|  | /* QLogic qed NIC Driver | 
|  | * Copyright (c) 2015-2017  QLogic Corporation | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and /or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/qed/qed_chain.h> | 
|  | #include <linux/qed/qed_if.h> | 
|  | #include "qed.h" | 
|  | #include "qed_cxt.h" | 
|  | #include "qed_dcbx.h" | 
|  | #include "qed_dev_api.h" | 
|  | #include "qed_fcoe.h" | 
|  | #include "qed_hsi.h" | 
|  | #include "qed_hw.h" | 
|  | #include "qed_init_ops.h" | 
|  | #include "qed_int.h" | 
|  | #include "qed_iscsi.h" | 
|  | #include "qed_ll2.h" | 
|  | #include "qed_mcp.h" | 
|  | #include "qed_ooo.h" | 
|  | #include "qed_reg_addr.h" | 
|  | #include "qed_sp.h" | 
|  | #include "qed_sriov.h" | 
|  | #include "qed_vf.h" | 
|  | #include "qed_rdma.h" | 
|  |  | 
|  | static DEFINE_SPINLOCK(qm_lock); | 
|  |  | 
|  | #define QED_MIN_DPIS            (4) | 
|  | #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS) | 
|  |  | 
|  | static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, enum BAR_ID bar_id) | 
|  | { | 
|  | u32 bar_reg = (bar_id == BAR_ID_0 ? | 
|  | PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); | 
|  | u32 val; | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) | 
|  | return qed_vf_hw_bar_size(p_hwfn, bar_id); | 
|  |  | 
|  | val = qed_rd(p_hwfn, p_ptt, bar_reg); | 
|  | if (val) | 
|  | return 1 << (val + 15); | 
|  |  | 
|  | /* Old MFW initialized above registered only conditionally */ | 
|  | if (p_hwfn->cdev->num_hwfns > 1) { | 
|  | DP_INFO(p_hwfn, | 
|  | "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); | 
|  | return BAR_ID_0 ? 256 * 1024 : 512 * 1024; | 
|  | } else { | 
|  | DP_INFO(p_hwfn, | 
|  | "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); | 
|  | return 512 * 1024; | 
|  | } | 
|  | } | 
|  |  | 
|  | void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) | 
|  | { | 
|  | u32 i; | 
|  |  | 
|  | cdev->dp_level = dp_level; | 
|  | cdev->dp_module = dp_module; | 
|  | for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  |  | 
|  | p_hwfn->dp_level = dp_level; | 
|  | p_hwfn->dp_module = dp_module; | 
|  | } | 
|  | } | 
|  |  | 
|  | void qed_init_struct(struct qed_dev *cdev) | 
|  | { | 
|  | u8 i; | 
|  |  | 
|  | for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  |  | 
|  | p_hwfn->cdev = cdev; | 
|  | p_hwfn->my_id = i; | 
|  | p_hwfn->b_active = false; | 
|  |  | 
|  | mutex_init(&p_hwfn->dmae_info.mutex); | 
|  | } | 
|  |  | 
|  | /* hwfn 0 is always active */ | 
|  | cdev->hwfns[0].b_active = true; | 
|  |  | 
|  | /* set the default cache alignment to 128 */ | 
|  | cdev->cache_shift = 7; | 
|  | } | 
|  |  | 
|  | static void qed_qm_info_free(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | kfree(qm_info->qm_pq_params); | 
|  | qm_info->qm_pq_params = NULL; | 
|  | kfree(qm_info->qm_vport_params); | 
|  | qm_info->qm_vport_params = NULL; | 
|  | kfree(qm_info->qm_port_params); | 
|  | qm_info->qm_port_params = NULL; | 
|  | kfree(qm_info->wfq_data); | 
|  | qm_info->wfq_data = NULL; | 
|  | } | 
|  |  | 
|  | void qed_resc_free(struct qed_dev *cdev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (IS_VF(cdev)) { | 
|  | for_each_hwfn(cdev, i) | 
|  | qed_l2_free(&cdev->hwfns[i]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kfree(cdev->fw_data); | 
|  | cdev->fw_data = NULL; | 
|  |  | 
|  | kfree(cdev->reset_stats); | 
|  | cdev->reset_stats = NULL; | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  |  | 
|  | qed_cxt_mngr_free(p_hwfn); | 
|  | qed_qm_info_free(p_hwfn); | 
|  | qed_spq_free(p_hwfn); | 
|  | qed_eq_free(p_hwfn); | 
|  | qed_consq_free(p_hwfn); | 
|  | qed_int_free(p_hwfn); | 
|  | #ifdef CONFIG_QED_LL2 | 
|  | qed_ll2_free(p_hwfn); | 
|  | #endif | 
|  | if (p_hwfn->hw_info.personality == QED_PCI_FCOE) | 
|  | qed_fcoe_free(p_hwfn); | 
|  |  | 
|  | if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { | 
|  | qed_iscsi_free(p_hwfn); | 
|  | qed_ooo_free(p_hwfn); | 
|  | } | 
|  | qed_iov_free(p_hwfn); | 
|  | qed_l2_free(p_hwfn); | 
|  | qed_dmae_info_free(p_hwfn); | 
|  | qed_dcbx_info_free(p_hwfn); | 
|  | } | 
|  | } | 
|  |  | 
|  | /******************** QM initialization *******************/ | 
|  | #define ACTIVE_TCS_BMAP 0x9f | 
|  | #define ACTIVE_TCS_BMAP_4PORT_K2 0xf | 
|  |  | 
|  | /* determines the physical queue flags for a given PF. */ | 
|  | static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 flags; | 
|  |  | 
|  | /* common flags */ | 
|  | flags = PQ_FLAGS_LB; | 
|  |  | 
|  | /* feature flags */ | 
|  | if (IS_QED_SRIOV(p_hwfn->cdev)) | 
|  | flags |= PQ_FLAGS_VFS; | 
|  |  | 
|  | /* protocol flags */ | 
|  | switch (p_hwfn->hw_info.personality) { | 
|  | case QED_PCI_ETH: | 
|  | flags |= PQ_FLAGS_MCOS; | 
|  | break; | 
|  | case QED_PCI_FCOE: | 
|  | flags |= PQ_FLAGS_OFLD; | 
|  | break; | 
|  | case QED_PCI_ISCSI: | 
|  | flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; | 
|  | break; | 
|  | case QED_PCI_ETH_ROCE: | 
|  | flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT; | 
|  | break; | 
|  | case QED_PCI_ETH_IWARP: | 
|  | flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | | 
|  | PQ_FLAGS_OFLD; | 
|  | break; | 
|  | default: | 
|  | DP_ERR(p_hwfn, | 
|  | "unknown personality %d\n", p_hwfn->hw_info.personality); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /* Getters for resource amounts necessary for qm initialization */ | 
|  | u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | return p_hwfn->hw_info.num_hw_tc; | 
|  | } | 
|  |  | 
|  | u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | return IS_QED_SRIOV(p_hwfn->cdev) ? | 
|  | p_hwfn->cdev->p_iov_info->total_vfs : 0; | 
|  | } | 
|  |  | 
|  | #define NUM_DEFAULT_RLS 1 | 
|  |  | 
|  | u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); | 
|  |  | 
|  | /* num RLs can't exceed resource amount of rls or vports */ | 
|  | num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL), | 
|  | RESC_NUM(p_hwfn, QED_VPORT)); | 
|  |  | 
|  | /* Make sure after we reserve there's something left */ | 
|  | if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) | 
|  | return 0; | 
|  |  | 
|  | /* subtract rls necessary for VFs and one default one for the PF */ | 
|  | num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; | 
|  |  | 
|  | return num_pf_rls; | 
|  | } | 
|  |  | 
|  | u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 pq_flags = qed_get_pq_flags(p_hwfn); | 
|  |  | 
|  | /* all pqs share the same vport, except for vfs and pf_rl pqs */ | 
|  | return (!!(PQ_FLAGS_RLS & pq_flags)) * | 
|  | qed_init_qm_get_num_pf_rls(p_hwfn) + | 
|  | (!!(PQ_FLAGS_VFS & pq_flags)) * | 
|  | qed_init_qm_get_num_vfs(p_hwfn) + 1; | 
|  | } | 
|  |  | 
|  | /* calc amount of PQs according to the requested flags */ | 
|  | u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 pq_flags = qed_get_pq_flags(p_hwfn); | 
|  |  | 
|  | return (!!(PQ_FLAGS_RLS & pq_flags)) * | 
|  | qed_init_qm_get_num_pf_rls(p_hwfn) + | 
|  | (!!(PQ_FLAGS_MCOS & pq_flags)) * | 
|  | qed_init_qm_get_num_tcs(p_hwfn) + | 
|  | (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) + | 
|  | (!!(PQ_FLAGS_ACK & pq_flags)) + (!!(PQ_FLAGS_OFLD & pq_flags)) + | 
|  | (!!(PQ_FLAGS_LLT & pq_flags)) + | 
|  | (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn); | 
|  | } | 
|  |  | 
|  | /* initialize the top level QM params */ | 
|  | static void qed_init_qm_params(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | bool four_port; | 
|  |  | 
|  | /* pq and vport bases for this PF */ | 
|  | qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ); | 
|  | qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); | 
|  |  | 
|  | /* rate limiting and weighted fair queueing are always enabled */ | 
|  | qm_info->vport_rl_en = true; | 
|  | qm_info->vport_wfq_en = true; | 
|  |  | 
|  | /* TC config is different for AH 4 port */ | 
|  | four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2; | 
|  |  | 
|  | /* in AH 4 port we have fewer TCs per port */ | 
|  | qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : | 
|  | NUM_OF_PHYS_TCS; | 
|  |  | 
|  | /* unless MFW indicated otherwise, ooo_tc == 3 for | 
|  | * AH 4-port and 4 otherwise. | 
|  | */ | 
|  | if (!qm_info->ooo_tc) | 
|  | qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : | 
|  | DCBX_TCP_OOO_TC; | 
|  | } | 
|  |  | 
|  | /* initialize qm vport params */ | 
|  | static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | u8 i; | 
|  |  | 
|  | /* all vports participate in weighted fair queueing */ | 
|  | for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++) | 
|  | qm_info->qm_vport_params[i].vport_wfq = 1; | 
|  | } | 
|  |  | 
|  | /* initialize qm port params */ | 
|  | static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | /* Initialize qm port parameters */ | 
|  | u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine; | 
|  |  | 
|  | /* indicate how ooo and high pri traffic is dealt with */ | 
|  | active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? | 
|  | ACTIVE_TCS_BMAP_4PORT_K2 : | 
|  | ACTIVE_TCS_BMAP; | 
|  |  | 
|  | for (i = 0; i < num_ports; i++) { | 
|  | struct init_qm_port_params *p_qm_port = | 
|  | &p_hwfn->qm_info.qm_port_params[i]; | 
|  |  | 
|  | p_qm_port->active = 1; | 
|  | p_qm_port->active_phys_tcs = active_phys_tcs; | 
|  | p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports; | 
|  | p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset the params which must be reset for qm init. QM init may be called as | 
|  | * a result of flows other than driver load (e.g. dcbx renegotiation). Other | 
|  | * params may be affected by the init but would simply recalculate to the same | 
|  | * values. The allocations made for QM init, ports, vports, pqs and vfqs are not | 
|  | * affected as these amounts stay the same. | 
|  | */ | 
|  | static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | qm_info->num_pqs = 0; | 
|  | qm_info->num_vports = 0; | 
|  | qm_info->num_pf_rls = 0; | 
|  | qm_info->num_vf_pqs = 0; | 
|  | qm_info->first_vf_pq = 0; | 
|  | qm_info->first_mcos_pq = 0; | 
|  | qm_info->first_rl_pq = 0; | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | qm_info->num_vports++; | 
|  |  | 
|  | if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) | 
|  | DP_ERR(p_hwfn, | 
|  | "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", | 
|  | qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); | 
|  | } | 
|  |  | 
|  | /* initialize a single pq and manage qm_info resources accounting. | 
|  | * The pq_init_flags param determines whether the PQ is rate limited | 
|  | * (for VF or PF) and whether a new vport is allocated to the pq or not | 
|  | * (i.e. vport will be shared). | 
|  | */ | 
|  |  | 
|  | /* flags for pq init */ | 
|  | #define PQ_INIT_SHARE_VPORT     (1 << 0) | 
|  | #define PQ_INIT_PF_RL           (1 << 1) | 
|  | #define PQ_INIT_VF_RL           (1 << 2) | 
|  |  | 
|  | /* defines for pq init */ | 
|  | #define PQ_INIT_DEFAULT_WRR_GROUP       1 | 
|  | #define PQ_INIT_DEFAULT_TC              0 | 
|  | #define PQ_INIT_OFLD_TC                 (p_hwfn->hw_info.offload_tc) | 
|  |  | 
|  | static void qed_init_qm_pq(struct qed_hwfn *p_hwfn, | 
|  | struct qed_qm_info *qm_info, | 
|  | u8 tc, u32 pq_init_flags) | 
|  | { | 
|  | u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn); | 
|  |  | 
|  | if (pq_idx > max_pq) | 
|  | DP_ERR(p_hwfn, | 
|  | "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); | 
|  |  | 
|  | /* init pq params */ | 
|  | qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id; | 
|  | qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + | 
|  | qm_info->num_vports; | 
|  | qm_info->qm_pq_params[pq_idx].tc_id = tc; | 
|  | qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; | 
|  | qm_info->qm_pq_params[pq_idx].rl_valid = | 
|  | (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL); | 
|  |  | 
|  | /* qm params accounting */ | 
|  | qm_info->num_pqs++; | 
|  | if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) | 
|  | qm_info->num_vports++; | 
|  |  | 
|  | if (pq_init_flags & PQ_INIT_PF_RL) | 
|  | qm_info->num_pf_rls++; | 
|  |  | 
|  | if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) | 
|  | DP_ERR(p_hwfn, | 
|  | "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", | 
|  | qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); | 
|  |  | 
|  | if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn)) | 
|  | DP_ERR(p_hwfn, | 
|  | "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", | 
|  | qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn)); | 
|  | } | 
|  |  | 
|  | /* get pq index according to PQ_FLAGS */ | 
|  | static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn, | 
|  | u32 pq_flags) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | /* Can't have multiple flags set here */ | 
|  | if (bitmap_weight((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1) | 
|  | goto err; | 
|  |  | 
|  | switch (pq_flags) { | 
|  | case PQ_FLAGS_RLS: | 
|  | return &qm_info->first_rl_pq; | 
|  | case PQ_FLAGS_MCOS: | 
|  | return &qm_info->first_mcos_pq; | 
|  | case PQ_FLAGS_LB: | 
|  | return &qm_info->pure_lb_pq; | 
|  | case PQ_FLAGS_OOO: | 
|  | return &qm_info->ooo_pq; | 
|  | case PQ_FLAGS_ACK: | 
|  | return &qm_info->pure_ack_pq; | 
|  | case PQ_FLAGS_OFLD: | 
|  | return &qm_info->offload_pq; | 
|  | case PQ_FLAGS_LLT: | 
|  | return &qm_info->low_latency_pq; | 
|  | case PQ_FLAGS_VFS: | 
|  | return &qm_info->first_vf_pq; | 
|  | default: | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | err: | 
|  | DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* save pq index in qm info */ | 
|  | static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn, | 
|  | u32 pq_flags, u16 pq_val) | 
|  | { | 
|  | u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); | 
|  |  | 
|  | *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; | 
|  | } | 
|  |  | 
|  | /* get tx pq index, with the PQ TX base already set (ready for context init) */ | 
|  | u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags) | 
|  | { | 
|  | u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); | 
|  |  | 
|  | return *base_pq_idx + CM_TX_PQ_BASE; | 
|  | } | 
|  |  | 
