->lanes = 1;
break;
default:
dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
goto out_err;
}
dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
if (!rval) {
switch (rotation) {
case 180:
hwcfg->module_board_orient =
SMIAPP_MODULE_BOARD_ORIENT_180;
fallthrough;
case 0:
break;
default:
dev_err(dev, "invalid rotation %u\n", rotation);
goto out_err;
}
}
rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
&hwcfg->ext_clk);
if (rval)
dev_info(dev, "can't get clock-frequency\n");
dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
hwcfg->csi_signalling_mode);
if (!bus_cfg.nr_of_link_frequencies) {
dev_warn(dev, "no link frequencies defined\n");
goto out_err;
}
hwcfg->op_sys_clock = devm_kcalloc(
dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
if (!hwcfg->op_sys_clock)
goto out_err;
for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
}
v4l2_fwnode_endpoint_free(&bus_cfg);
fwnode_handle_put(ep);
return hwcfg;
out_err:
v4l2_fwnode_endpoint_free(&bus_cfg);
fwnode_handle_put(ep);
return NULL;
}
static int smiapp_probe(struct i2c_client *client)
{
struct smiapp_sensor *sensor;
struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
unsigned int i;
int rval;
if (hwcfg == NULL)
return -ENODEV;
sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
if (sensor == NULL)
return -ENOMEM;
sensor->hwcfg = hwcfg;
sensor->src = &sensor->ssds[sensor->ssds_used];
v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
sensor->vana = devm_regulator_get(&client->dev, "vana");
if (IS_ERR(sensor->vana)) {
dev_err(&client->dev, "could not get regulator for vana\n");
return PTR_ERR(sensor->vana);
}
sensor->ext_clk = devm_clk_get(&client->dev, NULL);
if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
dev_info(&client->dev, "no clock defined, continuing...\n");
sensor->ext_clk = NULL;
} else if (IS_ERR(sensor->ext_clk)) {
dev_err(&client->dev, "could not get clock (%ld)\n",
PTR_ERR(sensor->ext_clk));
return -EPROBE_DEFER;
}
if (sensor->ext_clk) {
if (sensor->hwcfg->ext_clk) {
unsigned long rate;
rval = clk_set_rate(sensor->ext_clk,
sensor->hwcfg->ext_clk);
if (rval < 0) {
dev_err(&client->dev,
"unable to set clock freq to %u\n",
sensor->hwcfg->ext_clk);
return rval;
}
rate = clk_get_rate(sensor->ext_clk);
if (rate != sensor->hwcfg->ext_clk) {
dev_err(&client->dev,
"can't set clock freq, asked for %u but got %lu\n",
sensor->hwcfg->ext_clk, rate);
return rval;
}
} else {
sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
dev_dbg(&client->dev, "obtained clock freq %u\n",
sensor->hwcfg->ext_clk);
}
} else if (sensor->hwcfg->ext_clk) {
dev_dbg(&client->dev, "assuming clock freq %u\n",
sensor->hwcfg->ext_clk);
} else {
dev_err(&client->dev, "unable to obtain clock freq\n");
return -EINVAL;
}
sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
GPIOD_OUT_LOW);
if (IS_ERR(sensor->xshutdown))
return PTR_ERR(sensor->xshutdown);
rval = smiapp_power_on(&client->dev);
if (rval < 0)
return rval;
mutex_init(&sensor->mutex);
rval = smiapp_identify_module(sensor);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
rval = smiapp_read_all_smia_limits(sensor);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
rval = smiapp_read_frame_fmt(sensor);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
/*
* Handle Sensor Module orientation on the board.
*
* The application of H-FLIP and V-FLIP on the sensor is modified by
* the sensor orientation on the board.
*
* For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
* both H-FLIP and V-FLIP for normal operation which also implies
* that a set/unset operation for user space HFLIP and VFLIP v4l2
* controls will need to be internally inverted.
*
* Rotation also changes the bayer pattern.
