| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2010-2012 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "nic.h" |
| #include "io.h" |
| #include "mcdi.h" |
| #include "filter.h" |
| #include "mcdi_pcol.h" |
| #include "farch_regs.h" |
| #include "vfdi.h" |
| |
| /* Number of longs required to track all the VIs in a VF */ |
| #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX) |
| |
| /* Maximum number of RX queues supported */ |
| #define VF_MAX_RX_QUEUES 63 |
| |
| /** |
| * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour |
| * @VF_TX_FILTER_OFF: Disabled |
| * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only |
| * 2 TX queues allowed per VF. |
| * @VF_TX_FILTER_ON: Enabled |
| */ |
| enum efx_vf_tx_filter_mode { |
| VF_TX_FILTER_OFF, |
| VF_TX_FILTER_AUTO, |
| VF_TX_FILTER_ON, |
| }; |
| |
| /** |
| * struct efx_vf - Back-end resource and protocol state for a PCI VF |
| * @efx: The Efx NIC owning this VF |
| * @pci_rid: The PCI requester ID for this VF |
| * @pci_name: The PCI name (formatted address) of this VF |
| * @index: Index of VF within its port and PF. |
| * @req: VFDI incoming request work item. Incoming USR_EV events are received |
| * by the NAPI handler, but must be handled by executing MCDI requests |
| * inside a work item. |
| * @req_addr: VFDI incoming request DMA address (in VF's PCI address space). |
| * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member. |
| * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member. |
| * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by |
| * @status_lock |
| * @busy: VFDI request queued to be processed or being processed. Receiving |
| * a VFDI request when @busy is set is an error condition. |
| * @buf: Incoming VFDI requests are DMA from the VF into this buffer. |
| * @buftbl_base: Buffer table entries for this VF start at this index. |
| * @rx_filtering: Receive filtering has been requested by the VF driver. |
| * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request. |
| * @rx_filter_qid: VF relative qid for RX filter requested by VF. |
| * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported. |
| * @tx_filter_mode: Transmit MAC filtering mode. |
| * @tx_filter_id: Transmit MAC filter ID. |
| * @addr: The MAC address and outer vlan tag of the VF. |
| * @status_addr: VF DMA address of page for &struct vfdi_status updates. |
| * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr, |
| * @peer_page_addrs and @peer_page_count from simultaneous |
| * updates by the VM and consumption by |
| * efx_siena_sriov_update_vf_addr() |
| * @peer_page_addrs: Pointer to an array of guest pages for local addresses. |
| * @peer_page_count: Number of entries in @peer_page_count. |
| * @evq0_addrs: Array of guest pages backing evq0. |
| * @evq0_count: Number of entries in @evq0_addrs. |
| * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler |
| * to wait for flush completions. |
| * @txq_lock: Mutex for TX queue allocation. |
| * @txq_mask: Mask of initialized transmit queues. |
| * @txq_count: Number of initialized transmit queues. |
| * @rxq_mask: Mask of initialized receive queues. |
| * @rxq_count: Number of initialized receive queues. |
| * @rxq_retry_mask: Mask or receive queues that need to be flushed again |
| * due to flush failure. |
| * @rxq_retry_count: Number of receive queues in @rxq_retry_mask. |
| * @reset_work: Work item to schedule a VF reset. |
| */ |
| struct efx_vf { |
| struct efx_nic *efx; |
| unsigned int pci_rid; |
| char pci_name[13]; /* dddd:bb:dd.f */ |
| unsigned int index; |
| struct work_struct req; |
| u64 req_addr; |
| int req_type; |
| unsigned req_seqno; |
| unsigned msg_seqno; |
| bool busy; |
| struct efx_buffer buf; |
| unsigned buftbl_base; |
| bool rx_filtering; |
| enum efx_filter_flags rx_filter_flags; |
| unsigned rx_filter_qid; |
| int rx_filter_id; |
| enum efx_vf_tx_filter_mode tx_filter_mode; |
| int tx_filter_id; |
| struct vfdi_endpoint addr; |
| u64 status_addr; |
| struct mutex status_lock; |
| u64 *peer_page_addrs; |
| unsigned peer_page_count; |
| u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) / |
| EFX_BUF_SIZE]; |
| unsigned evq0_count; |
| wait_queue_head_t flush_waitq; |
| struct mutex txq_lock; |
| unsigned long txq_mask[VI_MASK_LENGTH]; |
| unsigned txq_count; |
| unsigned long rxq_mask[VI_MASK_LENGTH]; |
| unsigned rxq_count; |
| unsigned long rxq_retry_mask[VI_MASK_LENGTH]; |
| atomic_t rxq_retry_count; |
| struct work_struct reset_work; |
| }; |
| |
| struct efx_memcpy_req { |
| unsigned int from_rid; |
| void *from_buf; |
| u64 from_addr; |
| unsigned int to_rid; |
| u64 to_addr; |
| unsigned length; |
| }; |
| |
| /** |
| * struct efx_local_addr - A MAC address on the vswitch without a VF. |
| * |
| * Siena does not have a switch, so VFs can't transmit data to each |
| * other. Instead the VFs must be made aware of the local addresses |
| * on the vswitch, so that they can arrange for an alternative |
| * software datapath to be used. |
| * |
| * @link: List head for insertion into efx->local_addr_list. |
| * @addr: Ethernet address |
| */ |
| struct efx_local_addr { |
| struct list_head link; |
| u8 addr[ETH_ALEN]; |
| }; |
| |
| /** |
| * struct efx_endpoint_page - Page of vfdi_endpoint structures |
| * |
| * @link: List head for insertion into efx->local_page_list. |
| * @ptr: Pointer to page. |
| * @addr: DMA address of page. |
| */ |
| struct efx_endpoint_page { |
| struct list_head link; |
| void *ptr; |
| dma_addr_t addr; |
| }; |
| |
| /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */ |
| #define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \ |
| ((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid)) |
| #define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \ |
| (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \ |
| (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE)) |
| #define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \ |
| (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \ |
| (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE)) |
| |
| #define EFX_FIELD_MASK(_field) \ |
| ((1 << _field ## _WIDTH) - 1) |
| |
| /* VFs can only use this many transmit channels */ |
| static unsigned int vf_max_tx_channels = 2; |