|  | u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc) | 
|  | { | 
|  | u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn); | 
|  |  | 
|  | if (tc > max_tc) | 
|  | DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); | 
|  |  | 
|  | return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc; | 
|  | } | 
|  |  | 
|  | u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf) | 
|  | { | 
|  | u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn); | 
|  |  | 
|  | if (vf > max_vf) | 
|  | DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); | 
|  |  | 
|  | return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf; | 
|  | } | 
|  |  | 
|  | u16 qed_get_cm_pq_idx_rl(struct qed_hwfn *p_hwfn, u8 rl) | 
|  | { | 
|  | u16 max_rl = qed_init_qm_get_num_pf_rls(p_hwfn); | 
|  |  | 
|  | if (rl > max_rl) | 
|  | DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl); | 
|  |  | 
|  | return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl; | 
|  | } | 
|  |  | 
|  | /* Functions for creating specific types of pqs */ | 
|  | static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); | 
|  | qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); | 
|  | qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); | 
|  | qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); | 
|  | qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs); | 
|  | qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | u8 tc_idx; | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); | 
|  | for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++) | 
|  | qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); | 
|  | qm_info->num_vf_pqs = num_vfs; | 
|  | for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) | 
|  | qed_init_qm_pq(p_hwfn, | 
|  | qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn); | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  |  | 
|  | if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) | 
|  | return; | 
|  |  | 
|  | qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); | 
|  | for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) | 
|  | qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL); | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | /* rate limited pqs, must come first (FW assumption) */ | 
|  | qed_init_qm_rl_pqs(p_hwfn); | 
|  |  | 
|  | /* pqs for multi cos */ | 
|  | qed_init_qm_mcos_pqs(p_hwfn); | 
|  |  | 
|  | /* pure loopback pq */ | 
|  | qed_init_qm_lb_pq(p_hwfn); | 
|  |  | 
|  | /* out of order pq */ | 
|  | qed_init_qm_ooo_pq(p_hwfn); | 
|  |  | 
|  | /* pure ack pq */ | 
|  | qed_init_qm_pure_ack_pq(p_hwfn); | 
|  |  | 
|  | /* pq for offloaded protocol */ | 
|  | qed_init_qm_offload_pq(p_hwfn); | 
|  |  | 
|  | /* low latency pq */ | 
|  | qed_init_qm_low_latency_pq(p_hwfn); | 
|  |  | 
|  | /* done sharing vports */ | 
|  | qed_init_qm_advance_vport(p_hwfn); | 
|  |  | 
|  | /* pqs for vfs */ | 
|  | qed_init_qm_vf_pqs(p_hwfn); | 
|  | } | 
|  |  | 
|  | /* compare values of getters against resources amounts */ | 
|  | static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) { | 
|  | DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (qed_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, QED_PQ)) { | 
|  | DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | struct init_qm_vport_params *vport; | 
|  | struct init_qm_port_params *port; | 
|  | struct init_qm_pq_params *pq; | 
|  | int i, tc; | 
|  |  | 
|  | /* top level params */ | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_HW, | 
|  | "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n", | 
|  | qm_info->start_pq, | 
|  | qm_info->start_vport, | 
|  | qm_info->pure_lb_pq, | 
|  | qm_info->offload_pq, qm_info->pure_ack_pq); | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_HW, | 
|  | "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n", | 
|  | qm_info->ooo_pq, | 
|  | qm_info->first_vf_pq, | 
|  | qm_info->num_pqs, | 
|  | qm_info->num_vf_pqs, | 
|  | qm_info->num_vports, qm_info->max_phys_tcs_per_port); | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_HW, | 
|  | "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", | 
|  | qm_info->pf_rl_en, | 
|  | qm_info->pf_wfq_en, | 
|  | qm_info->vport_rl_en, | 
|  | qm_info->vport_wfq_en, | 
|  | qm_info->pf_wfq, | 
|  | qm_info->pf_rl, | 
|  | qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn)); | 
|  |  | 
|  | /* port table */ | 
|  | for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) { | 
|  | port = &(qm_info->qm_port_params[i]); | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_HW, | 
|  | "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n", | 
|  | i, | 
|  | port->active, | 
|  | port->active_phys_tcs, | 
|  | port->num_pbf_cmd_lines, | 
|  | port->num_btb_blocks, port->reserved); | 
|  | } | 
|  |  | 
|  | /* vport table */ | 
|  | for (i = 0; i < qm_info->num_vports; i++) { | 
|  | vport = &(qm_info->qm_vport_params[i]); | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_HW, | 
|  | "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ", | 
|  | qm_info->start_vport + i, | 
|  | vport->vport_rl, vport->vport_wfq); | 
|  | for (tc = 0; tc < NUM_OF_TCS; tc++) | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_HW, | 
|  | "%d ", vport->first_tx_pq_id[tc]); | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n"); | 
|  | } | 
|  |  | 
|  | /* pq table */ | 
|  | for (i = 0; i < qm_info->num_pqs; i++) { | 
|  | pq = &(qm_info->qm_pq_params[i]); | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_HW, | 
|  | "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n", | 
|  | qm_info->start_pq + i, | 
|  | pq->port_id, | 
|  | pq->vport_id, | 
|  | pq->tc_id, pq->wrr_group, pq->rl_valid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qed_init_qm_info(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | /* reset params required for init run */ | 
|  | qed_init_qm_reset_params(p_hwfn); | 
|  |  | 
|  | /* init QM top level params */ | 
|  | qed_init_qm_params(p_hwfn); | 
|  |  | 
|  | /* init QM port params */ | 
|  | qed_init_qm_port_params(p_hwfn); | 
|  |  | 
|  | /* init QM vport params */ | 
|  | qed_init_qm_vport_params(p_hwfn); | 
|  |  | 
|  | /* init QM physical queue params */ | 
|  | qed_init_qm_pq_params(p_hwfn); | 
|  |  | 
|  | /* display all that init */ | 
|  | qed_dp_init_qm_params(p_hwfn); | 
|  | } | 
|  |  | 
|  | /* This function reconfigures the QM pf on the fly. | 
|  | * For this purpose we: | 
|  | * 1. reconfigure the QM database | 
|  | * 2. set new values to runtime array | 
|  | * 3. send an sdm_qm_cmd through the rbc interface to stop the QM | 
|  | * 4. activate init tool in QM_PF stage | 
|  | * 5. send an sdm_qm_cmd through rbc interface to release the QM | 
|  | */ | 
|  | int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | bool b_rc; | 
|  | int rc; | 
|  |  | 
|  | /* initialize qed's qm data structure */ | 
|  | qed_init_qm_info(p_hwfn); | 
|  |  | 
|  | /* stop PF's qm queues */ | 
|  | spin_lock_bh(&qm_lock); | 
|  | b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, | 
|  | qm_info->start_pq, qm_info->num_pqs); | 
|  | spin_unlock_bh(&qm_lock); | 
|  | if (!b_rc) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* clear the QM_PF runtime phase leftovers from previous init */ | 
|  | qed_init_clear_rt_data(p_hwfn); | 
|  |  | 
|  | /* prepare QM portion of runtime array */ | 
|  | qed_qm_init_pf(p_hwfn, p_ptt, false); | 
|  |  | 
|  | /* activate init tool on runtime array */ | 
|  | rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, | 
|  | p_hwfn->hw_info.hw_mode); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* start PF's qm queues */ | 
|  | spin_lock_bh(&qm_lock); | 
|  | b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, | 
|  | qm_info->start_pq, qm_info->num_pqs); | 
|  | spin_unlock_bh(&qm_lock); | 
|  | if (!b_rc) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | int rc; | 
|  |  | 
|  | rc = qed_init_qm_sanity(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | qm_info->qm_pq_params = kzalloc(sizeof(*qm_info->qm_pq_params) * | 
|  | qed_init_qm_get_num_pqs(p_hwfn), | 
|  | GFP_KERNEL); | 
|  | if (!qm_info->qm_pq_params) | 
|  | goto alloc_err; | 
|  |  | 
|  | qm_info->qm_vport_params = kzalloc(sizeof(*qm_info->qm_vport_params) * | 
|  | qed_init_qm_get_num_vports(p_hwfn), | 
|  | GFP_KERNEL); | 
|  | if (!qm_info->qm_vport_params) | 
|  | goto alloc_err; | 
|  |  | 
|  | qm_info->qm_port_params = kzalloc(sizeof(*qm_info->qm_port_params) * | 
|  | p_hwfn->cdev->num_ports_in_engine, | 
|  | GFP_KERNEL); | 
|  | if (!qm_info->qm_port_params) | 
|  | goto alloc_err; | 
|  |  | 
|  | qm_info->wfq_data = kzalloc(sizeof(*qm_info->wfq_data) * | 
|  | qed_init_qm_get_num_vports(p_hwfn), | 
|  | GFP_KERNEL); | 
|  | if (!qm_info->wfq_data) | 
|  | goto alloc_err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | alloc_err: | 
|  | DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); | 
|  | qed_qm_info_free(p_hwfn); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | int qed_resc_alloc(struct qed_dev *cdev) | 
|  | { | 
|  | u32 rdma_tasks, excess_tasks; | 
|  | u32 line_count; | 
|  | int i, rc = 0; | 
|  |  | 
|  | if (IS_VF(cdev)) { | 
|  | for_each_hwfn(cdev, i) { | 
|  | rc = qed_l2_alloc(&cdev->hwfns[i]); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); | 
|  | if (!cdev->fw_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  | u32 n_eqes, num_cons; | 
|  |  | 
|  | /* First allocate the context manager structure */ | 
|  | rc = qed_cxt_mngr_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | /* Set the HW cid/tid numbers (in the contest manager) | 
|  | * Must be done prior to any further computations. | 
|  | */ | 
|  | rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | rc = qed_alloc_qm_data(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | /* init qm info */ | 
|  | qed_init_qm_info(p_hwfn); | 
|  |  | 
|  | /* Compute the ILT client partition */ | 
|  | rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "too many ILT lines; re-computing with less lines\n"); | 
|  | /* In case there are not enough ILT lines we reduce the | 
|  | * number of RDMA tasks and re-compute. | 
|  | */ | 
|  | excess_tasks = | 
|  | qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count); | 
|  | if (!excess_tasks) | 
|  | goto alloc_err; | 
|  |  | 
|  | rdma_tasks = RDMA_MAX_TIDS - excess_tasks; | 
|  | rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); | 
|  | if (rc) { | 
|  | DP_ERR(p_hwfn, | 
|  | "failed ILT compute. Requested too many lines: %u\n", | 
|  | line_count); | 
|  |  | 
|  | goto alloc_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* CID map / ILT shadow table / T2 | 
|  | * The talbes sizes are determined by the computations above | 
|  | */ | 
|  | rc = qed_cxt_tables_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | /* SPQ, must follow ILT because initializes SPQ context */ | 
|  | rc = qed_spq_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | /* SP status block allocation */ | 
|  | p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, | 
|  | RESERVED_PTT_DPC); | 
|  |  | 
|  | rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | rc = qed_iov_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | /* EQ */ | 
|  | n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); | 
|  | if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { | 
|  | enum protocol_type rdma_proto; | 
|  |  | 
|  | if (QED_IS_ROCE_PERSONALITY(p_hwfn)) | 
|  | rdma_proto = PROTOCOLID_ROCE; | 
|  | else | 
|  | rdma_proto = PROTOCOLID_IWARP; | 
|  |  | 
|  | num_cons = qed_cxt_get_proto_cid_count(p_hwfn, | 
|  | rdma_proto, | 
|  | NULL) * 2; | 
|  | n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; | 
|  | } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { | 
|  | num_cons = | 
|  | qed_cxt_get_proto_cid_count(p_hwfn, | 
|  | PROTOCOLID_ISCSI, | 
|  | NULL); | 
|  | n_eqes += 2 * num_cons; | 
|  | } | 
|  |  | 
|  | if (n_eqes > 0xFFFF) { | 
|  | DP_ERR(p_hwfn, | 
|  | "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", | 
|  | n_eqes, 0xFFFF); | 
|  | goto alloc_no_mem; | 
|  | } | 
|  |  | 
|  | rc = qed_eq_alloc(p_hwfn, (u16) n_eqes); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | rc = qed_consq_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | rc = qed_l2_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | #ifdef CONFIG_QED_LL2 | 
|  | if (p_hwfn->using_ll2) { | 
|  | rc = qed_ll2_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { | 
|  | rc = qed_fcoe_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  | } | 
|  |  | 
|  | if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { | 
|  | rc = qed_iscsi_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  | rc = qed_ooo_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  | } | 
|  |  | 
|  | /* DMA info initialization */ | 
|  | rc = qed_dmae_info_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  |  | 
|  | /* DCBX initialization */ | 
|  | rc = qed_dcbx_info_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto alloc_err; | 
|  | } | 
|  |  | 
|  | cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); | 
|  | if (!cdev->reset_stats) | 
|  | goto alloc_no_mem; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | alloc_no_mem: | 
|  | rc = -ENOMEM; | 
|  | alloc_err: | 
|  | qed_resc_free(cdev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void qed_resc_setup(struct qed_dev *cdev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (IS_VF(cdev)) { | 
|  | for_each_hwfn(cdev, i) | 
|  | qed_l2_setup(&cdev->hwfns[i]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  |  | 
|  | qed_cxt_mngr_setup(p_hwfn); | 
|  | qed_spq_setup(p_hwfn); | 
|  | qed_eq_setup(p_hwfn); | 
|  | qed_consq_setup(p_hwfn); | 
|  |  | 
|  | /* Read shadow of current MFW mailbox */ | 
|  | qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); | 
|  | memcpy(p_hwfn->mcp_info->mfw_mb_shadow, | 
|  | p_hwfn->mcp_info->mfw_mb_cur, | 
|  | p_hwfn->mcp_info->mfw_mb_length); | 
|  |  | 
|  | qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); | 
|  |  | 
|  | qed_l2_setup(p_hwfn); | 
|  | qed_iov_setup(p_hwfn); | 
|  | #ifdef CONFIG_QED_LL2 | 
|  | if (p_hwfn->using_ll2) | 
|  | qed_ll2_setup(p_hwfn); | 
