| /* mpi-mod.c - Modular reduction |
| * Copyright (C) 1998, 1999, 2001, 2002, 2003, |
| * 2007 Free Software Foundation, Inc. |
| * |
| * This file is part of Libgcrypt. |
| */ |
| |
| |
| #include "mpi-internal.h" |
| #include "longlong.h" |
| |
| /* Context used with Barrett reduction. */ |
| struct barrett_ctx_s { |
| MPI m; /* The modulus - may not be modified. */ |
| int m_copied; /* If true, M needs to be released. */ |
| int k; |
| MPI y; |
| MPI r1; /* Helper MPI. */ |
| MPI r2; /* Helper MPI. */ |
| MPI r3; /* Helper MPI allocated on demand. */ |
| }; |
| |
| |
| |
| void mpi_mod(MPI rem, MPI dividend, MPI divisor) |
| { |
| mpi_fdiv_r(rem, dividend, divisor); |
| } |
| |
| /* This function returns a new context for Barrett based operations on |
| * the modulus M. This context needs to be released using |
| * _gcry_mpi_barrett_free. If COPY is true M will be transferred to |
| * the context and the user may change M. If COPY is false, M may not |
| * be changed until gcry_mpi_barrett_free has been called. |
| */ |
| mpi_barrett_t mpi_barrett_init(MPI m, int copy) |
| { |
| mpi_barrett_t ctx; |
| MPI tmp; |
| |
| mpi_normalize(m); |
| ctx = kcalloc(1, sizeof(*ctx), GFP_KERNEL); |
| |
| if (copy) { |
| ctx->m = mpi_copy(m); |
| ctx->m_copied = 1; |
| } else |
| ctx->m = m; |
| |
| ctx->k = mpi_get_nlimbs(m); |
| tmp = mpi_alloc(ctx->k + 1); |
| |
| /* Barrett precalculation: y = floor(b^(2k) / m). */ |
| mpi_set_ui(tmp, 1); |
| mpi_lshift_limbs(tmp, 2 * ctx->k); |
| mpi_fdiv_q(tmp, tmp, m); |
| |
| ctx->y = tmp; |
| ctx->r1 = mpi_alloc(2 * ctx->k + 1); |
| ctx->r2 = mpi_alloc(2 * ctx->k + 1); |
| |
| return ctx; |
| } |
| |
| void mpi_barrett_free(mpi_barrett_t ctx) |
| { |
| if (ctx) { |
| mpi_free(ctx->y); |
| mpi_free(ctx->r1); |
| mpi_free(ctx->r2); |
| if (ctx->r3) |
| mpi_free(ctx->r3); |
| if (ctx->m_copied) |
| mpi_free(ctx->m); |
| kfree(ctx); |
| } |
| } |
| |
| |
| /* R = X mod M |
| * |
| * Using Barrett reduction. Before using this function |
| * _gcry_mpi_barrett_init must have been called to do the |
| * precalculations. CTX is the context created by this precalculation |
| * and also conveys M. If the Barret reduction could no be done a |
| * straightforward reduction method is used. |
| * |
| * We assume that these conditions are met: |
| * Input: x =(x_2k-1 ...x_0)_b |
| * m =(m_k-1 ....m_0)_b with m_k-1 != 0 |
| * Output: r = x mod m |
| */ |
| void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx) |
| { |
| MPI m = ctx->m; |
| int k = ctx->k; |
| MPI y = ctx->y; |
| MPI r1 = ctx->r1; |
| MPI r2 = ctx->r2; |
| int sign; |
| |
| mpi_normalize(x); |
| if (mpi_get_nlimbs(x) > 2*k) { |
| mpi_mod(r, x, m); |
| return; |
| } |
| |
| sign = x->sign; |
| x->sign = 0; |
| |
| /* 1. q1 = floor( x / b^k-1) |
| * q2 = q1 * y |
| * q3 = floor( q2 / b^k+1 ) |
| * Actually, we don't need qx, we can work direct on r2 |
| */ |
| mpi_set(r2, x); |
| mpi_rshift_limbs(r2, k-1); |
| mpi_mul(r2, r2, y); |
| mpi_rshift_limbs(r2, k+1); |
| |
| /* 2. r1 = x mod b^k+1 |
| * r2 = q3 * m mod b^k+1 |
| * r = r1 - r2 |
| * 3. if r < 0 then r = r + b^k+1 |
| */ |
| mpi_set(r1, x); |
| if (r1->nlimbs > k+1) /* Quick modulo operation. */ |
| r1->nlimbs = k+1; |
| mpi_mul(r2, r2, m); |
| if (r2->nlimbs > k+1) /* Quick modulo operation. */ |
| r2->nlimbs = k+1; |
| mpi_sub(r, r1, r2); |
| |
| if (mpi_has_sign(r)) { |
| if (!ctx->r3) { |
| ctx->r3 = mpi_alloc(k + 2); |
| mpi_set_ui(ctx->r3, 1); |
| mpi_lshift_limbs(ctx->r3, k + 1); |
| } |
| mpi_add(r, r, ctx->r3); |
| } |
| |
| /* 4. while r >= m do r = r - m */ |
| while (mpi_cmp(r, m) >= 0) |
| mpi_sub(r, r, m); |
| |
| x->sign = sign; |
| } |
| |
| |
| void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx) |
| { |
| mpi_mul(w, u, v); |
| mpi_mod_barrett(w, w, ctx); |
| } |