| module_param(vf_max_tx_channels, uint, 0444); |
| MODULE_PARM_DESC(vf_max_tx_channels, |
| "Limit the number of TX channels VFs can use"); |
| |
| static int max_vfs = -1; |
| module_param(max_vfs, int, 0444); |
| MODULE_PARM_DESC(max_vfs, |
| "Reduce the number of VFs initialized by the driver"); |
| |
| /* Workqueue used by VFDI communication. We can't use the global |
| * workqueue because it may be running the VF driver's probe() |
| * routine, which will be blocked there waiting for a VFDI response. |
| */ |
| static struct workqueue_struct *vfdi_workqueue; |
| |
| static unsigned abs_index(struct efx_vf *vf, unsigned index) |
| { |
| return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index; |
| } |
| |
| static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable, |
| unsigned *vi_scale_out, unsigned *vf_total_out) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN); |
| unsigned vi_scale, vf_total; |
| size_t outlen; |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0); |
| MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE); |
| MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN, |
| outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen); |
| if (rc) |
| return rc; |
| if (outlen < MC_CMD_SRIOV_OUT_LEN) |
| return -EIO; |
| |
| vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL); |
| vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE); |
| if (vi_scale > EFX_VI_SCALE_MAX) |
| return -EOPNOTSUPP; |
| |
| if (vi_scale_out) |
| *vi_scale_out = vi_scale; |
| if (vf_total_out) |
| *vf_total_out = vf_total; |
| |
| return 0; |
| } |
| |
| static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled) |
| { |
| struct siena_nic_data *nic_data = efx->nic_data; |
| efx_oword_t reg; |
| |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_CZ_USREV_DIS, enabled ? 0 : 1, |
| FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel); |
| efx_writeo(efx, ®, FR_CZ_USR_EV_CFG); |
| } |
| |
| static int efx_siena_sriov_memcpy(struct efx_nic *efx, |
| struct efx_memcpy_req *req, |
| unsigned int count) |
| { |
| MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1); |
| MCDI_DECLARE_STRUCT_PTR(record); |
| unsigned int index, used; |
| u64 from_addr; |
| u32 from_rid; |
| int rc; |
| |
| mb(); /* Finish writing source/reading dest before DMA starts */ |
| |
| if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM)) |
| return -ENOBUFS; |
| used = MC_CMD_MEMCPY_IN_LEN(count); |
| |
| for (index = 0; index < count; index++) { |
| record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index); |
| MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS, |
| count); |
| MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID, |
| req->to_rid); |
| MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR, |
| req->to_addr); |
| if (req->from_buf == NULL) { |
| from_rid = req->from_rid; |
| from_addr = req->from_addr; |
| } else { |
| if (WARN_ON(used + req->length > |
| MCDI_CTL_SDU_LEN_MAX_V1)) { |
| rc = -ENOBUFS; |
| goto out; |
| } |
| |
| from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE; |
| from_addr = used; |
| memcpy(_MCDI_PTR(inbuf, used), req->from_buf, |
| req->length); |
| used += req->length; |
| } |
| |
| MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid); |
| MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR, |
| from_addr); |
| MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH, |
| req->length); |
| |
| ++req; |
| } |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL); |
| out: |
| mb(); /* Don't write source/read dest before DMA is complete */ |
| |
| return rc; |
| } |
| |
| /* The TX filter is entirely controlled by this driver, and is modified |
| * underneath the feet of the VF |
| */ |
| static void efx_siena_sriov_reset_tx_filter(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct efx_filter_spec filter; |
| u16 vlan; |
| int rc; |
| |
| if (vf->tx_filter_id != -1) { |
| efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, |
| vf->tx_filter_id); |
| netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n", |
| vf->pci_name, vf->tx_filter_id); |
| vf->tx_filter_id = -1; |
| } |
| |
| if (is_zero_ether_addr(vf->addr.mac_addr)) |
| return; |
| |
| /* Turn on TX filtering automatically if not explicitly |
| * enabled or disabled. |
| */ |
| if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2) |
| vf->tx_filter_mode = VF_TX_FILTER_ON; |
| |
| vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK; |
| efx_filter_init_tx(&filter, abs_index(vf, 0)); |
| rc = efx_filter_set_eth_local(&filter, |
| vlan ? vlan : EFX_FILTER_VID_UNSPEC, |
| vf->addr.mac_addr); |
| BUG_ON(rc); |
| |
| rc = efx_filter_insert_filter(efx, &filter, true); |
| if (rc < 0) { |
| netif_warn(efx, hw, efx->net_dev, |
| "Unable to migrate tx filter for vf %s\n", |
| vf->pci_name); |
| } else { |
| netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n", |
| vf->pci_name, rc); |
| vf->tx_filter_id = rc; |
| } |
| } |
| |
| /* The RX filter is managed here on behalf of the VF driver */ |
| static void efx_siena_sriov_reset_rx_filter(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct efx_filter_spec filter; |
| u16 vlan; |
| int rc; |
| |
| if (vf->rx_filter_id != -1) { |
| efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, |
| vf->rx_filter_id); |
| netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n", |
| vf->pci_name, vf->rx_filter_id); |
| vf->rx_filter_id = -1; |
| } |
| |
| if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr)) |
| return; |
| |
| vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK; |
| efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED, |
| vf->rx_filter_flags, |
| abs_index(vf, vf->rx_filter_qid)); |
| rc = efx_filter_set_eth_local(&filter, |
| vlan ? vlan : EFX_FILTER_VID_UNSPEC, |
| vf->addr.mac_addr); |
| BUG_ON(rc); |
| |
| rc = efx_filter_insert_filter(efx, &filter, true); |
| if (rc < 0) { |
| netif_warn(efx, hw, efx->net_dev, |
| "Unable to insert rx filter for vf %s\n", |
| vf->pci_name); |
| } else { |
| netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n", |
| vf->pci_name, rc); |
| vf->rx_filter_id = rc; |
| } |
| } |
| |
| static void __efx_siena_sriov_update_vf_addr(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| |