|  | #endif | 
|  | if (p_hwfn->hw_info.personality == QED_PCI_FCOE) | 
|  | qed_fcoe_setup(p_hwfn); | 
|  |  | 
|  | if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { | 
|  | qed_iscsi_setup(p_hwfn); | 
|  | qed_ooo_setup(p_hwfn); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define FINAL_CLEANUP_POLL_CNT          (100) | 
|  | #define FINAL_CLEANUP_POLL_TIME         (10) | 
|  | int qed_final_cleanup(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, u16 id, bool is_vf) | 
|  | { | 
|  | u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; | 
|  | int rc = -EBUSY; | 
|  |  | 
|  | addr = GTT_BAR0_MAP_REG_USDM_RAM + | 
|  | USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); | 
|  |  | 
|  | if (is_vf) | 
|  | id += 0x10; | 
|  |  | 
|  | command |= X_FINAL_CLEANUP_AGG_INT << | 
|  | SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; | 
|  | command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; | 
|  | command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; | 
|  | command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; | 
|  |  | 
|  | /* Make sure notification is not set before initiating final cleanup */ | 
|  | if (REG_RD(p_hwfn, addr)) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Unexpected; Found final cleanup notification before initiating final cleanup\n"); | 
|  | REG_WR(p_hwfn, addr, 0); | 
|  | } | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, QED_MSG_IOV, | 
|  | "Sending final cleanup for PFVF[%d] [Command %08x\n]", | 
|  | id, command); | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); | 
|  |  | 
|  | /* Poll until completion */ | 
|  | while (!REG_RD(p_hwfn, addr) && count--) | 
|  | msleep(FINAL_CLEANUP_POLL_TIME); | 
|  |  | 
|  | if (REG_RD(p_hwfn, addr)) | 
|  | rc = 0; | 
|  | else | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to receive FW final cleanup notification\n"); | 
|  |  | 
|  | /* Cleanup afterwards */ | 
|  | REG_WR(p_hwfn, addr, 0); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | int hw_mode = 0; | 
|  |  | 
|  | if (QED_IS_BB_B0(p_hwfn->cdev)) { | 
|  | hw_mode |= 1 << MODE_BB; | 
|  | } else if (QED_IS_AH(p_hwfn->cdev)) { | 
|  | hw_mode |= 1 << MODE_K2; | 
|  | } else { | 
|  | DP_NOTICE(p_hwfn, "Unknown chip type %#x\n", | 
|  | p_hwfn->cdev->type); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (p_hwfn->cdev->num_ports_in_engine) { | 
|  | case 1: | 
|  | hw_mode |= 1 << MODE_PORTS_PER_ENG_1; | 
|  | break; | 
|  | case 2: | 
|  | hw_mode |= 1 << MODE_PORTS_PER_ENG_2; | 
|  | break; | 
|  | case 4: | 
|  | hw_mode |= 1 << MODE_PORTS_PER_ENG_4; | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", | 
|  | p_hwfn->cdev->num_ports_in_engine); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (p_hwfn->cdev->mf_mode) { | 
|  | case QED_MF_DEFAULT: | 
|  | case QED_MF_NPAR: | 
|  | hw_mode |= 1 << MODE_MF_SI; | 
|  | break; | 
|  | case QED_MF_OVLAN: | 
|  | hw_mode |= 1 << MODE_MF_SD; | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n"); | 
|  | hw_mode |= 1 << MODE_MF_SI; | 
|  | } | 
|  |  | 
|  | hw_mode |= 1 << MODE_ASIC; | 
|  |  | 
|  | if (p_hwfn->cdev->num_hwfns > 1) | 
|  | hw_mode |= 1 << MODE_100G; | 
|  |  | 
|  | p_hwfn->hw_info.hw_mode = hw_mode; | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), | 
|  | "Configuring function for hw_mode: 0x%08x\n", | 
|  | p_hwfn->hw_info.hw_mode); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Init run time data for all PFs on an engine. */ | 
|  | static void qed_init_cau_rt_data(struct qed_dev *cdev) | 
|  | { | 
|  | u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; | 
|  | int i, igu_sb_id; | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  | struct qed_igu_info *p_igu_info; | 
|  | struct qed_igu_block *p_block; | 
|  | struct cau_sb_entry sb_entry; | 
|  |  | 
|  | p_igu_info = p_hwfn->hw_info.p_igu_info; | 
|  |  | 
|  | for (igu_sb_id = 0; | 
|  | igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) { | 
|  | p_block = &p_igu_info->entry[igu_sb_id]; | 
|  |  | 
|  | if (!p_block->is_pf) | 
|  | continue; | 
|  |  | 
|  | qed_init_cau_sb_entry(p_hwfn, &sb_entry, | 
|  | p_block->function_id, 0, 0); | 
|  | STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, | 
|  | sb_entry); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt) | 
|  | { | 
|  | u32 val, wr_mbs, cache_line_size; | 
|  |  | 
|  | val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); | 
|  | switch (val) { | 
|  | case 0: | 
|  | wr_mbs = 128; | 
|  | break; | 
|  | case 1: | 
|  | wr_mbs = 256; | 
|  | break; | 
|  | case 2: | 
|  | wr_mbs = 512; | 
|  | break; | 
|  | default: | 
|  | DP_INFO(p_hwfn, | 
|  | "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", | 
|  | val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs); | 
|  | switch (cache_line_size) { | 
|  | case 32: | 
|  | val = 0; | 
|  | break; | 
|  | case 64: | 
|  | val = 1; | 
|  | break; | 
|  | case 128: | 
|  | val = 2; | 
|  | break; | 
|  | case 256: | 
|  | val = 3; | 
|  | break; | 
|  | default: | 
|  | DP_INFO(p_hwfn, | 
|  | "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", | 
|  | cache_line_size); | 
|  | } | 
|  |  | 
|  | if (L1_CACHE_BYTES > wr_mbs) | 
|  | DP_INFO(p_hwfn, | 
|  | "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", | 
|  | L1_CACHE_BYTES, wr_mbs); | 
|  |  | 
|  | STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); | 
|  | if (val > 0) { | 
|  | STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); | 
|  | STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int qed_hw_init_common(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, int hw_mode) | 
|  | { | 
|  | struct qed_qm_info *qm_info = &p_hwfn->qm_info; | 
|  | struct qed_qm_common_rt_init_params params; | 
|  | struct qed_dev *cdev = p_hwfn->cdev; | 
|  | u8 vf_id, max_num_vfs; | 
|  | u16 num_pfs, pf_id; | 
|  | u32 concrete_fid; | 
|  | int rc = 0; | 
|  |  | 
|  | qed_init_cau_rt_data(cdev); | 
|  |  | 
|  | /* Program GTT windows */ | 
|  | qed_gtt_init(p_hwfn); | 
|  |  | 
|  | if (p_hwfn->mcp_info) { | 
|  | if (p_hwfn->mcp_info->func_info.bandwidth_max) | 
|  | qm_info->pf_rl_en = true; | 
|  | if (p_hwfn->mcp_info->func_info.bandwidth_min) | 
|  | qm_info->pf_wfq_en = true; | 
|  | } | 
|  |  | 
|  | memset(¶ms, 0, sizeof(params)); | 
|  | params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; | 
|  | params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; | 
|  | params.pf_rl_en = qm_info->pf_rl_en; | 
|  | params.pf_wfq_en = qm_info->pf_wfq_en; | 
|  | params.vport_rl_en = qm_info->vport_rl_en; | 
|  | params.vport_wfq_en = qm_info->vport_wfq_en; | 
|  | params.port_params = qm_info->qm_port_params; | 
|  |  | 
|  | qed_qm_common_rt_init(p_hwfn, ¶ms); | 
|  |  | 
|  | qed_cxt_hw_init_common(p_hwfn); | 
|  |  | 
|  | qed_init_cache_line_size(p_hwfn, p_ptt); | 
|  |  | 
|  | rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); | 
|  | qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); | 
|  |  | 
|  | if (QED_IS_BB(p_hwfn->cdev)) { | 
|  | num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); | 
|  | for (pf_id = 0; pf_id < num_pfs; pf_id++) { | 
|  | qed_fid_pretend(p_hwfn, p_ptt, pf_id); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); | 
|  | } | 
|  | /* pretend to original PF */ | 
|  | qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); | 
|  | } | 
|  |  | 
|  | max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; | 
|  | for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { | 
|  | concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); | 
|  | qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); | 
|  | qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); | 
|  | qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); | 
|  | qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); | 
|  | } | 
|  | /* pretend to original PF */ | 
|  | qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) | 
|  | { | 
|  | u32 dpi_bit_shift, dpi_count, dpi_page_size; | 
|  | u32 min_dpis; | 
|  | u32 n_wids; | 
|  |  | 
|  | /* Calculate DPI size */ | 
|  | n_wids = max_t(u32, QED_MIN_WIDS, n_cpus); | 
|  | dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids); | 
|  | dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); | 
|  | dpi_bit_shift = ilog2(dpi_page_size / 4096); | 
|  | dpi_count = pwm_region_size / dpi_page_size; | 
|  |  | 
|  | min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; | 
|  | min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); | 
|  |  | 
|  | p_hwfn->dpi_size = dpi_page_size; | 
|  | p_hwfn->dpi_count = dpi_count; | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); | 
|  |  | 
|  | if (dpi_count < min_dpis) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum QED_ROCE_EDPM_MODE { | 
|  | QED_ROCE_EDPM_MODE_ENABLE = 0, | 
|  | QED_ROCE_EDPM_MODE_FORCE_ON = 1, | 
|  | QED_ROCE_EDPM_MODE_DISABLE = 2, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | u32 pwm_regsize, norm_regsize; | 
|  | u32 non_pwm_conn, min_addr_reg1; | 
|  | u32 db_bar_size, n_cpus = 1; | 
|  | u32 roce_edpm_mode; | 
|  | u32 pf_dems_shift; | 
|  | int rc = 0; | 
|  | u8 cond; | 
|  |  | 
|  | db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); | 
|  | if (p_hwfn->cdev->num_hwfns > 1) | 
|  | db_bar_size /= 2; | 
|  |  | 
|  | /* Calculate doorbell regions */ | 
|  | non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + | 
|  | qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, | 
|  | NULL) + | 
|  | qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, | 
|  | NULL); | 
|  | norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE); | 
|  | min_addr_reg1 = norm_regsize / 4096; | 
|  | pwm_regsize = db_bar_size - norm_regsize; | 
|  |  | 
|  | /* Check that the normal and PWM sizes are valid */ | 
|  | if (db_bar_size < norm_regsize) { | 
|  | DP_ERR(p_hwfn->cdev, | 
|  | "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", | 
|  | db_bar_size, norm_regsize); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (pwm_regsize < QED_MIN_PWM_REGION) { | 
|  | DP_ERR(p_hwfn->cdev, | 
|  | "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", | 
|  | pwm_regsize, | 
|  | QED_MIN_PWM_REGION, db_bar_size, norm_regsize); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Calculate number of DPIs */ | 
|  | roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; | 
|  | if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || | 
|  | ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { | 
|  | /* Either EDPM is mandatory, or we are attempting to allocate a | 
|  | * WID per CPU. | 
|  | */ | 
|  | n_cpus = num_present_cpus(); | 
|  | rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); | 
|  | } | 
|  |  | 
|  | cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || | 
|  | (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); | 
|  | if (cond || p_hwfn->dcbx_no_edpm) { | 
|  | /* Either EDPM is disabled from user configuration, or it is | 
|  | * disabled via DCBx, or it is not mandatory and we failed to | 
|  | * allocated a WID per CPU. | 
|  | */ | 
|  | n_cpus = 1; | 
|  | rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); | 
|  |  | 
|  | if (cond) | 
|  | qed_rdma_dpm_bar(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | p_hwfn->wid_count = (u16) n_cpus; | 
|  |  | 
|  | DP_INFO(p_hwfn, | 
|  | "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", | 
|  | norm_regsize, | 
|  | pwm_regsize, | 
|  | p_hwfn->dpi_size, | 
|  | p_hwfn->dpi_count, | 
|  | ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ? | 
|  | "disabled" : "enabled"); | 
|  |  | 
|  | if (rc) { | 
|  | DP_ERR(p_hwfn, | 
|  | "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", | 
|  | p_hwfn->dpi_count, | 
|  | p_hwfn->pf_params.rdma_pf_params.min_dpis); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | p_hwfn->dpi_start_offset = norm_regsize; | 
|  |  | 
|  | /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ | 
|  | pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qed_hw_init_port(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, int hw_mode) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | struct qed_tunnel_info *p_tunn, | 
|  | int hw_mode, | 
|  | bool b_hw_start, | 
|  | enum qed_int_mode int_mode, | 
|  | bool allow_npar_tx_switch) | 
|  | { | 
|  | u8 rel_pf_id = p_hwfn->rel_pf_id; | 
|  | int rc = 0; | 
|  |  | 
|  | if (p_hwfn->mcp_info) { | 
|  | struct qed_mcp_function_info *p_info; | 
|  |  | 
|  | p_info = &p_hwfn->mcp_info->func_info; | 
|  | if (p_info->bandwidth_min) | 
|  | p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; | 
|  |  | 
|  | /* Update rate limit once we'll actually have a link */ | 
|  | p_hwfn->qm_info.pf_rl = 100000; | 
|  | } | 
|  |  | 
|  | qed_cxt_hw_init_pf(p_hwfn, p_ptt); | 
|  |  | 
|  | qed_int_igu_init_rt(p_hwfn); | 
|  |  | 
|  | /* Set VLAN in NIG if needed */ | 
|  | if (hw_mode & BIT(MODE_MF_SD)) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); | 
|  | STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); | 
|  | STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, | 
|  | p_hwfn->hw_info.ovlan); | 
|  | } | 
|  |  | 
|  | /* Enable classification by MAC if needed */ | 
|  | if (hw_mode & BIT(MODE_MF_SI)) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "Configuring TAGMAC_CLS_TYPE\n"); | 
|  | STORE_RT_REG(p_hwfn, | 
|  | NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); | 
|  | } | 
|  |  | 
|  | /* Protocol Configuration */ | 
|  | STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, | 
|  | (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); | 
|  | STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, | 
|  | (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0); | 
|  | STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); | 
|  |  | 
|  | /* Cleanup chip from previous driver if such remains exist */ | 
|  | rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Sanity check before the PF init sequence that uses DMAE */ | 
|  | rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* PF Init sequence */ | 
|  | rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ | 
|  | rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Pure runtime initializations - directly to the HW  */ | 
