| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/preempt.h> |
| #include <linux/kvm_host.h> |
| #include <linux/uaccess.h> |
| #include <linux/wait.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/kvm_emulate.h> |
| |
| #include <kvm/arm_psci.h> |
| #include <kvm/arm_hypercalls.h> |
| |
| /* |
| * This is an implementation of the Power State Coordination Interface |
| * as described in ARM document number ARM DEN 0022A. |
| */ |
| |
| static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * NOTE: For simplicity, we make VCPU suspend emulation to be |
| * same-as WFI (Wait-for-interrupt) emulation. |
| * |
| * This means for KVM the wakeup events are interrupts and |
| * this is consistent with intended use of StateID as described |
| * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). |
| * |
| * Further, we also treat power-down request to be same as |
| * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 |
| * specification (ARM DEN 0022A). This means all suspend states |
| * for KVM will preserve the register state. |
| */ |
| kvm_vcpu_block(vcpu); |
| kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| |
| return PSCI_RET_SUCCESS; |
| } |
| |
| static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.power_off = true; |
| kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) |
| { |
| struct vcpu_reset_state *reset_state; |
| struct kvm *kvm = source_vcpu->kvm; |
| struct kvm_vcpu *vcpu = NULL; |
| unsigned long cpu_id; |
| |
| cpu_id = smccc_get_arg1(source_vcpu); |
| if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) |
| return PSCI_RET_INVALID_PARAMS; |
| |
| vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); |
| |
| /* |
| * Make sure the caller requested a valid CPU and that the CPU is |
| * turned off. |
| */ |
| if (!vcpu) |
| return PSCI_RET_INVALID_PARAMS; |
| if (!vcpu->arch.power_off) { |
| if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1) |
| return PSCI_RET_ALREADY_ON; |
| else |
| return PSCI_RET_INVALID_PARAMS; |
| } |
| |
| reset_state = &vcpu->arch.reset_state; |
| |
| reset_state->pc = smccc_get_arg2(source_vcpu); |
| |
| /* Propagate caller endianness */ |
| reset_state->be = kvm_vcpu_is_be(source_vcpu); |
| |
| /* |
| * NOTE: We always update r0 (or x0) because for PSCI v0.1 |
| * the general purpose registers are undefined upon CPU_ON. |
| */ |
| reset_state->r0 = smccc_get_arg3(source_vcpu); |
| |
| WRITE_ONCE(reset_state->reset, true); |
| kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); |
| |
| /* |
| * Make sure the reset request is observed if the change to |
| * power_off is observed. |
| */ |
| smp_wmb(); |
| |
| vcpu->arch.power_off = false; |
| kvm_vcpu_wake_up(vcpu); |
| |
| return PSCI_RET_SUCCESS; |
| } |
| |
| static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) |
| { |
| int i, matching_cpus = 0; |
| unsigned long mpidr; |
| unsigned long target_affinity; |
| unsigned long target_affinity_mask; |
| unsigned long lowest_affinity_level; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_vcpu *tmp; |
| |
| target_affinity = smccc_get_arg1(vcpu); |
| lowest_affinity_level = smccc_get_arg2(vcpu); |
| |
| if (!kvm_psci_valid_affinity(vcpu, target_affinity)) |
| return PSCI_RET_INVALID_PARAMS; |
| |
| /* Determine target affinity mask */ |
| target_affinity_mask = psci_affinity_mask(lowest_affinity_level); |
| if (!target_affinity_mask) |
| return PSCI_RET_INVALID_PARAMS; |
| |
| /* Ignore other bits of target affinity */ |
| target_affinity &= target_affinity_mask; |
| |
| /* |
| * If one or more VCPU matching target affinity are running |
| * then ON else OFF |
| */ |
| kvm_for_each_vcpu(i, tmp, kvm) { |
| mpidr = kvm_vcpu_get_mpidr_aff(tmp); |
| if ((mpidr & target_affinity_mask) == target_affinity) { |
| matching_cpus++; |