| efx_siena_sriov_reset_tx_filter(vf); |
| efx_siena_sriov_reset_rx_filter(vf); |
| queue_work(vfdi_workqueue, &nic_data->peer_work); |
| } |
| |
| /* Push the peer list to this VF. The caller must hold status_lock to interlock |
| * with VFDI requests, and they must be serialised against manipulation of |
| * local_page_list, either by acquiring local_lock or by running from |
| * efx_siena_sriov_peer_work() |
| */ |
| static void __efx_siena_sriov_push_vf_status(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| struct vfdi_status *status = nic_data->vfdi_status.addr; |
| struct efx_memcpy_req copy[4]; |
| struct efx_endpoint_page *epp; |
| unsigned int pos, count; |
| unsigned data_offset; |
| efx_qword_t event; |
| |
| WARN_ON(!mutex_is_locked(&vf->status_lock)); |
| WARN_ON(!vf->status_addr); |
| |
| status->local = vf->addr; |
| status->generation_end = ++status->generation_start; |
| |
| memset(copy, '\0', sizeof(copy)); |
| /* Write generation_start */ |
| copy[0].from_buf = &status->generation_start; |
| copy[0].to_rid = vf->pci_rid; |
| copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status, |
| generation_start); |
| copy[0].length = sizeof(status->generation_start); |
| /* DMA the rest of the structure (excluding the generations). This |
| * assumes that the non-generation portion of vfdi_status is in |
| * one chunk starting at the version member. |
| */ |
| data_offset = offsetof(struct vfdi_status, version); |
| copy[1].from_rid = efx->pci_dev->devfn; |
| copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset; |
| copy[1].to_rid = vf->pci_rid; |
| copy[1].to_addr = vf->status_addr + data_offset; |
| copy[1].length = status->length - data_offset; |
| |
| /* Copy the peer pages */ |
| pos = 2; |
| count = 0; |
| list_for_each_entry(epp, &nic_data->local_page_list, link) { |
| if (count == vf->peer_page_count) { |
| /* The VF driver will know they need to provide more |
| * pages because peer_addr_count is too large. |
| */ |
| break; |
| } |
| copy[pos].from_buf = NULL; |
| copy[pos].from_rid = efx->pci_dev->devfn; |
| copy[pos].from_addr = epp->addr; |
| copy[pos].to_rid = vf->pci_rid; |
| copy[pos].to_addr = vf->peer_page_addrs[count]; |
| copy[pos].length = EFX_PAGE_SIZE; |
| |
| if (++pos == ARRAY_SIZE(copy)) { |
| efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy)); |
| pos = 0; |
| } |
| ++count; |
| } |
| |
| /* Write generation_end */ |
| copy[pos].from_buf = &status->generation_end; |
| copy[pos].to_rid = vf->pci_rid; |
| copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status, |
| generation_end); |
| copy[pos].length = sizeof(status->generation_end); |
| efx_siena_sriov_memcpy(efx, copy, pos + 1); |
| |
| /* Notify the guest */ |
| EFX_POPULATE_QWORD_3(event, |
| FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV, |
| VFDI_EV_SEQ, (vf->msg_seqno & 0xff), |
| VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS); |
| ++vf->msg_seqno; |
| efx_farch_generate_event(efx, |
| EFX_VI_BASE + vf->index * efx_vf_size(efx), |
| &event); |
| } |
| |
| static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset, |
| u64 *addr, unsigned count) |
| { |
| efx_qword_t buf; |
| unsigned pos; |
| |
| for (pos = 0; pos < count; ++pos) { |
| EFX_POPULATE_QWORD_3(buf, |
| FRF_AZ_BUF_ADR_REGION, 0, |
| FRF_AZ_BUF_ADR_FBUF, |
| addr ? addr[pos] >> 12 : 0, |
| FRF_AZ_BUF_OWNER_ID_FBUF, 0); |
| efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL, |
| &buf, offset + pos); |
| } |
| } |
| |
| static bool bad_vf_index(struct efx_nic *efx, unsigned index) |
| { |
| return index >= efx_vf_size(efx); |
| } |
| |
| static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count) |
| { |
| unsigned max_buf_count = max_entry_count * |
| sizeof(efx_qword_t) / EFX_BUF_SIZE; |
| |
| return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count); |
| } |
| |
| /* Check that VI specified by per-port index belongs to a VF. |
| * Optionally set VF index and VI index within the VF. |
| */ |
| static bool map_vi_index(struct efx_nic *efx, unsigned abs_index, |
| struct efx_vf **vf_out, unsigned *rel_index_out) |
| { |
| unsigned vf_i; |
| |
| if (abs_index < EFX_VI_BASE) |
| return true; |
| vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx); |
| if (vf_i >= efx->vf_init_count) |
| return true; |
| |
| if (vf_out) |
| *vf_out = efx->vf + vf_i; |
| if (rel_index_out) |
| *rel_index_out = abs_index % efx_vf_size(efx); |
| return false; |
| } |
| |
| static int efx_vfdi_init_evq(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct vfdi_req *req = vf->buf.addr; |
| unsigned vf_evq = req->u.init_evq.index; |
| unsigned buf_count = req->u.init_evq.buf_count; |
| unsigned abs_evq = abs_index(vf, vf_evq); |
| unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq); |
| efx_oword_t reg; |
| |
| if (bad_vf_index(efx, vf_evq) || |
| bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) { |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n", |
| vf->pci_name, vf_evq, buf_count); |
| return VFDI_RC_EINVAL; |
| } |
| |
| efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count); |
| |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_CZ_TIMER_Q_EN, 1, |
| FRF_CZ_HOST_NOTIFY_MODE, 0, |
| FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); |
| efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq); |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_AZ_EVQ_EN, 1, |
| FRF_AZ_EVQ_SIZE, __ffs(buf_count), |
| FRF_AZ_EVQ_BUF_BASE_ID, buftbl); |
| efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq); |
| |
| if (vf_evq == 0) { |
| memcpy(vf->evq0_addrs, req->u.init_evq.addr, |
| buf_count * sizeof(u64)); |
| vf->evq0_count = buf_count; |
| } |
| |
| return VFDI_RC_SUCCESS; |
| } |
| |
| static int efx_vfdi_init_rxq(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct vfdi_req *req = vf->buf.addr; |
| unsigned vf_rxq = req->u.init_rxq.index; |
| unsigned vf_evq = req->u.init_rxq.evq; |
| unsigned buf_count = req->u.init_rxq.buf_count; |
| unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq); |
| unsigned label; |
| efx_oword_t reg; |
| |
| if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) || |
| vf_rxq >= VF_MAX_RX_QUEUES || |
| bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) { |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d " |