|  | qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); | 
|  |  | 
|  | rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (b_hw_start) { | 
|  | /* enable interrupts */ | 
|  | qed_int_igu_enable(p_hwfn, p_ptt, int_mode); | 
|  |  | 
|  | /* send function start command */ | 
|  | rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn, | 
|  | p_hwfn->cdev->mf_mode, | 
|  | allow_npar_tx_switch); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); | 
|  | return rc; | 
|  | } | 
|  | if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2)); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, | 
|  | 0x100); | 
|  | } | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u8 enable) | 
|  | { | 
|  | u32 delay_idx = 0, val, set_val = enable ? 1 : 0; | 
|  |  | 
|  | /* Change PF in PXP */ | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); | 
|  |  | 
|  | /* wait until value is set - try for 1 second every 50us */ | 
|  | for (delay_idx = 0; delay_idx < 20000; delay_idx++) { | 
|  | val = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); | 
|  | if (val == set_val) | 
|  | break; | 
|  |  | 
|  | usleep_range(50, 60); | 
|  | } | 
|  |  | 
|  | if (val != set_val) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "PFID_ENABLE_MASTER wasn't changed after a second\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_main_ptt) | 
|  | { | 
|  | /* Read shadow of current MFW mailbox */ | 
|  | qed_mcp_read_mb(p_hwfn, p_main_ptt); | 
|  | memcpy(p_hwfn->mcp_info->mfw_mb_shadow, | 
|  | p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); | 
|  | } | 
|  |  | 
|  | static void | 
|  | qed_fill_load_req_params(struct qed_load_req_params *p_load_req, | 
|  | struct qed_drv_load_params *p_drv_load) | 
|  | { | 
|  | memset(p_load_req, 0, sizeof(*p_load_req)); | 
|  |  | 
|  | p_load_req->drv_role = p_drv_load->is_crash_kernel ? | 
|  | QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS; | 
|  | p_load_req->timeout_val = p_drv_load->mfw_timeout_val; | 
|  | p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; | 
|  | p_load_req->override_force_load = p_drv_load->override_force_load; | 
|  | } | 
|  |  | 
|  | static int qed_vf_start(struct qed_hwfn *p_hwfn, | 
|  | struct qed_hw_init_params *p_params) | 
|  | { | 
|  | if (p_params->p_tunn) { | 
|  | qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn); | 
|  | qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); | 
|  | } | 
|  |  | 
|  | p_hwfn->b_int_enabled = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params) | 
|  | { | 
|  | struct qed_load_req_params load_req_params; | 
|  | u32 load_code, param, drv_mb_param; | 
|  | bool b_default_mtu = true; | 
|  | struct qed_hwfn *p_hwfn; | 
|  | int rc = 0, mfw_rc, i; | 
|  |  | 
|  | if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { | 
|  | DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (IS_PF(cdev)) { | 
|  | rc = qed_init_fw_data(cdev, p_params->bin_fw_data); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  |  | 
|  | /* If management didn't provide a default, set one of our own */ | 
|  | if (!p_hwfn->hw_info.mtu) { | 
|  | p_hwfn->hw_info.mtu = 1500; | 
|  | b_default_mtu = false; | 
|  | } | 
|  |  | 
|  | if (IS_VF(cdev)) { | 
|  | qed_vf_start(p_hwfn, p_params); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Enable DMAE in PXP */ | 
|  | rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true); | 
|  |  | 
|  | rc = qed_calc_hw_mode(p_hwfn); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | qed_fill_load_req_params(&load_req_params, | 
|  | p_params->p_drv_load_params); | 
|  | rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, | 
|  | &load_req_params); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | load_code = load_req_params.load_code; | 
|  | DP_VERBOSE(p_hwfn, QED_MSG_SP, | 
|  | "Load request was sent. Load code: 0x%x\n", | 
|  | load_code); | 
|  |  | 
|  | qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); | 
|  |  | 
|  | qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); | 
|  |  | 
|  | p_hwfn->first_on_engine = (load_code == | 
|  | FW_MSG_CODE_DRV_LOAD_ENGINE); | 
|  |  | 
|  | switch (load_code) { | 
|  | case FW_MSG_CODE_DRV_LOAD_ENGINE: | 
|  | rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, | 
|  | p_hwfn->hw_info.hw_mode); | 
|  | if (rc) | 
|  | break; | 
|  | /* Fall into */ | 
|  | case FW_MSG_CODE_DRV_LOAD_PORT: | 
|  | rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, | 
|  | p_hwfn->hw_info.hw_mode); | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | /* Fall into */ | 
|  | case FW_MSG_CODE_DRV_LOAD_FUNCTION: | 
|  | rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, | 
|  | p_params->p_tunn, | 
|  | p_hwfn->hw_info.hw_mode, | 
|  | p_params->b_hw_start, | 
|  | p_params->int_mode, | 
|  | p_params->allow_npar_tx_switch); | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Unexpected load code [0x%08x]", load_code); | 
|  | rc = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (rc) | 
|  | DP_NOTICE(p_hwfn, | 
|  | "init phase failed for loadcode 0x%x (rc %d)\n", | 
|  | load_code, rc); | 
|  |  | 
|  | /* ACK mfw regardless of success or failure of initialization */ | 
|  | mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, | 
|  | DRV_MSG_CODE_LOAD_DONE, | 
|  | 0, &load_code, ¶m); | 
|  | if (rc) | 
|  | return rc; | 
|  | if (mfw_rc) { | 
|  | DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n"); | 
|  | return mfw_rc; | 
|  | } | 
|  |  | 
|  | /* Check if there is a DID mismatch between nvm-cfg/efuse */ | 
|  | if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) | 
|  | DP_NOTICE(p_hwfn, | 
|  | "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); | 
|  |  | 
|  | /* send DCBX attention request command */ | 
|  | DP_VERBOSE(p_hwfn, | 
|  | QED_MSG_DCB, | 
|  | "sending phony dcbx set command to trigger DCBx attention handling\n"); | 
|  | mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, | 
|  | DRV_MSG_CODE_SET_DCBX, | 
|  | 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, | 
|  | &load_code, ¶m); | 
|  | if (mfw_rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to send DCBX attention request\n"); | 
|  | return mfw_rc; | 
|  | } | 
|  |  | 
|  | p_hwfn->hw_init_done = true; | 
|  | } | 
|  |  | 
|  | if (IS_PF(cdev)) { | 
|  | p_hwfn = QED_LEADING_HWFN(cdev); | 
|  | drv_mb_param = STORM_FW_VERSION; | 
|  | rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, | 
|  | DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, | 
|  | drv_mb_param, &load_code, ¶m); | 
|  | if (rc) | 
|  | DP_INFO(p_hwfn, "Failed to update firmware version\n"); | 
|  |  | 
|  | if (!b_default_mtu) { | 
|  | rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, | 
|  | p_hwfn->hw_info.mtu); | 
|  | if (rc) | 
|  | DP_INFO(p_hwfn, | 
|  | "Failed to update default mtu\n"); | 
|  | } | 
|  |  | 
|  | rc = qed_mcp_ov_update_driver_state(p_hwfn, | 
|  | p_hwfn->p_main_ptt, | 
|  | QED_OV_DRIVER_STATE_DISABLED); | 
|  | if (rc) | 
|  | DP_INFO(p_hwfn, "Failed to update driver state\n"); | 
|  |  | 
|  | rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, | 
|  | QED_OV_ESWITCH_VEB); | 
|  | if (rc) | 
|  | DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define QED_HW_STOP_RETRY_LIMIT (10) | 
|  | static void qed_hw_timers_stop(struct qed_dev *cdev, | 
|  | struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* close timers */ | 
|  | qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); | 
|  |  | 
|  | for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { | 
|  | if ((!qed_rd(p_hwfn, p_ptt, | 
|  | TM_REG_PF_SCAN_ACTIVE_CONN)) && | 
|  | (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) | 
|  | break; | 
|  |  | 
|  | /* Dependent on number of connection/tasks, possibly | 
|  | * 1ms sleep is required between polls | 
|  | */ | 
|  | usleep_range(1000, 2000); | 
|  | } | 
|  |  | 
|  | if (i < QED_HW_STOP_RETRY_LIMIT) | 
|  | return; | 
|  |  | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Timers linear scans are not over [Connection %02x Tasks %02x]\n", | 
|  | (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), | 
|  | (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); | 
|  | } | 
|  |  | 
|  | void qed_hw_timers_stop_all(struct qed_dev *cdev) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for_each_hwfn(cdev, j) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; | 
|  | struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; | 
|  |  | 
|  | qed_hw_timers_stop(cdev, p_hwfn, p_ptt); | 
|  | } | 
|  | } | 
|  |  | 
|  | int qed_hw_stop(struct qed_dev *cdev) | 
|  | { | 
|  | struct qed_hwfn *p_hwfn; | 
|  | struct qed_ptt *p_ptt; | 
|  | int rc, rc2 = 0; | 
|  | int j; | 
|  |  | 
|  | for_each_hwfn(cdev, j) { | 
|  | p_hwfn = &cdev->hwfns[j]; | 
|  | p_ptt = p_hwfn->p_main_ptt; | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); | 
|  |  | 
|  | if (IS_VF(cdev)) { | 
|  | qed_vf_pf_int_cleanup(p_hwfn); | 
|  | rc = qed_vf_pf_reset(p_hwfn); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "qed_vf_pf_reset failed. rc = %d.\n", | 
|  | rc); | 
|  | rc2 = -EINVAL; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* mark the hw as uninitialized... */ | 
|  | p_hwfn->hw_init_done = false; | 
|  |  | 
|  | /* Send unload command to MCP */ | 
|  | rc = qed_mcp_unload_req(p_hwfn, p_ptt); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed sending a UNLOAD_REQ command. rc = %d.\n", | 
|  | rc); | 
|  | rc2 = -EINVAL; | 
|  | } | 
|  |  | 
|  | qed_slowpath_irq_sync(p_hwfn); | 
|  |  | 
|  | /* After this point no MFW attentions are expected, e.g. prevent | 
|  | * race between pf stop and dcbx pf update. | 
|  | */ | 
|  | rc = qed_sp_pf_stop(p_hwfn); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", | 
|  | rc); | 
|  | rc2 = -EINVAL; | 
|  | } | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); | 
|  |  | 
|  | qed_hw_timers_stop(cdev, p_hwfn, p_ptt); | 
|  |  | 
|  | /* Disable Attention Generation */ | 
|  | qed_int_igu_disable_int(p_hwfn, p_ptt); | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); | 
|  |  | 
|  | qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); | 
|  |  | 
|  | /* Need to wait 1ms to guarantee SBs are cleared */ | 
|  | usleep_range(1000, 2000); | 
|  |  | 
|  | /* Disable PF in HW blocks */ | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); | 
|  | qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); | 
|  |  | 
|  | qed_mcp_unload_done(p_hwfn, p_ptt); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed sending a UNLOAD_DONE command. rc = %d.\n", | 
|  | rc); | 
|  | rc2 = -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IS_PF(cdev)) { | 
|  | p_hwfn = QED_LEADING_HWFN(cdev); | 
|  | p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt; | 
|  |  | 
|  | /* Disable DMAE in PXP - in CMT, this should only be done for | 
|  | * first hw-function, and only after all transactions have | 
|  | * stopped for all active hw-functions. | 
|  | */ | 
|  | rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "qed_change_pci_hwfn failed. rc = %d.\n", rc); | 
|  | rc2 = -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc2; | 
|  | } | 
|  |  | 
|  | int qed_hw_stop_fastpath(struct qed_dev *cdev) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for_each_hwfn(cdev, j) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; | 
|  | struct qed_ptt *p_ptt; | 
|  |  | 
|  | if (IS_VF(cdev)) { | 
|  | qed_vf_pf_int_cleanup(p_hwfn); | 
|  | continue; | 
|  | } | 
|  | p_ptt = qed_ptt_acquire(p_hwfn); | 
|  | if (!p_ptt) | 
|  | return -EAGAIN; | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); | 
|  | qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); | 
|  |  | 
|  | qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); | 
|  |  | 
|  | /* Need to wait 1ms to guarantee SBs are cleared */ | 
|  | usleep_range(1000, 2000); | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_ptt *p_ptt; | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) | 
|  | return 0; | 
|  |  | 
|  | p_ptt = qed_ptt_acquire(p_hwfn); | 
|  | if (!p_ptt) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* If roce info is allocated it means roce is initialized and should | 
|  | * be enabled in searcher. | 
|  | */ | 
|  | if (p_hwfn->p_rdma_info && | 
|  | p_hwfn->b_rdma_enabled_in_prs) | 
|  | qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1); | 
|  |  | 
|  | /* Re-open incoming traffic */ | 
|  | qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ | 
|  | static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | qed_ptt_pool_free(p_hwfn); | 
|  | kfree(p_hwfn->hw_info.p_igu_info); | 
|  | p_hwfn->hw_info.p_igu_info = NULL; | 
|  | } | 
|  |  | 
|  | /* Setup bar access */ | 
|  | static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | /* clear indirect access */ | 
|  | if (QED_IS_AH(p_hwfn->cdev)) { | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); | 
|  | } else { | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); | 
|  | } | 
|  |  | 
|  | /* Clean Previous errors if such exist */ | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id); | 
|  |  | 
|  | /* enable internal target-read */ | 
|  | qed_wr(p_hwfn, p_hwfn->p_main_ptt, | 
|  | PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); | 
|  | } | 
|  |  | 
|  | static void get_function_id(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | /* ME Register */ | 
|  | p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn, | 
|  | PXP_PF_ME_OPAQUE_ADDR); | 
|  |  | 
|  | p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); | 
|  |  | 
|  | p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; | 
|  | p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, | 
|  | PXP_CONCRETE_FID_PFID); | 
|  | p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, | 
|  | PXP_CONCRETE_FID_PORT); | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, | 
|  | "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", | 
|  | p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); | 
|  | } | 
|  |  | 
|  | static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 *feat_num = p_hwfn->hw_info.feat_num; | 
|  | struct qed_sb_cnt_info sb_cnt; | 
|  | u32 non_l2_sbs = 0; | 
|  |  | 
|  | memset(&sb_cnt, 0, sizeof(sb_cnt)); | 