*/
if (sensor->hwcfg->module_board_orient ==
SMIAPP_MODULE_BOARD_ORIENT_180)
sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
SMIAPP_IMAGE_ORIENTATION_VFLIP;
rval = smiapp_call_quirk(sensor, limits);
if (rval) {
dev_err(&client->dev, "limits quirks failed\n");
goto out_power_off;
}
if (SMIA_LIM(sensor, BINNING_CAPABILITY)) {
u32 val;
rval = smiapp_read(sensor,
SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
if (rval < 0) {
rval = -ENODEV;
goto out_power_off;
}
sensor->nbinning_subtypes = min_t(u8, val,
SMIAPP_BINNING_SUBTYPES);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
rval = smiapp_read(
sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
if (rval < 0) {
rval = -ENODEV;
goto out_power_off;
}
sensor->binning_subtypes[i] =
*(struct smiapp_binning_subtype *)&val;
dev_dbg(&client->dev, "binning %xx%x\n",
sensor->binning_subtypes[i].horizontal,
sensor->binning_subtypes[i].vertical);
}
}
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
dev_err(&client->dev, "sysfs ident entry creation failed\n");
rval = -ENOENT;
goto out_power_off;
}
if (sensor->minfo.smiapp_version &&
SMIA_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
SMIAPP_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
dev_err(&client->dev, "sysfs nvm entry failed\n");
rval = -EBUSY;
goto out_cleanup;
}
}
/* We consider this as profile 0 sensor if any of these are zero. */
if (!SMIA_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
!SMIA_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
!SMIA_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
!SMIA_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
} else if (SMIA_LIM(sensor, SCALING_CAPABILITY)
!= SMIAPP_SCALING_CAPABILITY_NONE) {
if (SMIA_LIM(sensor, SCALING_CAPABILITY)
== SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
else
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
sensor->scaler = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
} else if (SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
sensor->scaler = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
}
sensor->binner = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->scale_m = SMIA_LIM(sensor, SCALER_N_MIN);
/* prepare PLL configuration input values */
sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
sensor->pll.scale_n = SMIA_LIM(sensor, SCALER_N_MIN);
/* Profile 0 sensors have no separate OP clock branch. */
if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
smiapp_create_subdev(sensor, sensor->scaler, " scaler", 2);
smiapp_create_subdev(sensor, sensor->binner, " binner", 2);
smiapp_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1);
dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
rval = smiapp_init_controls(sensor);
if (rval < 0)
goto out_cleanup;
rval = smiapp_call_quirk(sensor, init);
if (rval)
goto out_cleanup;
rval = smiapp_get_mbus_formats(sensor);
if (rval) {
rval = -ENODEV;
goto out_cleanup;
}
rval = smiapp_init_late_controls(sensor);
if (rval) {
rval = -ENODEV;
goto out_cleanup;
}
mutex_lock(&sensor->mutex);
rval = smiapp_pll_blanking_update(sensor);
mutex_unlock(&sensor->mutex);
if (rval) {
dev_err(&client->dev, "update mode failed\n");
goto out_cleanup;
}
sensor->streaming = false;
sensor->dev_init_done = true;
rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
sensor->src->pads);
if (rval < 0)
goto out_media_entity_cleanup;
pm_runtime_set_active(&client->dev);
pm_runtime_get_noresume(&client->dev);
pm_runtime_enable(&client->dev);
rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
if (rval < 0)
goto out_disable_runtime_pm;
pm_runtime_set_autosuspend_delay(&client->dev, 1000);
pm_runtime_use_autosuspend(&client->dev);
pm_runtime_put_autosuspend(&client->dev);
return 0;
out_disable_runtime_pm:
pm_runtime_put_noidle(&client->dev);
pm_runtime_disable(&client->dev);
out_media_entity_cleanup:
media_entity_cleanup(&sensor->src->sd.entity);
out_cleanup:
smiapp_cleanup(sensor);
out_power_off:
smiapp_power_off(&client->dev);
mutex_destroy(&sensor->mutex);
return rval;
}
static int smiapp_remove(struct i2c_client *client)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
v4l2_async_unregister_subdev(subdev);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
smiapp_power_off(&client->dev);
pm_runtime_set_suspended(&client->dev);
for (i = 0; i < sensor->ssds_used; i++) {
v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
media_entity_cleanup(&sensor->ssds[i].sd.entity);
}
smiapp_cleanup(sensor);
mutex_destroy(&sensor->mutex);
return 0;
}
static const struct of_device_id smiapp_of_table[] = {
{ .compatible = "nokia,smia" },
{ },
};
MODULE_DEVICE_TABLE(of, smiapp_of_table);
static const struct i2c_device_id smiapp_id_table[] = {
{ SMIAPP_NAME, 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
static const struct dev_pm_ops smiapp_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
};
static struct i2c_driver smiapp_i2c_driver = {
.driver = {
.of_match_table = smiapp_of_table,
.name = SMIAPP_NAME,
.pm = &smiapp_pm_ops,
},
.probe_new = smiapp_probe,
.remove = smiapp_remove,
.id_table = smiapp_id_table,
};
module_i2c_driver(smiapp_i2c_driver);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
MODULE_LICENSE("GPL v2");