| "buf_count %d\n", vf->pci_name, vf_rxq, |
| vf_evq, buf_count); |
| return VFDI_RC_EINVAL; |
| } |
| if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask)) |
| ++vf->rxq_count; |
| efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count); |
| |
| label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL); |
| EFX_POPULATE_OWORD_6(reg, |
| FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl, |
| FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq), |
| FRF_AZ_RX_DESCQ_LABEL, label, |
| FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count), |
| FRF_AZ_RX_DESCQ_JUMBO, |
| !!(req->u.init_rxq.flags & |
| VFDI_RXQ_FLAG_SCATTER_EN), |
| FRF_AZ_RX_DESCQ_EN, 1); |
| efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL, |
| abs_index(vf, vf_rxq)); |
| |
| return VFDI_RC_SUCCESS; |
| } |
| |
| static int efx_vfdi_init_txq(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct vfdi_req *req = vf->buf.addr; |
| unsigned vf_txq = req->u.init_txq.index; |
| unsigned vf_evq = req->u.init_txq.evq; |
| unsigned buf_count = req->u.init_txq.buf_count; |
| unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq); |
| unsigned label, eth_filt_en; |
| efx_oword_t reg; |
| |
| if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) || |
| vf_txq >= vf_max_tx_channels || |
| bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) { |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d " |
| "buf_count %d\n", vf->pci_name, vf_txq, |
| vf_evq, buf_count); |
| return VFDI_RC_EINVAL; |
| } |
| |
| mutex_lock(&vf->txq_lock); |
| if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask)) |
| ++vf->txq_count; |
| mutex_unlock(&vf->txq_lock); |
| efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count); |
| |
| eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON; |
| |
| label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL); |
| EFX_POPULATE_OWORD_8(reg, |
| FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U), |
| FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en, |
| FRF_AZ_TX_DESCQ_EN, 1, |
| FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl, |
| FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq), |
| FRF_AZ_TX_DESCQ_LABEL, label, |
| FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count), |
| FRF_BZ_TX_NON_IP_DROP_DIS, 1); |
| efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL, |
| abs_index(vf, vf_txq)); |
| |
| return VFDI_RC_SUCCESS; |
| } |
| |
| /* Returns true when efx_vfdi_fini_all_queues should wake */ |
| static bool efx_vfdi_flush_wake(struct efx_vf *vf) |
| { |
| /* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */ |
| smp_mb(); |
| |
| return (!vf->txq_count && !vf->rxq_count) || |
| atomic_read(&vf->rxq_retry_count); |
| } |
| |
| static void efx_vfdi_flush_clear(struct efx_vf *vf) |
| { |
| memset(vf->txq_mask, 0, sizeof(vf->txq_mask)); |
| vf->txq_count = 0; |
| memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask)); |
| vf->rxq_count = 0; |
| memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask)); |
| atomic_set(&vf->rxq_retry_count, 0); |
| } |
| |
| static int efx_vfdi_fini_all_queues(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| efx_oword_t reg; |
| unsigned count = efx_vf_size(efx); |
| unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx); |
| unsigned timeout = HZ; |
| unsigned index, rxqs_count; |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX); |
| int rc; |
| |
| BUILD_BUG_ON(VF_MAX_RX_QUEUES > |
| MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); |
| |
| rtnl_lock(); |
| siena_prepare_flush(efx); |
| rtnl_unlock(); |
| |
| /* Flush all the initialized queues */ |
| rxqs_count = 0; |
| for (index = 0; index < count; ++index) { |
| if (test_bit(index, vf->txq_mask)) { |
| EFX_POPULATE_OWORD_2(reg, |
| FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, |
| FRF_AZ_TX_FLUSH_DESCQ, |
| vf_offset + index); |
| efx_writeo(efx, ®, FR_AZ_TX_FLUSH_DESCQ); |
| } |
| if (test_bit(index, vf->rxq_mask)) { |
| MCDI_SET_ARRAY_DWORD( |
| inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, |
| rxqs_count, vf_offset + index); |
| rxqs_count++; |
| } |
| } |
| |
| atomic_set(&vf->rxq_retry_count, 0); |
| while (timeout && (vf->rxq_count || vf->txq_count)) { |
| rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, |
| MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count), |
| NULL, 0, NULL); |
| WARN_ON(rc < 0); |
| |
| timeout = wait_event_timeout(vf->flush_waitq, |
| efx_vfdi_flush_wake(vf), |
| timeout); |
| rxqs_count = 0; |
| for (index = 0; index < count; ++index) { |
| if (test_and_clear_bit(index, vf->rxq_retry_mask)) { |
| atomic_dec(&vf->rxq_retry_count); |
| MCDI_SET_ARRAY_DWORD( |
| inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, |
| rxqs_count, vf_offset + index); |
| rxqs_count++; |
| } |
| } |
| } |
| |
| rtnl_lock(); |
| siena_finish_flush(efx); |
| rtnl_unlock(); |
| |
| /* Irrespective of success/failure, fini the queues */ |
| EFX_ZERO_OWORD(reg); |
| for (index = 0; index < count; ++index) { |
| efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL, |
| vf_offset + index); |
| efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL, |
| vf_offset + index); |
| efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, |
| vf_offset + index); |
| efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, |
| vf_offset + index); |
| } |
| efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL, |
| EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx)); |
| efx_vfdi_flush_clear(vf); |
| |
| vf->evq0_count = 0; |
| |
| return timeout ? 0 : VFDI_RC_ETIMEDOUT; |
| } |
| |
| static int efx_vfdi_insert_filter(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| struct vfdi_req *req = vf->buf.addr; |
| unsigned vf_rxq = req->u.mac_filter.rxq; |
| unsigned flags; |
| |
| if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) { |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Invalid INSERT_FILTER from %s: rxq %d " |
| "flags 0x%x\n", vf->pci_name, vf_rxq, |
| req->u.mac_filter.flags); |
| return VFDI_RC_EINVAL; |
| } |
| |
| flags = 0; |
| if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS) |
| flags |= EFX_FILTER_FLAG_RX_RSS; |
| if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER) |