|  | qed_int_get_num_sbs(p_hwfn, &sb_cnt); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_QED_RDMA) && | 
|  | QED_IS_RDMA_PERSONALITY(p_hwfn)) { | 
|  | /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide | 
|  | * the status blocks equally between L2 / RoCE but with | 
|  | * consideration as to how many l2 queues / cnqs we have. | 
|  | */ | 
|  | feat_num[QED_RDMA_CNQ] = | 
|  | min_t(u32, sb_cnt.cnt / 2, | 
|  | RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); | 
|  |  | 
|  | non_l2_sbs = feat_num[QED_RDMA_CNQ]; | 
|  | } | 
|  | if (QED_IS_L2_PERSONALITY(p_hwfn)) { | 
|  | /* Start by allocating VF queues, then PF's */ | 
|  | feat_num[QED_VF_L2_QUE] = min_t(u32, | 
|  | RESC_NUM(p_hwfn, QED_L2_QUEUE), | 
|  | sb_cnt.iov_cnt); | 
|  | feat_num[QED_PF_L2_QUE] = min_t(u32, | 
|  | sb_cnt.cnt - non_l2_sbs, | 
|  | RESC_NUM(p_hwfn, | 
|  | QED_L2_QUEUE) - | 
|  | FEAT_NUM(p_hwfn, | 
|  | QED_VF_L2_QUE)); | 
|  | } | 
|  |  | 
|  | if (QED_IS_FCOE_PERSONALITY(p_hwfn)) | 
|  | feat_num[QED_FCOE_CQ] =  min_t(u32, sb_cnt.cnt, | 
|  | RESC_NUM(p_hwfn, | 
|  | QED_CMDQS_CQS)); | 
|  |  | 
|  | if (QED_IS_ISCSI_PERSONALITY(p_hwfn)) | 
|  | feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt, | 
|  | RESC_NUM(p_hwfn, | 
|  | QED_CMDQS_CQS)); | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_PROBE, | 
|  | "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n", | 
|  | (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE), | 
|  | (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE), | 
|  | (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ), | 
|  | (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ), | 
|  | (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ), | 
|  | (int)sb_cnt.cnt); | 
|  | } | 
|  |  | 
|  | const char *qed_hw_get_resc_name(enum qed_resources res_id) | 
|  | { | 
|  | switch (res_id) { | 
|  | case QED_L2_QUEUE: | 
|  | return "L2_QUEUE"; | 
|  | case QED_VPORT: | 
|  | return "VPORT"; | 
|  | case QED_RSS_ENG: | 
|  | return "RSS_ENG"; | 
|  | case QED_PQ: | 
|  | return "PQ"; | 
|  | case QED_RL: | 
|  | return "RL"; | 
|  | case QED_MAC: | 
|  | return "MAC"; | 
|  | case QED_VLAN: | 
|  | return "VLAN"; | 
|  | case QED_RDMA_CNQ_RAM: | 
|  | return "RDMA_CNQ_RAM"; | 
|  | case QED_ILT: | 
|  | return "ILT"; | 
|  | case QED_LL2_QUEUE: | 
|  | return "LL2_QUEUE"; | 
|  | case QED_CMDQS_CQS: | 
|  | return "CMDQS_CQS"; | 
|  | case QED_RDMA_STATS_QUEUE: | 
|  | return "RDMA_STATS_QUEUE"; | 
|  | case QED_BDQ: | 
|  | return "BDQ"; | 
|  | case QED_SB: | 
|  | return "SB"; | 
|  | default: | 
|  | return "UNKNOWN_RESOURCE"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | enum qed_resources res_id, | 
|  | u32 resc_max_val, u32 *p_mcp_resp) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, | 
|  | resc_max_val, p_mcp_resp); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "MFW response failure for a max value setting of resource %d [%s]\n", | 
|  | res_id, qed_hw_get_resc_name(res_id)); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) | 
|  | DP_INFO(p_hwfn, | 
|  | "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", | 
|  | res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | bool b_ah = QED_IS_AH(p_hwfn->cdev); | 
|  | u32 resc_max_val, mcp_resp; | 
|  | u8 res_id; | 
|  | int rc; | 
|  |  | 
|  | for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { | 
|  | switch (res_id) { | 
|  | case QED_LL2_QUEUE: | 
|  | resc_max_val = MAX_NUM_LL2_RX_QUEUES; | 
|  | break; | 
|  | case QED_RDMA_CNQ_RAM: | 
|  | /* No need for a case for QED_CMDQS_CQS since | 
|  | * CNQ/CMDQS are the same resource. | 
|  | */ | 
|  | resc_max_val = NUM_OF_GLOBAL_QUEUES; | 
|  | break; | 
|  | case QED_RDMA_STATS_QUEUE: | 
|  | resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 | 
|  | : RDMA_NUM_STATISTIC_COUNTERS_BB; | 
|  | break; | 
|  | case QED_BDQ: | 
|  | resc_max_val = BDQ_NUM_RESOURCES; | 
|  | break; | 
|  | default: | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, | 
|  | resc_max_val, &mcp_resp); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* There's no point to continue to the next resource if the | 
|  | * command is not supported by the MFW. | 
|  | * We do continue if the command is supported but the resource | 
|  | * is unknown to the MFW. Such a resource will be later | 
|  | * configured with the default allocation values. | 
|  | */ | 
|  | if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static | 
|  | int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn, | 
|  | enum qed_resources res_id, | 
|  | u32 *p_resc_num, u32 *p_resc_start) | 
|  | { | 
|  | u8 num_funcs = p_hwfn->num_funcs_on_engine; | 
|  | bool b_ah = QED_IS_AH(p_hwfn->cdev); | 
|  |  | 
|  | switch (res_id) { | 
|  | case QED_L2_QUEUE: | 
|  | *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 : | 
|  | MAX_NUM_L2_QUEUES_BB) / num_funcs; | 
|  | break; | 
|  | case QED_VPORT: | 
|  | *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 : | 
|  | MAX_NUM_VPORTS_BB) / num_funcs; | 
|  | break; | 
|  | case QED_RSS_ENG: | 
|  | *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 : | 
|  | ETH_RSS_ENGINE_NUM_BB) / num_funcs; | 
|  | break; | 
|  | case QED_PQ: | 
|  | *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 : | 
|  | MAX_QM_TX_QUEUES_BB) / num_funcs; | 
|  | *p_resc_num &= ~0x7;	/* The granularity of the PQs is 8 */ | 
|  | break; | 
|  | case QED_RL: | 
|  | *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs; | 
|  | break; | 
|  | case QED_MAC: | 
|  | case QED_VLAN: | 
|  | /* Each VFC resource can accommodate both a MAC and a VLAN */ | 
|  | *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; | 
|  | break; | 
|  | case QED_ILT: | 
|  | *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 : | 
|  | PXP_NUM_ILT_RECORDS_BB) / num_funcs; | 
|  | break; | 
|  | case QED_LL2_QUEUE: | 
|  | *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs; | 
|  | break; | 
|  | case QED_RDMA_CNQ_RAM: | 
|  | case QED_CMDQS_CQS: | 
|  | /* CNQ/CMDQS are the same resource */ | 
|  | *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs; | 
|  | break; | 
|  | case QED_RDMA_STATS_QUEUE: | 
|  | *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 : | 
|  | RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs; | 
|  | break; | 
|  | case QED_BDQ: | 
|  | if (p_hwfn->hw_info.personality != QED_PCI_ISCSI && | 
|  | p_hwfn->hw_info.personality != QED_PCI_FCOE) | 
|  | *p_resc_num = 0; | 
|  | else | 
|  | *p_resc_num = 1; | 
|  | break; | 
|  | case QED_SB: | 
|  | /* Since we want its value to reflect whether MFW supports | 
|  | * the new scheme, have a default of 0. | 
|  | */ | 
|  | *p_resc_num = 0; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (res_id) { | 
|  | case QED_BDQ: | 
|  | if (!*p_resc_num) | 
|  | *p_resc_start = 0; | 
|  | else if (p_hwfn->cdev->num_ports_in_engine == 4) | 
|  | *p_resc_start = p_hwfn->port_id; | 
|  | else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) | 
|  | *p_resc_start = p_hwfn->port_id; | 
|  | else if (p_hwfn->hw_info.personality == QED_PCI_FCOE) | 
|  | *p_resc_start = p_hwfn->port_id + 2; | 
|  | break; | 
|  | default: | 
|  | *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn, | 
|  | enum qed_resources res_id) | 
|  | { | 
|  | u32 dflt_resc_num = 0, dflt_resc_start = 0; | 
|  | u32 mcp_resp, *p_resc_num, *p_resc_start; | 
|  | int rc; | 
|  |  | 
|  | p_resc_num = &RESC_NUM(p_hwfn, res_id); | 
|  | p_resc_start = &RESC_START(p_hwfn, res_id); | 
|  |  | 
|  | rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, | 
|  | &dflt_resc_start); | 
|  | if (rc) { | 
|  | DP_ERR(p_hwfn, | 
|  | "Failed to get default amount for resource %d [%s]\n", | 
|  | res_id, qed_hw_get_resc_name(res_id)); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, | 
|  | &mcp_resp, p_resc_num, p_resc_start); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "MFW response failure for an allocation request for resource %d [%s]\n", | 
|  | res_id, qed_hw_get_resc_name(res_id)); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Default driver values are applied in the following cases: | 
|  | * - The resource allocation MB command is not supported by the MFW | 
|  | * - There is an internal error in the MFW while processing the request | 
|  | * - The resource ID is unknown to the MFW | 
|  | */ | 
|  | if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { | 
|  | DP_INFO(p_hwfn, | 
|  | "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n", | 
|  | res_id, | 
|  | qed_hw_get_resc_name(res_id), | 
|  | mcp_resp, dflt_resc_num, dflt_resc_start); | 
|  | *p_resc_num = dflt_resc_num; | 
|  | *p_resc_start = dflt_resc_start; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* PQs have to divide by 8 [that's the HW granularity]. | 
|  | * Reduce number so it would fit. | 
|  | */ | 
|  | if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) { | 
|  | DP_INFO(p_hwfn, | 
|  | "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n", | 
|  | *p_resc_num, | 
|  | (*p_resc_num) & ~0x7, | 
|  | *p_resc_start, (*p_resc_start) & ~0x7); | 
|  | *p_resc_num &= ~0x7; | 
|  | *p_resc_start &= ~0x7; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | int rc; | 
|  | u8 res_id; | 
|  |  | 
|  | for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { | 
|  | rc = __qed_hw_set_resc_info(p_hwfn, res_id); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_resc_unlock_params resc_unlock_params; | 
|  | struct qed_resc_lock_params resc_lock_params; | 
|  | bool b_ah = QED_IS_AH(p_hwfn->cdev); | 
|  | u8 res_id; | 
|  | int rc; | 
|  |  | 
|  | /* Setting the max values of the soft resources and the following | 
|  | * resources allocation queries should be atomic. Since several PFs can | 
|  | * run in parallel - a resource lock is needed. | 
|  | * If either the resource lock or resource set value commands are not | 
|  | * supported - skip the the max values setting, release the lock if | 
|  | * needed, and proceed to the queries. Other failures, including a | 
|  | * failure to acquire the lock, will cause this function to fail. | 
|  | */ | 
|  | qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, | 
|  | QED_RESC_LOCK_RESC_ALLOC, false); | 
|  |  | 
|  | rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); | 
|  | if (rc && rc != -EINVAL) { | 
|  | return rc; | 
|  | } else if (rc == -EINVAL) { | 
|  | DP_INFO(p_hwfn, | 
|  | "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); | 
|  | } else if (!rc && !resc_lock_params.b_granted) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to acquire the resource lock for the resource allocation commands\n"); | 
|  | return -EBUSY; | 
|  | } else { | 
|  | rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt); | 
|  | if (rc && rc != -EINVAL) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to set the max values of the soft resources\n"); | 
|  | goto unlock_and_exit; | 
|  | } else if (rc == -EINVAL) { | 
|  | DP_INFO(p_hwfn, | 
|  | "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); | 
|  | rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, | 
|  | &resc_unlock_params); | 
|  | if (rc) | 
|  | DP_INFO(p_hwfn, | 
|  | "Failed to release the resource lock for the resource allocation commands\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = qed_hw_set_resc_info(p_hwfn); | 
|  | if (rc) | 
|  | goto unlock_and_exit; | 
|  |  | 
|  | if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { | 
|  | rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); | 
|  | if (rc) | 
|  | DP_INFO(p_hwfn, | 
|  | "Failed to release the resource lock for the resource allocation commands\n"); | 
|  | } | 
|  |  | 
|  | /* Sanity for ILT */ | 
|  | if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) || | 
|  | (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) { | 
|  | DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", | 
|  | RESC_START(p_hwfn, QED_ILT), | 
|  | RESC_END(p_hwfn, QED_ILT) - 1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* This will also learn the number of SBs from MFW */ | 
|  | if (qed_int_igu_reset_cam(p_hwfn, p_ptt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | qed_hw_set_feat(p_hwfn); | 
|  |  | 
|  | for (res_id = 0; res_id < QED_MAX_RESC; res_id++) | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n", | 
|  | qed_hw_get_resc_name(res_id), | 
|  | RESC_NUM(p_hwfn, res_id), | 
|  | RESC_START(p_hwfn, res_id)); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unlock_and_exit: | 
|  | if (resc_lock_params.b_granted && !resc_unlock_params.b_released) | 
|  | qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; | 
|  | u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; | 
|  | struct qed_mcp_link_capabilities *p_caps; | 
|  | struct qed_mcp_link_params *link; | 
|  |  | 
|  | /* Read global nvm_cfg address */ | 
|  | nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); | 
|  |  | 
|  | /* Verify MCP has initialized it */ | 
|  | if (!nvm_cfg_addr) { | 
|  | DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */ | 
|  | nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); | 
|  |  | 
|  | addr = MCP_REG_SCRATCH + nvm_cfg1_offset + | 
|  | offsetof(struct nvm_cfg1, glob) + | 
|  | offsetof(struct nvm_cfg1_glob, core_cfg); | 
|  |  | 
|  | core_cfg = qed_rd(p_hwfn, p_ptt, addr); | 
|  |  | 
|  | switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> | 
|  | NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: | 
|  | p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G; | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Read default link configuration */ | 
|  | link = &p_hwfn->mcp_info->link_input; | 
|  | p_caps = &p_hwfn->mcp_info->link_capabilities; | 
|  | port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + | 
|  | offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); | 
|  | link_temp = qed_rd(p_hwfn, p_ptt, | 
|  | port_cfg_addr + | 
|  | offsetof(struct nvm_cfg1_port, speed_cap_mask)); | 
|  | link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; | 
|  | link->speed.advertised_speeds = link_temp; | 
|  |  | 
|  | link_temp = link->speed.advertised_speeds; | 
|  | p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp; | 
|  |  | 
|  | link_temp = qed_rd(p_hwfn, p_ptt, | 