| if (!tmp->arch.power_off) |
| return PSCI_0_2_AFFINITY_LEVEL_ON; |
| } |
| } |
| |
| if (!matching_cpus) |
| return PSCI_RET_INVALID_PARAMS; |
| |
| return PSCI_0_2_AFFINITY_LEVEL_OFF; |
| } |
| |
| static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags) |
| { |
| int i; |
| struct kvm_vcpu *tmp; |
| |
| /* |
| * The KVM ABI specifies that a system event exit may call KVM_RUN |
| * again and may perform shutdown/reboot at a later time that when the |
| * actual request is made. Since we are implementing PSCI and a |
| * caller of PSCI reboot and shutdown expects that the system shuts |
| * down or reboots immediately, let's make sure that VCPUs are not run |
| * after this call is handled and before the VCPUs have been |
| * re-initialized. |
| */ |
| kvm_for_each_vcpu(i, tmp, vcpu->kvm) |
| tmp->arch.power_off = true; |
| kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); |
| |
| memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); |
| vcpu->run->system_event.type = type; |
| vcpu->run->system_event.flags = flags; |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| } |
| |
| static void kvm_psci_system_off(struct kvm_vcpu *vcpu) |
| { |
| kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0); |
| } |
| |
| static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) |
| { |
| kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0); |
| } |
| |
| static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu) |
| { |
| kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, |
| KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2); |
| } |
| |
| static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) |
| { |
| switch(fn) { |
| case PSCI_0_2_FN64_CPU_SUSPEND: |
| case PSCI_0_2_FN64_CPU_ON: |
| case PSCI_0_2_FN64_AFFINITY_INFO: |
| /* Disallow these functions for 32bit guests */ |
| if (vcpu_mode_is_32bit(vcpu)) |
| return PSCI_RET_NOT_SUPPORTED; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| u32 psci_fn = smccc_get_function(vcpu); |
| unsigned long val; |
| int ret = 1; |
| |
| val = kvm_psci_check_allowed_function(vcpu, psci_fn); |
| if (val) |
| goto out; |
| |
| switch (psci_fn) { |
| case PSCI_0_2_FN_PSCI_VERSION: |
| /* |
| * Bits[31:16] = Major Version = 0 |
| * Bits[15:0] = Minor Version = 2 |
| */ |
| val = KVM_ARM_PSCI_0_2; |
| break; |
| case PSCI_0_2_FN_CPU_SUSPEND: |
| case PSCI_0_2_FN64_CPU_SUSPEND: |
| val = kvm_psci_vcpu_suspend(vcpu); |
| break; |
| case PSCI_0_2_FN_CPU_OFF: |
| kvm_psci_vcpu_off(vcpu); |
| val = PSCI_RET_SUCCESS; |
| break; |
| case PSCI_0_2_FN_CPU_ON: |
| kvm_psci_narrow_to_32bit(vcpu); |
| fallthrough; |
| case PSCI_0_2_FN64_CPU_ON: |
| mutex_lock(&kvm->lock); |
| val = kvm_psci_vcpu_on(vcpu); |
| mutex_unlock(&kvm->lock); |
| break; |
| case PSCI_0_2_FN_AFFINITY_INFO: |
| kvm_psci_narrow_to_32bit(vcpu); |
| fallthrough; |
| case PSCI_0_2_FN64_AFFINITY_INFO: |
| val = kvm_psci_vcpu_affinity_info(vcpu); |
| break; |
| case PSCI_0_2_FN_MIGRATE_INFO_TYPE: |
| /* |
| * Trusted OS is MP hence does not require migration |
| * or |
| * Trusted OS is not present |
| */ |
| val = PSCI_0_2_TOS_MP; |
| break; |
| case PSCI_0_2_FN_SYSTEM_OFF: |
| kvm_psci_system_off(vcpu); |
| /* |
| * We shouldn't be going back to guest VCPU after |
| * receiving SYSTEM_OFF request. |
| * |
| * If user space accidentally/deliberately resumes |
| * guest VCPU after SYSTEM_OFF request then guest |
| * VCPU should see internal failure from PSCI return |
| * value. To achieve this, we preload r0 (or x0) with |
| * PSCI return value INTERNAL_FAILURE. |
| */ |
| val = PSCI_RET_INTERNAL_FAILURE; |
| ret = 0; |
| break; |
| case PSCI_0_2_FN_SYSTEM_RESET: |
| kvm_psci_system_reset(vcpu); |
| /* |
| * Same reason as SYSTEM_OFF for preloading r0 (or x0) |
| * with PSCI return value INTERNAL_FAILURE. |