| flags |= EFX_FILTER_FLAG_RX_SCATTER; |
| vf->rx_filter_flags = flags; |
| vf->rx_filter_qid = vf_rxq; |
| vf->rx_filtering = true; |
| |
| efx_siena_sriov_reset_rx_filter(vf); |
| queue_work(vfdi_workqueue, &nic_data->peer_work); |
| |
| return VFDI_RC_SUCCESS; |
| } |
| |
| static int efx_vfdi_remove_all_filters(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| |
| vf->rx_filtering = false; |
| efx_siena_sriov_reset_rx_filter(vf); |
| queue_work(vfdi_workqueue, &nic_data->peer_work); |
| |
| return VFDI_RC_SUCCESS; |
| } |
| |
| static int efx_vfdi_set_status_page(struct efx_vf *vf) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| struct vfdi_req *req = vf->buf.addr; |
| u64 page_count = req->u.set_status_page.peer_page_count; |
| u64 max_page_count = |
| (EFX_PAGE_SIZE - |
| offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0])) |
| / sizeof(req->u.set_status_page.peer_page_addr[0]); |
| |
| if (!req->u.set_status_page.dma_addr || page_count > max_page_count) { |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Invalid SET_STATUS_PAGE from %s\n", |
| vf->pci_name); |
| return VFDI_RC_EINVAL; |
| } |
| |
| mutex_lock(&nic_data->local_lock); |
| mutex_lock(&vf->status_lock); |
| vf->status_addr = req->u.set_status_page.dma_addr; |
| |
| kfree(vf->peer_page_addrs); |
| vf->peer_page_addrs = NULL; |
| vf->peer_page_count = 0; |
| |
| if (page_count) { |
| vf->peer_page_addrs = kcalloc(page_count, sizeof(u64), |
| GFP_KERNEL); |
| if (vf->peer_page_addrs) { |
| memcpy(vf->peer_page_addrs, |
| req->u.set_status_page.peer_page_addr, |
| page_count * sizeof(u64)); |
| vf->peer_page_count = page_count; |
| } |
| } |
| |
| __efx_siena_sriov_push_vf_status(vf); |
| mutex_unlock(&vf->status_lock); |
| mutex_unlock(&nic_data->local_lock); |
| |
| return VFDI_RC_SUCCESS; |
| } |
| |
| static int efx_vfdi_clear_status_page(struct efx_vf *vf) |
| { |
| mutex_lock(&vf->status_lock); |
| vf->status_addr = 0; |
| mutex_unlock(&vf->status_lock); |
| |
| return VFDI_RC_SUCCESS; |
| } |
| |
| typedef int (*efx_vfdi_op_t)(struct efx_vf *vf); |
| |
| static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = { |
| [VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq, |
| [VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq, |
| [VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq, |
| [VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues, |
| [VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter, |
| [VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters, |
| [VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page, |
| [VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page, |
| }; |
| |
| static void efx_siena_sriov_vfdi(struct work_struct *work) |
| { |
| struct efx_vf *vf = container_of(work, struct efx_vf, req); |
| struct efx_nic *efx = vf->efx; |
| struct vfdi_req *req = vf->buf.addr; |
| struct efx_memcpy_req copy[2]; |
| int rc; |
| |
| /* Copy this page into the local address space */ |
| memset(copy, '\0', sizeof(copy)); |
| copy[0].from_rid = vf->pci_rid; |
| copy[0].from_addr = vf->req_addr; |
| copy[0].to_rid = efx->pci_dev->devfn; |
| copy[0].to_addr = vf->buf.dma_addr; |
| copy[0].length = EFX_PAGE_SIZE; |
| rc = efx_siena_sriov_memcpy(efx, copy, 1); |
| if (rc) { |
| /* If we can't get the request, we can't reply to the caller */ |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Unable to fetch VFDI request from %s rc %d\n", |
| vf->pci_name, -rc); |
| vf->busy = false; |
| return; |
| } |
| |
| if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) { |
| rc = vfdi_ops[req->op](vf); |
| if (rc == 0) { |
| netif_dbg(efx, hw, efx->net_dev, |
| "vfdi request %d from %s ok\n", |
| req->op, vf->pci_name); |
| } |
| } else { |
| netif_dbg(efx, hw, efx->net_dev, |
| "ERROR: Unrecognised request %d from VF %s addr " |
| "%llx\n", req->op, vf->pci_name, |
| (unsigned long long)vf->req_addr); |
| rc = VFDI_RC_EOPNOTSUPP; |
| } |
| |
| /* Allow subsequent VF requests */ |
| vf->busy = false; |
| smp_wmb(); |
| |
| /* Respond to the request */ |
| req->rc = rc; |
| req->op = VFDI_OP_RESPONSE; |
| |
| memset(copy, '\0', sizeof(copy)); |
| copy[0].from_buf = &req->rc; |
| copy[0].to_rid = vf->pci_rid; |
| copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc); |
| copy[0].length = sizeof(req->rc); |
| copy[1].from_buf = &req->op; |
| copy[1].to_rid = vf->pci_rid; |
| copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op); |
| copy[1].length = sizeof(req->op); |
| |
| (void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy)); |
| } |
| |
| |
| |
| /* After a reset the event queues inside the guests no longer exist. Fill the |
| * event ring in guest memory with VFDI reset events, then (re-initialise) the |
| * event queue to raise an interrupt. The guest driver will then recover. |
| */ |
| static void efx_siena_sriov_reset_vf(struct efx_vf *vf, |
| struct efx_buffer *buffer) |
| { |
| struct efx_nic *efx = vf->efx; |
| struct efx_memcpy_req copy_req[4]; |
| efx_qword_t event; |
| unsigned int pos, count, k, buftbl, abs_evq; |
| efx_oword_t reg; |
| efx_dword_t ptr; |
| int rc; |
| |
| BUG_ON(buffer->len != EFX_PAGE_SIZE); |
| |
| if (!vf->evq0_count) |
| return; |
| BUG_ON(vf->evq0_count & (vf->evq0_count - 1)); |
| |
| mutex_lock(&vf->status_lock); |
| EFX_POPULATE_QWORD_3(event, |
| FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV, |
| VFDI_EV_SEQ, vf->msg_seqno, |
| VFDI_EV_TYPE, VFDI_EV_TYPE_RESET); |
| vf->msg_seqno++; |
| for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event)) |
| memcpy(buffer->addr + pos, &event, sizeof(event)); |
| |
| for (pos = 0; pos < vf->evq0_count; pos += count) { |
| count = min_t(unsigned, vf->evq0_count - pos, |
| ARRAY_SIZE(copy_req)); |
| for (k = 0; k < count; k++) { |
| copy_req[k].from_buf = NULL; |
| copy_req[k].from_rid = efx->pci_dev->devfn; |
| copy_req[k].from_addr = buffer->dma_addr; |
| copy_req[k].to_rid = vf->pci_rid; |
| copy_req[k].to_addr = vf->evq0_addrs[pos + k]; |
| copy_req[k].length = EFX_PAGE_SIZE; |
| } |
| rc = efx_siena_sriov_memcpy(efx, copy_req, count); |
| if (rc) { |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Unable to notify %s of reset" |
| ": %d\n", vf->pci_name, -rc); |
| break; |
| } |
| } |
| |