|  | port_cfg_addr + | 
|  | offsetof(struct nvm_cfg1_port, link_settings)); | 
|  | switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> | 
|  | NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { | 
|  | case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: | 
|  | link->speed.autoneg = true; | 
|  | break; | 
|  | case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: | 
|  | link->speed.forced_speed = 1000; | 
|  | break; | 
|  | case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: | 
|  | link->speed.forced_speed = 10000; | 
|  | break; | 
|  | case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: | 
|  | link->speed.forced_speed = 25000; | 
|  | break; | 
|  | case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: | 
|  | link->speed.forced_speed = 40000; | 
|  | break; | 
|  | case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: | 
|  | link->speed.forced_speed = 50000; | 
|  | break; | 
|  | case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: | 
|  | link->speed.forced_speed = 100000; | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); | 
|  | } | 
|  |  | 
|  | p_hwfn->mcp_info->link_capabilities.default_speed_autoneg = | 
|  | link->speed.autoneg; | 
|  |  | 
|  | link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; | 
|  | link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; | 
|  | link->pause.autoneg = !!(link_temp & | 
|  | NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); | 
|  | link->pause.forced_rx = !!(link_temp & | 
|  | NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); | 
|  | link->pause.forced_tx = !!(link_temp & | 
|  | NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); | 
|  | link->loopback_mode = 0; | 
|  |  | 
|  | if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { | 
|  | link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + | 
|  | offsetof(struct nvm_cfg1_port, ext_phy)); | 
|  | link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; | 
|  | link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; | 
|  | p_caps->default_eee = QED_MCP_EEE_ENABLED; | 
|  | link->eee.enable = true; | 
|  | switch (link_temp) { | 
|  | case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: | 
|  | p_caps->default_eee = QED_MCP_EEE_DISABLED; | 
|  | link->eee.enable = false; | 
|  | break; | 
|  | case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: | 
|  | p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; | 
|  | break; | 
|  | case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: | 
|  | p_caps->eee_lpi_timer = | 
|  | EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; | 
|  | break; | 
|  | case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: | 
|  | p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; | 
|  | break; | 
|  | } | 
|  |  | 
|  | link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; | 
|  | link->eee.tx_lpi_enable = link->eee.enable; | 
|  | link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV; | 
|  | } else { | 
|  | p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED; | 
|  | } | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_LINK, | 
|  | "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n", | 
|  | link->speed.forced_speed, | 
|  | link->speed.advertised_speeds, | 
|  | link->speed.autoneg, | 
|  | link->pause.autoneg, | 
|  | p_caps->default_eee, p_caps->eee_lpi_timer); | 
|  |  | 
|  | /* Read Multi-function information from shmem */ | 
|  | addr = MCP_REG_SCRATCH + nvm_cfg1_offset + | 
|  | offsetof(struct nvm_cfg1, glob) + | 
|  | offsetof(struct nvm_cfg1_glob, generic_cont0); | 
|  |  | 
|  | generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); | 
|  |  | 
|  | mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> | 
|  | NVM_CFG1_GLOB_MF_MODE_OFFSET; | 
|  |  | 
|  | switch (mf_mode) { | 
|  | case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: | 
|  | p_hwfn->cdev->mf_mode = QED_MF_OVLAN; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: | 
|  | p_hwfn->cdev->mf_mode = QED_MF_NPAR; | 
|  | break; | 
|  | case NVM_CFG1_GLOB_MF_MODE_DEFAULT: | 
|  | p_hwfn->cdev->mf_mode = QED_MF_DEFAULT; | 
|  | break; | 
|  | } | 
|  | DP_INFO(p_hwfn, "Multi function mode is %08x\n", | 
|  | p_hwfn->cdev->mf_mode); | 
|  |  | 
|  | /* Read Multi-function information from shmem */ | 
|  | addr = MCP_REG_SCRATCH + nvm_cfg1_offset + | 
|  | offsetof(struct nvm_cfg1, glob) + | 
|  | offsetof(struct nvm_cfg1_glob, device_capabilities); | 
|  |  | 
|  | device_capabilities = qed_rd(p_hwfn, p_ptt, addr); | 
|  | if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) | 
|  | __set_bit(QED_DEV_CAP_ETH, | 
|  | &p_hwfn->hw_info.device_capabilities); | 
|  | if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) | 
|  | __set_bit(QED_DEV_CAP_FCOE, | 
|  | &p_hwfn->hw_info.device_capabilities); | 
|  | if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) | 
|  | __set_bit(QED_DEV_CAP_ISCSI, | 
|  | &p_hwfn->hw_info.device_capabilities); | 
|  | if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) | 
|  | __set_bit(QED_DEV_CAP_ROCE, | 
|  | &p_hwfn->hw_info.device_capabilities); | 
|  |  | 
|  | return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; | 
|  | u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; | 
|  | struct qed_dev *cdev = p_hwfn->cdev; | 
|  |  | 
|  | num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; | 
|  |  | 
|  | /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values | 
|  | * in the other bits are selected. | 
|  | * Bits 1-15 are for functions 1-15, respectively, and their value is | 
|  | * '0' only for enabled functions (function 0 always exists and | 
|  | * enabled). | 
|  | * In case of CMT, only the "even" functions are enabled, and thus the | 
|  | * number of functions for both hwfns is learnt from the same bits. | 
|  | */ | 
|  | reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); | 
|  |  | 
|  | if (reg_function_hide & 0x1) { | 
|  | if (QED_IS_BB(cdev)) { | 
|  | if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) { | 
|  | num_funcs = 0; | 
|  | eng_mask = 0xaaaa; | 
|  | } else { | 
|  | num_funcs = 1; | 
|  | eng_mask = 0x5554; | 
|  | } | 
|  | } else { | 
|  | num_funcs = 1; | 
|  | eng_mask = 0xfffe; | 
|  | } | 
|  |  | 
|  | /* Get the number of the enabled functions on the engine */ | 
|  | tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; | 
|  | while (tmp) { | 
|  | if (tmp & 0x1) | 
|  | num_funcs++; | 
|  | tmp >>= 0x1; | 
|  | } | 
|  |  | 
|  | /* Get the PF index within the enabled functions */ | 
|  | low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; | 
|  | tmp = reg_function_hide & eng_mask & low_pfs_mask; | 
|  | while (tmp) { | 
|  | if (tmp & 0x1) | 
|  | enabled_func_idx--; | 
|  | tmp >>= 0x1; | 
|  | } | 
|  | } | 
|  |  | 
|  | p_hwfn->num_funcs_on_engine = num_funcs; | 
|  | p_hwfn->enabled_func_idx = enabled_func_idx; | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_PROBE, | 
|  | "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", | 
|  | p_hwfn->rel_pf_id, | 
|  | p_hwfn->abs_pf_id, | 
|  | p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); | 
|  | } | 
|  |  | 
|  | static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt) | 
|  | { | 
|  | u32 port_mode; | 
|  |  | 
|  | port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0); | 
|  |  | 
|  | if (port_mode < 3) { | 
|  | p_hwfn->cdev->num_ports_in_engine = 1; | 
|  | } else if (port_mode <= 5) { | 
|  | p_hwfn->cdev->num_ports_in_engine = 2; | 
|  | } else { | 
|  | DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n", | 
|  | p_hwfn->cdev->num_ports_in_engine); | 
|  |  | 
|  | /* Default num_ports_in_engine to something */ | 
|  | p_hwfn->cdev->num_ports_in_engine = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt) | 
|  | { | 
|  | u32 port; | 
|  | int i; | 
|  |  | 
|  | p_hwfn->cdev->num_ports_in_engine = 0; | 
|  |  | 
|  | for (i = 0; i < MAX_NUM_PORTS_K2; i++) { | 
|  | port = qed_rd(p_hwfn, p_ptt, | 
|  | CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4)); | 
|  | if (port & 1) | 
|  | p_hwfn->cdev->num_ports_in_engine++; | 
|  | } | 
|  |  | 
|  | if (!p_hwfn->cdev->num_ports_in_engine) { | 
|  | DP_NOTICE(p_hwfn, "All NIG ports are inactive\n"); | 
|  |  | 
|  | /* Default num_ports_in_engine to something */ | 
|  | p_hwfn->cdev->num_ports_in_engine = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | if (QED_IS_BB(p_hwfn->cdev)) | 
|  | qed_hw_info_port_num_bb(p_hwfn, p_ptt); | 
|  | else | 
|  | qed_hw_info_port_num_ah(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_mcp_link_capabilities *p_caps; | 
|  | u32 eee_status; | 
|  |  | 
|  | p_caps = &p_hwfn->mcp_info->link_capabilities; | 
|  | if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED) | 
|  | return; | 
|  |  | 
|  | p_caps->eee_speed_caps = 0; | 
|  | eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + | 
|  | offsetof(struct public_port, eee_status)); | 
|  | eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> | 
|  | EEE_SUPPORTED_SPEED_OFFSET; | 
|  |  | 
|  | if (eee_status & EEE_1G_SUPPORTED) | 
|  | p_caps->eee_speed_caps |= QED_EEE_1G_ADV; | 
|  | if (eee_status & EEE_10G_ADV) | 
|  | p_caps->eee_speed_caps |= QED_EEE_10G_ADV; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qed_get_hw_info(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | enum qed_pci_personality personality) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* Since all information is common, only first hwfns should do this */ | 
|  | if (IS_LEAD_HWFN(p_hwfn)) { | 
|  | rc = qed_iov_hw_info(p_hwfn); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | qed_hw_info_port_num(p_hwfn, p_ptt); | 
|  |  | 
|  | qed_mcp_get_capabilities(p_hwfn, p_ptt); | 
|  |  | 
|  | qed_hw_get_nvm_info(p_hwfn, p_ptt); | 
|  |  | 
|  | rc = qed_int_igu_read_cam(p_hwfn, p_ptt); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (qed_mcp_is_init(p_hwfn)) | 
|  | ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, | 
|  | p_hwfn->mcp_info->func_info.mac); | 
|  | else | 
|  | eth_random_addr(p_hwfn->hw_info.hw_mac_addr); | 
|  |  | 
|  | if (qed_mcp_is_init(p_hwfn)) { | 
|  | if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) | 
|  | p_hwfn->hw_info.ovlan = | 
|  | p_hwfn->mcp_info->func_info.ovlan; | 
|  |  | 
|  | qed_mcp_cmd_port_init(p_hwfn, p_ptt); | 
|  |  | 
|  | qed_get_eee_caps(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | if (qed_mcp_is_init(p_hwfn)) { | 
|  | enum qed_pci_personality protocol; | 
|  |  | 
|  | protocol = p_hwfn->mcp_info->func_info.protocol; | 
|  | p_hwfn->hw_info.personality = protocol; | 
|  | } | 
|  |  | 
|  | p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; | 
|  | p_hwfn->hw_info.num_active_tc = 1; | 
|  |  | 
|  | qed_get_num_funcs(p_hwfn, p_ptt); | 
|  |  | 
|  | if (qed_mcp_is_init(p_hwfn)) | 
|  | p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; | 
|  |  | 
|  | return qed_hw_get_resc(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_dev *cdev = p_hwfn->cdev; | 
|  | u16 device_id_mask; | 
|  | u32 tmp; | 
|  |  | 
|  | /* Read Vendor Id / Device Id */ | 
|  | pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); | 
|  | pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); | 
|  |  | 
|  | /* Determine type */ | 
|  | device_id_mask = cdev->device_id & QED_DEV_ID_MASK; | 
|  | switch (device_id_mask) { | 
|  | case QED_DEV_ID_MASK_BB: | 
|  | cdev->type = QED_DEV_TYPE_BB; | 
|  | break; | 
|  | case QED_DEV_ID_MASK_AH: | 
|  | cdev->type = QED_DEV_TYPE_AH; | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); | 
|  | cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); | 
|  |  | 
|  | MASK_FIELD(CHIP_REV, cdev->chip_rev); | 
|  |  | 
|  | /* Learn number of HW-functions */ | 
|  | tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); | 
|  |  | 
|  | if (tmp & (1 << p_hwfn->rel_pf_id)) { | 
|  | DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); | 
|  | cdev->num_hwfns = 2; | 
|  | } else { | 
|  | cdev->num_hwfns = 1; | 
|  | } | 
|  |  | 
|  | cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt, | 
|  | MISCS_REG_CHIP_TEST_REG) >> 4; | 
|  | MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); | 
|  | cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); | 
|  | MASK_FIELD(CHIP_METAL, cdev->chip_metal); | 
|  |  | 
|  | DP_INFO(cdev->hwfns, | 
|  | "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", | 
|  | QED_IS_BB(cdev) ? "BB" : "AH", | 
|  | 'A' + cdev->chip_rev, | 
|  | (int)cdev->chip_metal, | 
|  | cdev->chip_num, cdev->chip_rev, | 
|  | cdev->chip_bond_id, cdev->chip_metal); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_nvm_info_free(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | kfree(p_hwfn->nvm_info.image_att); | 
|  | p_hwfn->nvm_info.image_att = NULL; | 
|  | } | 
|  |  | 
|  | static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, | 
|  | void __iomem *p_regview, | 
|  | void __iomem *p_doorbells, | 
|  | enum qed_pci_personality personality) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | /* Split PCI bars evenly between hwfns */ | 
|  | p_hwfn->regview = p_regview; | 
|  | p_hwfn->doorbells = p_doorbells; | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) | 
|  | return qed_vf_hw_prepare(p_hwfn); | 
|  |  | 
|  | /* Validate that chip access is feasible */ | 
|  | if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { | 
|  | DP_ERR(p_hwfn, | 
|  | "Reading the ME register returns all Fs; Preventing further chip access\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | get_function_id(p_hwfn); | 
|  |  | 
|  | /* Allocate PTT pool */ | 
|  | rc = qed_ptt_pool_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto err0; | 
|  |  | 
|  | /* Allocate the main PTT */ | 
|  | p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); | 
|  |  | 
|  | /* First hwfn learns basic information, e.g., number of hwfns */ | 
|  | if (!p_hwfn->my_id) { | 
|  | rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); | 
|  | if (rc) | 
|  | goto err1; | 
|  | } | 
|  |  | 
|  | qed_hw_hwfn_prepare(p_hwfn); | 
|  |  | 
|  | /* Initialize MCP structure */ | 
|  | rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); | 
|  | goto err1; | 
|  | } | 
|  |  | 