| */ |
| val = PSCI_RET_INTERNAL_FAILURE; |
| ret = 0; |
| break; |
| default: |
| val = PSCI_RET_NOT_SUPPORTED; |
| break; |
| } |
| |
| out: |
| smccc_set_retval(vcpu, val, 0, 0, 0); |
| return ret; |
| } |
| |
| static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor) |
| { |
| u32 psci_fn = smccc_get_function(vcpu); |
| u32 arg; |
| unsigned long val; |
| int ret = 1; |
| |
| if (minor > 1) |
| return -EINVAL; |
| |
| switch(psci_fn) { |
| case PSCI_0_2_FN_PSCI_VERSION: |
| val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1; |
| break; |
| case PSCI_1_0_FN_PSCI_FEATURES: |
| arg = smccc_get_arg1(vcpu); |
| val = kvm_psci_check_allowed_function(vcpu, arg); |
| if (val) |
| break; |
| |
| switch(arg) { |
| case PSCI_0_2_FN_PSCI_VERSION: |
| case PSCI_0_2_FN_CPU_SUSPEND: |
| case PSCI_0_2_FN64_CPU_SUSPEND: |
| case PSCI_0_2_FN_CPU_OFF: |
| case PSCI_0_2_FN_CPU_ON: |
| case PSCI_0_2_FN64_CPU_ON: |
| case PSCI_0_2_FN_AFFINITY_INFO: |
| case PSCI_0_2_FN64_AFFINITY_INFO: |
| case PSCI_0_2_FN_MIGRATE_INFO_TYPE: |
| case PSCI_0_2_FN_SYSTEM_OFF: |
| case PSCI_0_2_FN_SYSTEM_RESET: |
| case PSCI_1_0_FN_PSCI_FEATURES: |
| case ARM_SMCCC_VERSION_FUNC_ID: |
| val = 0; |
| break; |
| case PSCI_1_1_FN_SYSTEM_RESET2: |
| case PSCI_1_1_FN64_SYSTEM_RESET2: |
| if (minor >= 1) { |
| val = 0; |
| break; |
| } |
| fallthrough; |
| default: |
| val = PSCI_RET_NOT_SUPPORTED; |
| break; |
| } |
| break; |
| case PSCI_1_1_FN_SYSTEM_RESET2: |
| kvm_psci_narrow_to_32bit(vcpu); |
| fallthrough; |
| case PSCI_1_1_FN64_SYSTEM_RESET2: |
| if (minor >= 1) { |
| arg = smccc_get_arg1(vcpu); |
| |
| if (arg > PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET && |
| arg < PSCI_1_1_RESET_TYPE_VENDOR_START) { |
| val = PSCI_RET_INVALID_PARAMS; |
| } else { |
| kvm_psci_system_reset2(vcpu); |
| val = PSCI_RET_INTERNAL_FAILURE; |
| ret = 0; |
| } |
| break; |
| }; |
| fallthrough; |
| default: |
| return kvm_psci_0_2_call(vcpu); |
| } |
| |
| smccc_set_retval(vcpu, val, 0, 0, 0); |
| return ret; |
| } |
| |
| static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| u32 psci_fn = smccc_get_function(vcpu); |
| unsigned long val; |
| |
| switch (psci_fn) { |
| case KVM_PSCI_FN_CPU_OFF: |
| kvm_psci_vcpu_off(vcpu); |
| val = PSCI_RET_SUCCESS; |
| break; |
| case KVM_PSCI_FN_CPU_ON: |
| mutex_lock(&kvm->lock); |
| val = kvm_psci_vcpu_on(vcpu); |
| mutex_unlock(&kvm->lock); |
| break; |
| default: |
| val = PSCI_RET_NOT_SUPPORTED; |
| break; |
| } |
| |
| smccc_set_retval(vcpu, val, 0, 0, 0); |
| return 1; |
| } |
| |
| /** |
| * kvm_psci_call - handle PSCI call if r0 value is in range |
| * @vcpu: Pointer to the VCPU struct |
| * |
| * Handle PSCI calls from guests through traps from HVC instructions. |
| * The calling convention is similar to SMC calls to the secure world |
| * where the function number is placed in r0. |
| * |
| * This function returns: > 0 (success), 0 (success but exit to user |
| * space), and < 0 (errors) |
| * |
| * Errors: |
| * -EINVAL: Unrecognized PSCI function |
| */ |
| int kvm_psci_call(struct kvm_vcpu *vcpu) |
| { |
| switch (kvm_psci_version(vcpu, vcpu->kvm)) { |
| case KVM_ARM_PSCI_1_1: |
| return kvm_psci_1_x_call(vcpu, 1); |
| case KVM_ARM_PSCI_1_0: |
| return kvm_psci_1_x_call(vcpu, 0); |
| case KVM_ARM_PSCI_0_2: |
| return kvm_psci_0_2_call(vcpu); |
| case KVM_ARM_PSCI_0_1: |
| return kvm_psci_0_1_call(vcpu); |
| default: |
| return -EINVAL; |
| }; |
| } |
| |
| int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu) |
| { |
| return 3; /* PSCI version and two workaround registers */ |
| } |
| |
| int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| { |
| if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++)) |
| return -EFAULT; |
| |
| if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++)) |