| /* Reinitialise, arm and trigger evq0 */ |
| abs_evq = abs_index(vf, 0); |
| buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0); |
| efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count); |
| |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_CZ_TIMER_Q_EN, 1, |
| FRF_CZ_HOST_NOTIFY_MODE, 0, |
| FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); |
| efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq); |
| EFX_POPULATE_OWORD_3(reg, |
| FRF_AZ_EVQ_EN, 1, |
| FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count), |
| FRF_AZ_EVQ_BUF_BASE_ID, buftbl); |
| efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq); |
| EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0); |
| efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq); |
| |
| mutex_unlock(&vf->status_lock); |
| } |
| |
| static void efx_siena_sriov_reset_vf_work(struct work_struct *work) |
| { |
| struct efx_vf *vf = container_of(work, struct efx_vf, req); |
| struct efx_nic *efx = vf->efx; |
| struct efx_buffer buf; |
| |
| if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) { |
| efx_siena_sriov_reset_vf(vf, &buf); |
| efx_nic_free_buffer(efx, &buf); |
| } |
| } |
| |
| static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx) |
| { |
| netif_err(efx, drv, efx->net_dev, |
| "ERROR: IOV requires MSI-X and 1 additional interrupt" |
| "vector. IOV disabled\n"); |
| efx->vf_count = 0; |
| } |
| |
| static int efx_siena_sriov_probe_channel(struct efx_channel *channel) |
| { |
| struct siena_nic_data *nic_data = channel->efx->nic_data; |
| nic_data->vfdi_channel = channel; |
| |
| return 0; |
| } |
| |
| static void |
| efx_siena_sriov_get_channel_name(struct efx_channel *channel, |
| char *buf, size_t len) |
| { |
| snprintf(buf, len, "%s-iov", channel->efx->name); |
| } |
| |
| static const struct efx_channel_type efx_siena_sriov_channel_type = { |
| .handle_no_channel = efx_siena_sriov_handle_no_channel, |
| .pre_probe = efx_siena_sriov_probe_channel, |
| .post_remove = efx_channel_dummy_op_void, |
| .get_name = efx_siena_sriov_get_channel_name, |
| /* no copy operation; channel must not be reallocated */ |
| .keep_eventq = true, |
| }; |
| |
| void efx_siena_sriov_probe(struct efx_nic *efx) |
| { |
| unsigned count; |
| |
| if (!max_vfs) |
| return; |
| |
| if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) |
| return; |
| if (count > 0 && count > max_vfs) |
| count = max_vfs; |
| |
| /* efx_nic_dimension_resources() will reduce vf_count as appopriate */ |
| efx->vf_count = count; |
| |
| efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type; |
| } |
| |
| /* Copy the list of individual addresses into the vfdi_status.peers |
| * array and auxillary pages, protected by %local_lock. Drop that lock |
| * and then broadcast the address list to every VF. |
| */ |
| static void efx_siena_sriov_peer_work(struct work_struct *data) |
| { |
| struct siena_nic_data *nic_data = container_of(data, |
| struct siena_nic_data, |
| peer_work); |
| struct efx_nic *efx = nic_data->efx; |
| struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr; |
| struct efx_vf *vf; |
| struct efx_local_addr *local_addr; |
| struct vfdi_endpoint *peer; |
| struct efx_endpoint_page *epp; |
| struct list_head pages; |
| unsigned int peer_space; |
| unsigned int peer_count; |
| unsigned int pos; |
| |
| mutex_lock(&nic_data->local_lock); |
| |
| /* Move the existing peer pages off %local_page_list */ |
| INIT_LIST_HEAD(&pages); |
| list_splice_tail_init(&nic_data->local_page_list, &pages); |
| |
| /* Populate the VF addresses starting from entry 1 (entry 0 is |
| * the PF address) |
| */ |
| peer = vfdi_status->peers + 1; |
| peer_space = ARRAY_SIZE(vfdi_status->peers) - 1; |
| peer_count = 1; |
| for (pos = 0; pos < efx->vf_count; ++pos) { |
| vf = efx->vf + pos; |
| |
| mutex_lock(&vf->status_lock); |
| if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) { |
| *peer++ = vf->addr; |
| ++peer_count; |
| --peer_space; |
| BUG_ON(peer_space == 0); |
| } |
| mutex_unlock(&vf->status_lock); |
| } |
| |
| /* Fill the remaining addresses */ |
| list_for_each_entry(local_addr, &nic_data->local_addr_list, link) { |
| ether_addr_copy(peer->mac_addr, local_addr->addr); |
| peer->tci = 0; |
| ++peer; |
| ++peer_count; |
| if (--peer_space == 0) { |
| if (list_empty(&pages)) { |
| epp = kmalloc(sizeof(*epp), GFP_KERNEL); |
| if (!epp) |
| break; |
| epp->ptr = dma_alloc_coherent( |
| &efx->pci_dev->dev, EFX_PAGE_SIZE, |
| &epp->addr, GFP_KERNEL); |
| if (!epp->ptr) { |
| kfree(epp); |
| break; |
| } |
| } else { |
| epp = list_first_entry( |
| &pages, struct efx_endpoint_page, link); |
| list_del(&epp->link); |
| } |
| |
| list_add_tail(&epp->link, &nic_data->local_page_list); |
| peer = (struct vfdi_endpoint *)epp->ptr; |
| peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint); |
| } |
| } |
| vfdi_status->peer_count = peer_count; |
| mutex_unlock(&nic_data->local_lock); |
| |
| /* Free any now unused endpoint pages */ |
| while (!list_empty(&pages)) { |
| epp = list_first_entry( |
| &pages, struct efx_endpoint_page, link); |
| list_del(&epp->link); |
| dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE, |
| epp->ptr, epp->addr); |
| kfree(epp); |
| } |
| |
| /* Finally, push the pages */ |
| for (pos = 0; pos < efx->vf_count; ++pos) { |
| vf = efx->vf + pos; |
| |
| mutex_lock(&vf->status_lock); |
| if (vf->status_addr) |
| __efx_siena_sriov_push_vf_status(vf); |
| mutex_unlock(&vf->status_lock); |
| } |
| } |
| |
| static void efx_siena_sriov_free_local(struct efx_nic *efx) |
| { |
| struct siena_nic_data *nic_data = efx->nic_data; |
| struct efx_local_addr *local_addr; |
| struct efx_endpoint_page *epp; |
| |
| while (!list_empty(&nic_data->local_addr_list)) { |
| local_addr = list_first_entry(&nic_data->local_addr_list, |
| struct efx_local_addr, link); |
| list_del(&local_addr->link); |
| kfree(local_addr); |
| } |
| |
| while (!list_empty(&nic_data->local_page_list)) { |
| epp = list_first_entry(&nic_data->local_page_list, |
| struct efx_endpoint_page, link); |
| list_del(&epp->link); |
| dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE, |
| epp->ptr, epp->addr); |
| kfree(epp); |
| } |
| } |
| |
| static int efx_siena_sriov_vf_alloc(struct efx_nic *efx) |
| { |
| unsigned index; |