|  | /* Read the device configuration information from the HW and SHMEM */ | 
|  | rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, "Failed to get HW information\n"); | 
|  | goto err2; | 
|  | } | 
|  |  | 
|  | /* Sending a mailbox to the MFW should be done after qed_get_hw_info() | 
|  | * is called as it sets the ports number in an engine. | 
|  | */ | 
|  | if (IS_LEAD_HWFN(p_hwfn)) { | 
|  | rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); | 
|  | if (rc) | 
|  | DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n"); | 
|  | } | 
|  |  | 
|  | /* NVRAM info initialization and population */ | 
|  | if (IS_LEAD_HWFN(p_hwfn)) { | 
|  | rc = qed_mcp_nvm_info_populate(p_hwfn); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to populate nvm info shadow\n"); | 
|  | goto err2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate the init RT array and initialize the init-ops engine */ | 
|  | rc = qed_init_alloc(p_hwfn); | 
|  | if (rc) | 
|  | goto err3; | 
|  |  | 
|  | return rc; | 
|  | err3: | 
|  | if (IS_LEAD_HWFN(p_hwfn)) | 
|  | qed_nvm_info_free(p_hwfn); | 
|  | err2: | 
|  | if (IS_LEAD_HWFN(p_hwfn)) | 
|  | qed_iov_free_hw_info(p_hwfn->cdev); | 
|  | qed_mcp_free(p_hwfn); | 
|  | err1: | 
|  | qed_hw_hwfn_free(p_hwfn); | 
|  | err0: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int qed_hw_prepare(struct qed_dev *cdev, | 
|  | int personality) | 
|  | { | 
|  | struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); | 
|  | int rc; | 
|  |  | 
|  | /* Store the precompiled init data ptrs */ | 
|  | if (IS_PF(cdev)) | 
|  | qed_init_iro_array(cdev); | 
|  |  | 
|  | /* Initialize the first hwfn - will learn number of hwfns */ | 
|  | rc = qed_hw_prepare_single(p_hwfn, | 
|  | cdev->regview, | 
|  | cdev->doorbells, personality); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | personality = p_hwfn->hw_info.personality; | 
|  |  | 
|  | /* Initialize the rest of the hwfns */ | 
|  | if (cdev->num_hwfns > 1) { | 
|  | void __iomem *p_regview, *p_doorbell; | 
|  | u8 __iomem *addr; | 
|  |  | 
|  | /* adjust bar offset for second engine */ | 
|  | addr = cdev->regview + | 
|  | qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, | 
|  | BAR_ID_0) / 2; | 
|  | p_regview = addr; | 
|  |  | 
|  | addr = cdev->doorbells + | 
|  | qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, | 
|  | BAR_ID_1) / 2; | 
|  | p_doorbell = addr; | 
|  |  | 
|  | /* prepare second hw function */ | 
|  | rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, | 
|  | p_doorbell, personality); | 
|  |  | 
|  | /* in case of error, need to free the previously | 
|  | * initiliazed hwfn 0. | 
|  | */ | 
|  | if (rc) { | 
|  | if (IS_PF(cdev)) { | 
|  | qed_init_free(p_hwfn); | 
|  | qed_nvm_info_free(p_hwfn); | 
|  | qed_mcp_free(p_hwfn); | 
|  | qed_hw_hwfn_free(p_hwfn); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void qed_hw_remove(struct qed_dev *cdev) | 
|  | { | 
|  | struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); | 
|  | int i; | 
|  |  | 
|  | if (IS_PF(cdev)) | 
|  | qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, | 
|  | QED_OV_DRIVER_STATE_NOT_LOADED); | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  |  | 
|  | if (IS_VF(cdev)) { | 
|  | qed_vf_pf_release(p_hwfn); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | qed_init_free(p_hwfn); | 
|  | qed_hw_hwfn_free(p_hwfn); | 
|  | qed_mcp_free(p_hwfn); | 
|  | } | 
|  |  | 
|  | qed_iov_free_hw_info(cdev); | 
|  |  | 
|  | qed_nvm_info_free(p_hwfn); | 
|  | } | 
|  |  | 
|  | static void qed_chain_free_next_ptr(struct qed_dev *cdev, | 
|  | struct qed_chain *p_chain) | 
|  | { | 
|  | void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; | 
|  | dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; | 
|  | struct qed_chain_next *p_next; | 
|  | u32 size, i; | 
|  |  | 
|  | if (!p_virt) | 
|  | return; | 
|  |  | 
|  | size = p_chain->elem_size * p_chain->usable_per_page; | 
|  |  | 
|  | for (i = 0; i < p_chain->page_cnt; i++) { | 
|  | if (!p_virt) | 
|  | break; | 
|  |  | 
|  | p_next = (struct qed_chain_next *)((u8 *)p_virt + size); | 
|  | p_virt_next = p_next->next_virt; | 
|  | p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); | 
|  |  | 
|  | dma_free_coherent(&cdev->pdev->dev, | 
|  | QED_CHAIN_PAGE_SIZE, p_virt, p_phys); | 
|  |  | 
|  | p_virt = p_virt_next; | 
|  | p_phys = p_phys_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qed_chain_free_single(struct qed_dev *cdev, | 
|  | struct qed_chain *p_chain) | 
|  | { | 
|  | if (!p_chain->p_virt_addr) | 
|  | return; | 
|  |  | 
|  | dma_free_coherent(&cdev->pdev->dev, | 
|  | QED_CHAIN_PAGE_SIZE, | 
|  | p_chain->p_virt_addr, p_chain->p_phys_addr); | 
|  | } | 
|  |  | 
|  | static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) | 
|  | { | 
|  | void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; | 
|  | u32 page_cnt = p_chain->page_cnt, i, pbl_size; | 
|  | u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table; | 
|  |  | 
|  | if (!pp_virt_addr_tbl) | 
|  | return; | 
|  |  | 
|  | if (!p_pbl_virt) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < page_cnt; i++) { | 
|  | if (!pp_virt_addr_tbl[i]) | 
|  | break; | 
|  |  | 
|  | dma_free_coherent(&cdev->pdev->dev, | 
|  | QED_CHAIN_PAGE_SIZE, | 
|  | pp_virt_addr_tbl[i], | 
|  | *(dma_addr_t *)p_pbl_virt); | 
|  |  | 
|  | p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; | 
|  |  | 
|  | if (!p_chain->b_external_pbl) | 
|  | dma_free_coherent(&cdev->pdev->dev, | 
|  | pbl_size, | 
|  | p_chain->pbl_sp.p_virt_table, | 
|  | p_chain->pbl_sp.p_phys_table); | 
|  | out: | 
|  | vfree(p_chain->pbl.pp_virt_addr_tbl); | 
|  | p_chain->pbl.pp_virt_addr_tbl = NULL; | 
|  | } | 
|  |  | 
|  | void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) | 
|  | { | 
|  | switch (p_chain->mode) { | 
|  | case QED_CHAIN_MODE_NEXT_PTR: | 
|  | qed_chain_free_next_ptr(cdev, p_chain); | 
|  | break; | 
|  | case QED_CHAIN_MODE_SINGLE: | 
|  | qed_chain_free_single(cdev, p_chain); | 
|  | break; | 
|  | case QED_CHAIN_MODE_PBL: | 
|  | qed_chain_free_pbl(cdev, p_chain); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | qed_chain_alloc_sanity_check(struct qed_dev *cdev, | 
|  | enum qed_chain_cnt_type cnt_type, | 
|  | size_t elem_size, u32 page_cnt) | 
|  | { | 
|  | u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; | 
|  |  | 
|  | /* The actual chain size can be larger than the maximal possible value | 
|  | * after rounding up the requested elements number to pages, and after | 
|  | * taking into acount the unusuable elements (next-ptr elements). | 
|  | * The size of a "u16" chain can be (U16_MAX + 1) since the chain | 
|  | * size/capacity fields are of a u32 type. | 
|  | */ | 
|  | if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && | 
|  | chain_size > ((u32)U16_MAX + 1)) || | 
|  | (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) { | 
|  | DP_NOTICE(cdev, | 
|  | "The actual chain size (0x%llx) is larger than the maximal possible value\n", | 
|  | chain_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) | 
|  | { | 
|  | void *p_virt = NULL, *p_virt_prev = NULL; | 
|  | dma_addr_t p_phys = 0; | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0; i < p_chain->page_cnt; i++) { | 
|  | p_virt = dma_alloc_coherent(&cdev->pdev->dev, | 
|  | QED_CHAIN_PAGE_SIZE, | 
|  | &p_phys, GFP_KERNEL); | 
|  | if (!p_virt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (i == 0) { | 
|  | qed_chain_init_mem(p_chain, p_virt, p_phys); | 
|  | qed_chain_reset(p_chain); | 
|  | } else { | 
|  | qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, | 
|  | p_virt, p_phys); | 
|  | } | 
|  |  | 
|  | p_virt_prev = p_virt; | 
|  | } | 
|  | /* Last page's next element should point to the beginning of the | 
|  | * chain. | 
|  | */ | 
|  | qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, | 
|  | p_chain->p_virt_addr, | 
|  | p_chain->p_phys_addr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) | 
|  | { | 
|  | dma_addr_t p_phys = 0; | 
|  | void *p_virt = NULL; | 
|  |  | 
|  | p_virt = dma_alloc_coherent(&cdev->pdev->dev, | 
|  | QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); | 
|  | if (!p_virt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | qed_chain_init_mem(p_chain, p_virt, p_phys); | 
|  | qed_chain_reset(p_chain); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qed_chain_alloc_pbl(struct qed_dev *cdev, | 
|  | struct qed_chain *p_chain, | 
|  | struct qed_chain_ext_pbl *ext_pbl) | 
|  | { | 
|  | u32 page_cnt = p_chain->page_cnt, size, i; | 
|  | dma_addr_t p_phys = 0, p_pbl_phys = 0; | 
|  | void **pp_virt_addr_tbl = NULL; | 
|  | u8 *p_pbl_virt = NULL; | 
|  | void *p_virt = NULL; | 
|  |  | 
|  | size = page_cnt * sizeof(*pp_virt_addr_tbl); | 
|  | pp_virt_addr_tbl = vzalloc(size); | 
|  | if (!pp_virt_addr_tbl) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* The allocation of the PBL table is done with its full size, since it | 
|  | * is expected to be successive. | 
|  | * qed_chain_init_pbl_mem() is called even in a case of an allocation | 
|  | * failure, since pp_virt_addr_tbl was previously allocated, and it | 
|  | * should be saved to allow its freeing during the error flow. | 
|  | */ | 
|  | size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; | 
|  |  | 
|  | if (!ext_pbl) { | 
|  | p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, | 
|  | size, &p_pbl_phys, GFP_KERNEL); | 
|  | } else { | 
|  | p_pbl_virt = ext_pbl->p_pbl_virt; | 
|  | p_pbl_phys = ext_pbl->p_pbl_phys; | 
|  | p_chain->b_external_pbl = true; | 
|  | } | 
|  |  | 
|  | qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, | 
|  | pp_virt_addr_tbl); | 
|  | if (!p_pbl_virt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < page_cnt; i++) { | 
|  | p_virt = dma_alloc_coherent(&cdev->pdev->dev, | 
|  | QED_CHAIN_PAGE_SIZE, | 
|  | &p_phys, GFP_KERNEL); | 
|  | if (!p_virt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (i == 0) { | 
|  | qed_chain_init_mem(p_chain, p_virt, p_phys); | 
|  | qed_chain_reset(p_chain); | 
|  | } | 
|  |  | 
|  | /* Fill the PBL table with the physical address of the page */ | 
|  | *(dma_addr_t *)p_pbl_virt = p_phys; | 
|  | /* Keep the virtual address of the page */ | 
|  | p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; | 
|  |  | 
|  | p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_chain_alloc(struct qed_dev *cdev, | 
|  | enum qed_chain_use_mode intended_use, | 
|  | enum qed_chain_mode mode, | 
|  | enum qed_chain_cnt_type cnt_type, | 
|  | u32 num_elems, | 
|  | size_t elem_size, | 
|  | struct qed_chain *p_chain, | 
|  | struct qed_chain_ext_pbl *ext_pbl) | 
|  | { | 
|  | u32 page_cnt; | 
|  | int rc = 0; | 
|  |  | 
|  | if (mode == QED_CHAIN_MODE_SINGLE) | 
|  | page_cnt = 1; | 
|  | else | 
|  | page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); | 
|  |  | 
|  | rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); | 
|  | if (rc) { | 
|  | DP_NOTICE(cdev, | 
|  | "Cannot allocate a chain with the given arguments:\n"); | 
|  | DP_NOTICE(cdev, | 
|  | "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", | 
|  | intended_use, mode, cnt_type, num_elems, elem_size); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, | 
|  | mode, cnt_type); | 
|  |  | 
|  | switch (mode) { | 
|  | case QED_CHAIN_MODE_NEXT_PTR: | 
|  | rc = qed_chain_alloc_next_ptr(cdev, p_chain); | 
|  | break; | 
|  | case QED_CHAIN_MODE_SINGLE: | 
|  | rc = qed_chain_alloc_single(cdev, p_chain); | 
|  | break; | 
|  | case QED_CHAIN_MODE_PBL: | 
|  | rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl); | 
|  | break; | 
|  | } | 
|  | if (rc) | 
|  | goto nomem; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | qed_chain_free(cdev, p_chain); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) | 
|  | { | 
|  | if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { | 
|  | u16 min, max; | 
|  |  | 
|  | min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); | 
|  | max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); | 
|  | DP_NOTICE(p_hwfn, | 
|  | "l2_queue id [%d] is not valid, available indices [%d - %d]\n", | 
|  | src_id, min, max); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) | 
|  | { | 
|  | if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { | 
|  | u8 min, max; | 
|  |  | 
|  | min = (u8)RESC_START(p_hwfn, QED_VPORT); | 
|  | max = min + RESC_NUM(p_hwfn, QED_VPORT); | 
|  | DP_NOTICE(p_hwfn, | 
|  | "vport id [%d] is not valid, available indices [%d - %d]\n", | 
|  | src_id, min, max); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) | 
|  | { | 
|  | if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { | 
|  | u8 min, max; | 
|  |  | 
|  | min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); | 
|  | max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); | 
|  | DP_NOTICE(p_hwfn, | 
|  | "rss_eng id [%d] is not valid, available indices [%d - %d]\n", | 
|  | src_id, min, max); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low, | 
|  | u8 *p_filter) | 
|  | { | 
|  | *p_high = p_filter[1] | (p_filter[0] << 8); | 
|  | *p_low = p_filter[5] | (p_filter[4] << 8) | | 
|  | (p_filter[3] << 16) | (p_filter[2] << 24); | 
|  | } | 
|  |  | 
|  | int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, u8 *p_filter) | 
|  | { | 
|  | u32 high = 0, low = 0, en; | 
|  | int i; | 
|  |  | 
|  | if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) | 
|  | return 0; | 
|  |  | 
|  | qed_llh_mac_to_filter(&high, &low, p_filter); | 
|  |  | 
|  | /* Find a free entry and utilize it */ | 
|  | for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { | 
|  | en = qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); | 
|  | if (en) | 
|  | continue; | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | 2 * i * sizeof(u32), low); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | (2 * i + 1) * sizeof(u32), high); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + | 
|  | i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); | 
|  | break; | 
|  | } | 
|  | if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to find an empty LLH filter to utilize\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "mac: %pM is added at %d\n", | 