| return -EFAULT; |
| |
| if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| #define KVM_REG_FEATURE_LEVEL_WIDTH 4 |
| #define KVM_REG_FEATURE_LEVEL_MASK (BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1) |
| |
| /* |
| * Convert the workaround level into an easy-to-compare number, where higher |
| * values mean better protection. |
| */ |
| static int get_kernel_wa_level(u64 regid) |
| { |
| switch (regid) { |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: |
| switch (arm64_get_spectre_v2_state()) { |
| case SPECTRE_VULNERABLE: |
| return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; |
| case SPECTRE_MITIGATED: |
| return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL; |
| case SPECTRE_UNAFFECTED: |
| return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED; |
| } |
| return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: |
| switch (arm64_get_spectre_v4_state()) { |
| case SPECTRE_MITIGATED: |
| /* |
| * As for the hypercall discovery, we pretend we |
| * don't have any FW mitigation if SSBS is there at |
| * all times. |
| */ |
| if (cpus_have_final_cap(ARM64_SSBS)) |
| return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; |
| fallthrough; |
| case SPECTRE_UNAFFECTED: |
| return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; |
| case SPECTRE_VULNERABLE: |
| return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| u64 val; |
| |
| switch (reg->id) { |
| case KVM_REG_ARM_PSCI_VERSION: |
| val = kvm_psci_version(vcpu, vcpu->kvm); |
| break; |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: |
| val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK; |
| break; |
| default: |
| return -ENOENT; |
| } |
| |
| if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| { |
| void __user *uaddr = (void __user *)(long)reg->addr; |
| u64 val; |
| int wa_level; |
| |
| if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id))) |
| return -EFAULT; |
| |
| switch (reg->id) { |
| case KVM_REG_ARM_PSCI_VERSION: |
| { |
| bool wants_02; |
| |
| wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features); |
| |
| switch (val) { |
| case KVM_ARM_PSCI_0_1: |
| if (wants_02) |
| return -EINVAL; |
| vcpu->kvm->arch.psci_version = val; |
| return 0; |
| case KVM_ARM_PSCI_0_2: |
| case KVM_ARM_PSCI_1_0: |
| case KVM_ARM_PSCI_1_1: |
| if (!wants_02) |
| return -EINVAL; |
| vcpu->kvm->arch.psci_version = val; |
| return 0; |
| } |
| break; |
| } |
| |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: |
| if (val & ~KVM_REG_FEATURE_LEVEL_MASK) |
| return -EINVAL; |
| |
| if (get_kernel_wa_level(reg->id) < val) |
| return -EINVAL; |
| |
| return 0; |
| |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: |
| if (val & ~(KVM_REG_FEATURE_LEVEL_MASK | |
| KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED)) |
| return -EINVAL; |
| |
| /* The enabled bit must not be set unless the level is AVAIL. */ |
| if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) && |
| (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL) |
| return -EINVAL; |
| |
| /* |
| * Map all the possible incoming states to the only two we |
| * really want to deal with. |
| */ |
| switch (val & KVM_REG_FEATURE_LEVEL_MASK) { |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: |
| wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; |
| break; |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: |
| case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: |
| wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* |
| * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the |
| * other way around. |
| */ |
| if (get_kernel_wa_level(reg->id) < wa_level) |
| return -EINVAL; |
| |
| return 0; |
| default: |
| return -ENOENT; |
| } |
| |
| return -EINVAL; |
| } |