| struct efx_vf *vf; |
| |
| efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL); |
| if (!efx->vf) |
| return -ENOMEM; |
| |
| for (index = 0; index < efx->vf_count; ++index) { |
| vf = efx->vf + index; |
| |
| vf->efx = efx; |
| vf->index = index; |
| vf->rx_filter_id = -1; |
| vf->tx_filter_mode = VF_TX_FILTER_AUTO; |
| vf->tx_filter_id = -1; |
| INIT_WORK(&vf->req, efx_siena_sriov_vfdi); |
| INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work); |
| init_waitqueue_head(&vf->flush_waitq); |
| mutex_init(&vf->status_lock); |
| mutex_init(&vf->txq_lock); |
| } |
| |
| return 0; |
| } |
| |
| static void efx_siena_sriov_vfs_fini(struct efx_nic *efx) |
| { |
| struct efx_vf *vf; |
| unsigned int pos; |
| |
| for (pos = 0; pos < efx->vf_count; ++pos) { |
| vf = efx->vf + pos; |
| |
| efx_nic_free_buffer(efx, &vf->buf); |
| kfree(vf->peer_page_addrs); |
| vf->peer_page_addrs = NULL; |
| vf->peer_page_count = 0; |
| |
| vf->evq0_count = 0; |
| } |
| } |
| |
| static int efx_siena_sriov_vfs_init(struct efx_nic *efx) |
| { |
| struct pci_dev *pci_dev = efx->pci_dev; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| unsigned index, devfn, sriov, buftbl_base; |
| u16 offset, stride; |
| struct efx_vf *vf; |
| int rc; |
| |
| sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV); |
| if (!sriov) |
| return -ENOENT; |
| |
| pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset); |
| pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride); |
| |
| buftbl_base = nic_data->vf_buftbl_base; |
| devfn = pci_dev->devfn + offset; |
| for (index = 0; index < efx->vf_count; ++index) { |
| vf = efx->vf + index; |
| |
| /* Reserve buffer entries */ |
| vf->buftbl_base = buftbl_base; |
| buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx); |
| |
| vf->pci_rid = devfn; |
| snprintf(vf->pci_name, sizeof(vf->pci_name), |
| "%04x:%02x:%02x.%d", |
| pci_domain_nr(pci_dev->bus), pci_dev->bus->number, |
| PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| |
| rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE, |
| GFP_KERNEL); |
| if (rc) |
| goto fail; |
| |
| devfn += stride; |
| } |
| |
| return 0; |
| |
| fail: |
| efx_siena_sriov_vfs_fini(efx); |
| return rc; |
| } |
| |
| int efx_siena_sriov_init(struct efx_nic *efx) |
| { |
| struct net_device *net_dev = efx->net_dev; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| struct vfdi_status *vfdi_status; |
| int rc; |
| |
| /* Ensure there's room for vf_channel */ |
| BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE); |
| /* Ensure that VI_BASE is aligned on VI_SCALE */ |
| BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1)); |
| |
| if (efx->vf_count == 0) |
| return 0; |
| |
| rc = efx_siena_sriov_cmd(efx, true, NULL, NULL); |
| if (rc) |
| goto fail_cmd; |
| |
| rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status, |
| sizeof(*vfdi_status), GFP_KERNEL); |
| if (rc) |
| goto fail_status; |
| vfdi_status = nic_data->vfdi_status.addr; |
| memset(vfdi_status, 0, sizeof(*vfdi_status)); |
| vfdi_status->version = 1; |
| vfdi_status->length = sizeof(*vfdi_status); |
| vfdi_status->max_tx_channels = vf_max_tx_channels; |
| vfdi_status->vi_scale = efx->vi_scale; |
| vfdi_status->rss_rxq_count = efx->rss_spread; |
| vfdi_status->peer_count = 1 + efx->vf_count; |
| vfdi_status->timer_quantum_ns = efx->timer_quantum_ns; |
| |
| rc = efx_siena_sriov_vf_alloc(efx); |
| if (rc) |
| goto fail_alloc; |
| |
| mutex_init(&nic_data->local_lock); |
| INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work); |
| INIT_LIST_HEAD(&nic_data->local_addr_list); |
| INIT_LIST_HEAD(&nic_data->local_page_list); |
| |
| rc = efx_siena_sriov_vfs_init(efx); |
| if (rc) |
| goto fail_vfs; |
| |
| rtnl_lock(); |
| ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr); |
| efx->vf_init_count = efx->vf_count; |
| rtnl_unlock(); |
| |
| efx_siena_sriov_usrev(efx, true); |
| |
| /* At this point we must be ready to accept VFDI requests */ |
| |
| rc = pci_enable_sriov(efx->pci_dev, efx->vf_count); |
| if (rc) |
| goto fail_pci; |
| |
| netif_info(efx, probe, net_dev, |
| "enabled SR-IOV for %d VFs, %d VI per VF\n", |
| efx->vf_count, efx_vf_size(efx)); |
| return 0; |
| |
| fail_pci: |
| efx_siena_sriov_usrev(efx, false); |
| rtnl_lock(); |
| efx->vf_init_count = 0; |
| rtnl_unlock(); |
| efx_siena_sriov_vfs_fini(efx); |
| fail_vfs: |
| cancel_work_sync(&nic_data->peer_work); |
| efx_siena_sriov_free_local(efx); |
| kfree(efx->vf); |
| fail_alloc: |
| efx_nic_free_buffer(efx, &nic_data->vfdi_status); |
| fail_status: |
| efx_siena_sriov_cmd(efx, false, NULL, NULL); |
| fail_cmd: |
| return rc; |
| } |
| |
| void efx_siena_sriov_fini(struct efx_nic *efx) |
| { |
| struct efx_vf *vf; |
| unsigned int pos; |
| struct siena_nic_data *nic_data = efx->nic_data; |
| |
| if (efx->vf_init_count == 0) |
| return; |
| |
| /* Disable all interfaces to reconfiguration */ |
| BUG_ON(nic_data->vfdi_channel->enabled); |
| efx_siena_sriov_usrev(efx, false); |
| rtnl_lock(); |
| efx->vf_init_count = 0; |
| rtnl_unlock(); |
| |
| /* Flush all reconfiguration work */ |
| for (pos = 0; pos < efx->vf_count; ++pos) { |
| vf = efx->vf + pos; |
| cancel_work_sync(&vf->req); |
| cancel_work_sync(&vf->reset_work); |
| } |
| cancel_work_sync(&nic_data->peer_work); |
| |
| pci_disable_sriov(efx->pci_dev); |
| |
| /* Tear down back-end state */ |
| efx_siena_sriov_vfs_fini(efx); |
| efx_siena_sriov_free_local(efx); |
| kfree(efx->vf); |
| efx_nic_free_buffer(efx, &nic_data->vfdi_status); |
| efx_siena_sriov_cmd(efx, false, NULL, NULL); |
| } |
| |
| void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_vf *vf; |
| unsigned qid, seq, type, data; |
| |
| qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID); |
| |
| /* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */ |
| BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0); |
| seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ); |
| type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE); |
| data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA); |
| |
| netif_vdbg(efx, hw, efx->net_dev, |
| "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n", |
| qid, seq, type, data); |
| |
| if (map_vi_index(efx, qid, &vf, NULL)) |
| return; |
| if (vf->busy) |
| goto error; |
| |
| if (type == VFDI_EV_TYPE_REQ_WORD0) { |
| /* Resynchronise */ |
| vf->req_type = VFDI_EV_TYPE_REQ_WORD0; |
| vf->req_seqno = seq + 1; |
| vf->req_addr = 0; |
| } else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type) |
| goto error; |
| |
| switch (vf->req_type) { |
| case VFDI_EV_TYPE_REQ_WORD0: |
| case VFDI_EV_TYPE_REQ_WORD1: |
| case VFDI_EV_TYPE_REQ_WORD2: |
| vf->req_addr |= (u64)data << (vf->req_type << 4); |
| ++vf->req_type; |
| return; |
| |
| case VFDI_EV_TYPE_REQ_WORD3: |
| vf->req_addr |= (u64)data << 48; |
| vf->req_type = VFDI_EV_TYPE_REQ_WORD0; |
| vf->busy = true; |
| queue_work(vfdi_workqueue, &vf->req); |
| return; |
| } |
| |
| error: |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "ERROR: Screaming VFDI request from %s\n", |
| vf->pci_name); |
| /* Reset the request and sequence number */ |
| vf->req_type = VFDI_EV_TYPE_REQ_WORD0; |
| vf->req_seqno = seq + 1; |
| } |
| |
| void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i) |
| { |
| struct efx_vf *vf; |
| |
| if (vf_i > efx->vf_init_count) |
| return; |
| vf = efx->vf + vf_i; |
| netif_info(efx, hw, efx->net_dev, |
| "FLR on VF %s\n", vf->pci_name); |
| |
| vf->status_addr = 0; |
| efx_vfdi_remove_all_filters(vf); |
| efx_vfdi_flush_clear(vf); |
| |
| vf->evq0_count = 0; |
| } |
| |
| void efx_siena_sriov_mac_address_changed(struct efx_nic *efx) |
| { |
| struct siena_nic_data *nic_data = efx->nic_data; |
| struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr; |
| |
| if (!efx->vf_init_count) |
| return; |
| ether_addr_copy(vfdi_status->peers[0].mac_addr, |
| efx->net_dev->dev_addr); |
| queue_work(vfdi_workqueue, &nic_data->peer_work); |
| } |
| |
| void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| { |
| struct efx_vf *vf; |
| unsigned queue, qid; |
| |
| queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| if (map_vi_index(efx, queue, &vf, &qid)) |
| return; |
| /* Ignore flush completions triggered by an FLR */ |
| if (!test_bit(qid, vf->txq_mask)) |
| return; |
| |
| __clear_bit(qid, vf->txq_mask); |
| --vf->txq_count; |
| |
| if (efx_vfdi_flush_wake(vf)) |
| wake_up(&vf->flush_waitq); |
| } |
| |
| void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| { |
| struct efx_vf *vf; |
| unsigned ev_failed, queue, qid; |
| |
| queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); |
| ev_failed = EFX_QWORD_FIELD(*event, |
| FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); |
| if (map_vi_index(efx, queue, &vf, &qid)) |
| return; |
| if (!test_bit(qid, vf->rxq_mask)) |
| return; |
| |
| if (ev_failed) { |
| set_bit(qid, vf->rxq_retry_mask); |
| atomic_inc(&vf->rxq_retry_count); |
| } else { |
| __clear_bit(qid, vf->rxq_mask); |
| --vf->rxq_count; |
| } |
| if (efx_vfdi_flush_wake(vf)) |
| wake_up(&vf->flush_waitq); |
| } |
| |
| /* Called from napi. Schedule the reset work item */ |
| void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) |
| { |
| struct efx_vf *vf; |
| unsigned int rel; |
| |
| if (map_vi_index(efx, dmaq, &vf, &rel)) |
| return; |
| |
| if (net_ratelimit()) |
| netif_err(efx, hw, efx->net_dev, |
| "VF %d DMA Q %d reports descriptor fetch error.\n", |
| vf->index, rel); |
| queue_work(vfdi_workqueue, &vf->reset_work); |
| } |
| |
| /* Reset all VFs */ |
| void efx_siena_sriov_reset(struct efx_nic *efx) |
| { |
| unsigned int vf_i; |
| struct efx_buffer buf; |
| struct efx_vf *vf; |
| |
| ASSERT_RTNL(); |
| |
| if (efx->vf_init_count == 0) |
| return; |
| |
| efx_siena_sriov_usrev(efx, true); |
| (void)efx_siena_sriov_cmd(efx, true, NULL, NULL); |
| |
| if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) |
| return; |
| |
| for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) { |
| vf = efx->vf + vf_i; |
| efx_siena_sriov_reset_vf(vf, &buf); |
| } |
| |
| efx_nic_free_buffer(efx, &buf); |
| } |
| |
| int efx_init_sriov(void) |
| { |
| /* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and |
| * efx_siena_sriov_peer_work() spend almost all their time sleeping for |
| * MCDI to complete anyway |
| */ |
| vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi"); |
| if (!vfdi_workqueue) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void efx_fini_sriov(void) |
| { |
| destroy_workqueue(vfdi_workqueue); |
| } |
| |
| int efx_siena_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_vf *vf; |
| |
| if (vf_i >= efx->vf_init_count) |
| return -EINVAL; |
| vf = efx->vf + vf_i; |
| |
| mutex_lock(&vf->status_lock); |
| ether_addr_copy(vf->addr.mac_addr, mac); |
| __efx_siena_sriov_update_vf_addr(vf); |
| mutex_unlock(&vf->status_lock); |
| |
| return 0; |
| } |
| |
| int efx_siena_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i, |
| u16 vlan, u8 qos) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_vf *vf; |
| u16 tci; |
| |
| if (vf_i >= efx->vf_init_count) |
| return -EINVAL; |
| vf = efx->vf + vf_i; |
| |
| mutex_lock(&vf->status_lock); |
| tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT); |
| vf->addr.tci = htons(tci); |
| __efx_siena_sriov_update_vf_addr(vf); |
| mutex_unlock(&vf->status_lock); |
| |
| return 0; |
| } |
| |
| int efx_siena_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i, |
| bool spoofchk) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_vf *vf; |
| int rc; |
| |
| if (vf_i >= efx->vf_init_count) |
| return -EINVAL; |
| vf = efx->vf + vf_i; |
| |
| mutex_lock(&vf->txq_lock); |
| if (vf->txq_count == 0) { |
| vf->tx_filter_mode = |
| spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF; |
| rc = 0; |
| } else { |
| /* This cannot be changed while TX queues are running */ |
| rc = -EBUSY; |
| } |
| mutex_unlock(&vf->txq_lock); |
| return rc; |
| } |
| |
| int efx_siena_sriov_get_vf_config(struct net_device *net_dev, int vf_i, |
| struct ifla_vf_info *ivi) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_vf *vf; |
| u16 tci; |
| |
| if (vf_i >= efx->vf_init_count) |
| return -EINVAL; |
| vf = efx->vf + vf_i; |
| |
| ivi->vf = vf_i; |
| ether_addr_copy(ivi->mac, vf->addr.mac_addr); |
| ivi->max_tx_rate = 0; |
| ivi->min_tx_rate = 0; |
| tci = ntohs(vf->addr.tci); |
| ivi->vlan = tci & VLAN_VID_MASK; |
| ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7; |
| ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON; |
| |
| return 0; |
| } |
| |