|  | p_filter, i); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, u8 *p_filter) | 
|  | { | 
|  | u32 high = 0, low = 0; | 
|  | int i; | 
|  |  | 
|  | if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) | 
|  | return; | 
|  |  | 
|  | qed_llh_mac_to_filter(&high, &low, p_filter); | 
|  |  | 
|  | /* Find the entry and clean it */ | 
|  | for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { | 
|  | if (qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | 2 * i * sizeof(u32)) != low) | 
|  | continue; | 
|  | if (qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | (2 * i + 1) * sizeof(u32)) != high) | 
|  | continue; | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | (2 * i + 1) * sizeof(u32), 0); | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "mac: %pM is removed from %d\n", | 
|  | p_filter, i); | 
|  | break; | 
|  | } | 
|  | if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) | 
|  | DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); | 
|  | } | 
|  |  | 
|  | int | 
|  | qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u16 source_port_or_eth_type, | 
|  | u16 dest_port, enum qed_llh_port_filter_type_t type) | 
|  | { | 
|  | u32 high = 0, low = 0, en; | 
|  | int i; | 
|  |  | 
|  | if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) | 
|  | return 0; | 
|  |  | 
|  | switch (type) { | 
|  | case QED_LLH_FILTER_ETHERTYPE: | 
|  | high = source_port_or_eth_type; | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_SRC_PORT: | 
|  | case QED_LLH_FILTER_UDP_SRC_PORT: | 
|  | low = source_port_or_eth_type << 16; | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_DEST_PORT: | 
|  | case QED_LLH_FILTER_UDP_DEST_PORT: | 
|  | low = dest_port; | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: | 
|  | case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: | 
|  | low = (source_port_or_eth_type << 16) | dest_port; | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Non valid LLH protocol filter type %d\n", type); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* Find a free entry and utilize it */ | 
|  | for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { | 
|  | en = qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); | 
|  | if (en) | 
|  | continue; | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | 2 * i * sizeof(u32), low); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | (2 * i + 1) * sizeof(u32), high); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + | 
|  | i * sizeof(u32), 1 << type); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); | 
|  | break; | 
|  | } | 
|  | if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to find an empty LLH filter to utilize\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | switch (type) { | 
|  | case QED_LLH_FILTER_ETHERTYPE: | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "ETH type %x is added at %d\n", | 
|  | source_port_or_eth_type, i); | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_SRC_PORT: | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "TCP src port %x is added at %d\n", | 
|  | source_port_or_eth_type, i); | 
|  | break; | 
|  | case QED_LLH_FILTER_UDP_SRC_PORT: | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "UDP src port %x is added at %d\n", | 
|  | source_port_or_eth_type, i); | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_DEST_PORT: | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "TCP dst port %x is added at %d\n", dest_port, i); | 
|  | break; | 
|  | case QED_LLH_FILTER_UDP_DEST_PORT: | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "UDP dst port %x is added at %d\n", dest_port, i); | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "TCP src/dst ports %x/%x are added at %d\n", | 
|  | source_port_or_eth_type, dest_port, i); | 
|  | break; | 
|  | case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, | 
|  | "UDP src/dst ports %x/%x are added at %d\n", | 
|  | source_port_or_eth_type, dest_port, i); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u16 source_port_or_eth_type, | 
|  | u16 dest_port, | 
|  | enum qed_llh_port_filter_type_t type) | 
|  | { | 
|  | u32 high = 0, low = 0; | 
|  | int i; | 
|  |  | 
|  | if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) | 
|  | return; | 
|  |  | 
|  | switch (type) { | 
|  | case QED_LLH_FILTER_ETHERTYPE: | 
|  | high = source_port_or_eth_type; | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_SRC_PORT: | 
|  | case QED_LLH_FILTER_UDP_SRC_PORT: | 
|  | low = source_port_or_eth_type << 16; | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_DEST_PORT: | 
|  | case QED_LLH_FILTER_UDP_DEST_PORT: | 
|  | low = dest_port; | 
|  | break; | 
|  | case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: | 
|  | case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: | 
|  | low = (source_port_or_eth_type << 16) | dest_port; | 
|  | break; | 
|  | default: | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Non valid LLH protocol filter type %d\n", type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { | 
|  | if (!qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32))) | 
|  | continue; | 
|  | if (!qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32))) | 
|  | continue; | 
|  | if (!(qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + | 
|  | i * sizeof(u32)) & BIT(type))) | 
|  | continue; | 
|  | if (qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | 2 * i * sizeof(u32)) != low) | 
|  | continue; | 
|  | if (qed_rd(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | (2 * i + 1) * sizeof(u32)) != high) | 
|  | continue; | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + | 
|  | i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | NIG_REG_LLH_FUNC_FILTER_VALUE + | 
|  | (2 * i + 1) * sizeof(u32), 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) | 
|  | DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); | 
|  | } | 
|  |  | 
|  | static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, | 
|  | u32 hw_addr, void *p_eth_qzone, | 
|  | size_t eth_qzone_size, u8 timeset) | 
|  | { | 
|  | struct coalescing_timeset *p_coal_timeset; | 
|  |  | 
|  | if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { | 
|  | DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | p_coal_timeset = p_eth_qzone; | 
|  | memset(p_eth_qzone, 0, eth_qzone_size); | 
|  | SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); | 
|  | SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); | 
|  | qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle) | 
|  | { | 
|  | struct qed_queue_cid *p_cid = p_handle; | 
|  | struct qed_hwfn *p_hwfn; | 
|  | struct qed_ptt *p_ptt; | 
|  | int rc = 0; | 
|  |  | 
|  | p_hwfn = p_cid->p_owner; | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) | 
|  | return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid); | 
|  |  | 
|  | p_ptt = qed_ptt_acquire(p_hwfn); | 
|  | if (!p_ptt) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (rx_coal) { | 
|  | rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); | 
|  | if (rc) | 
|  | goto out; | 
|  | p_hwfn->cdev->rx_coalesce_usecs = rx_coal; | 
|  | } | 
|  |  | 
|  | if (tx_coal) { | 
|  | rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); | 
|  | if (rc) | 
|  | goto out; | 
|  | p_hwfn->cdev->tx_coalesce_usecs = tx_coal; | 
|  | } | 
|  | out: | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u16 coalesce, struct qed_queue_cid *p_cid) | 
|  | { | 
|  | struct ustorm_eth_queue_zone eth_qzone; | 
|  | u8 timeset, timer_res; | 
|  | u32 address; | 
|  | int rc; | 
|  |  | 
|  | /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ | 
|  | if (coalesce <= 0x7F) { | 
|  | timer_res = 0; | 
|  | } else if (coalesce <= 0xFF) { | 
|  | timer_res = 1; | 
|  | } else if (coalesce <= 0x1FF) { | 
|  | timer_res = 2; | 
|  | } else { | 
|  | DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); | 
|  | return -EINVAL; | 
|  | } | 
|  | timeset = (u8)(coalesce >> timer_res); | 
|  |  | 
|  | rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, | 
|  | p_cid->sb_igu_id, false); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | address = BAR0_MAP_REG_USDM_RAM + | 
|  | USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); | 
|  |  | 
|  | rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, | 
|  | sizeof(struct ustorm_eth_queue_zone), timeset); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u16 coalesce, struct qed_queue_cid *p_cid) | 
|  | { | 
|  | struct xstorm_eth_queue_zone eth_qzone; | 
|  | u8 timeset, timer_res; | 
|  | u32 address; | 
|  | int rc; | 
|  |  | 
|  | /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ | 
|  | if (coalesce <= 0x7F) { | 
|  | timer_res = 0; | 
|  | } else if (coalesce <= 0xFF) { | 
|  | timer_res = 1; | 
|  | } else if (coalesce <= 0x1FF) { | 
|  | timer_res = 2; | 
|  | } else { | 
|  | DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); | 
|  | return -EINVAL; | 
|  | } | 
|  | timeset = (u8)(coalesce >> timer_res); | 
|  |  | 
|  | rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, | 
|  | p_cid->sb_igu_id, true); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | address = BAR0_MAP_REG_XSDM_RAM + | 
|  | XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); | 
|  |  | 
|  | rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, | 
|  | sizeof(struct xstorm_eth_queue_zone), timeset); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Calculate final WFQ values for all vports and configure them. | 
|  | * After this configuration each vport will have | 
|  | * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT) | 
|  | */ | 
|  | static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u32 min_pf_rate) | 
|  | { | 
|  | struct init_qm_vport_params *vport_params; | 
|  | int i; | 
|  |  | 
|  | vport_params = p_hwfn->qm_info.qm_vport_params; | 
|  |  | 
|  | for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { | 
|  | u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; | 
|  |  | 
|  | vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) / | 
|  | min_pf_rate; | 
|  | qed_init_vport_wfq(p_hwfn, p_ptt, | 
|  | vport_params[i].first_tx_pq_id, | 
|  | vport_params[i].vport_wfq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, | 
|  | u32 min_pf_rate) | 
|  |  | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < p_hwfn->qm_info.num_vports; i++) | 
|  | p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; | 
|  | } | 
|  |  | 
|  | static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u32 min_pf_rate) | 
|  | { | 
|  | struct init_qm_vport_params *vport_params; | 
|  | int i; | 
|  |  | 
|  | vport_params = p_hwfn->qm_info.qm_vport_params; | 
|  |  | 
|  | for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { | 
|  | qed_init_wfq_default_param(p_hwfn, min_pf_rate); | 
|  | qed_init_vport_wfq(p_hwfn, p_ptt, | 
|  | vport_params[i].first_tx_pq_id, | 
|  | vport_params[i].vport_wfq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function performs several validations for WFQ | 
|  | * configuration and required min rate for a given vport | 
|  | * 1. req_rate must be greater than one percent of min_pf_rate. | 
|  | * 2. req_rate should not cause other vports [not configured for WFQ explicitly] | 
|  | *    rates to get less than one percent of min_pf_rate. | 
|  | * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. | 
|  | */ | 
|  | static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, | 
|  | u16 vport_id, u32 req_rate, u32 min_pf_rate) | 
|  | { | 
|  | u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; | 
|  | int non_requested_count = 0, req_count = 0, i, num_vports; | 
|  |  | 
|  | num_vports = p_hwfn->qm_info.num_vports; | 
|  |  | 
|  | /* Accounting for the vports which are configured for WFQ explicitly */ | 
|  | for (i = 0; i < num_vports; i++) { | 
|  | u32 tmp_speed; | 
|  |  | 
|  | if ((i != vport_id) && | 
|  | p_hwfn->qm_info.wfq_data[i].configured) { | 
|  | req_count++; | 
|  | tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; | 
|  | total_req_min_rate += tmp_speed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Include current vport data as well */ | 
|  | req_count++; | 
|  | total_req_min_rate += req_rate; | 
|  | non_requested_count = num_vports - req_count; | 
|  |  | 
|  | if (req_rate < min_pf_rate / QED_WFQ_UNIT) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, | 
|  | "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", | 
|  | vport_id, req_rate, min_pf_rate); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (num_vports > QED_WFQ_UNIT) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, | 
|  | "Number of vports is greater than %d\n", | 
|  | QED_WFQ_UNIT); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (total_req_min_rate > min_pf_rate) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, | 
|  | "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", | 
|  | total_req_min_rate, min_pf_rate); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | total_left_rate	= min_pf_rate - total_req_min_rate; | 
|  |  | 
|  | left_rate_per_vp = total_left_rate / non_requested_count; | 
|  | if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, | 
|  | "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", | 
|  | left_rate_per_vp, min_pf_rate); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; | 
|  | p_hwfn->qm_info.wfq_data[vport_id].configured = true; | 
|  |  | 
|  | for (i = 0; i < num_vports; i++) { | 
|  | if (p_hwfn->qm_info.wfq_data[i].configured) | 
|  | continue; | 
|  |  | 
|  | p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, u16 vp_id, u32 rate) | 
|  | { | 
|  | struct qed_mcp_link_state *p_link; | 
|  | int rc = 0; | 
|  |  | 
|  | p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; | 
|  |  | 
|  | if (!p_link->min_pf_rate) { | 
|  | p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; | 
|  | p_hwfn->qm_info.wfq_data[vp_id].configured = true; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); | 
|  |  | 
|  | if (!rc) | 
|  | qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, | 
|  | p_link->min_pf_rate); | 
|  | else | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Validation failed while configuring min rate\n"); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u32 min_pf_rate) | 
|  | { | 
|  | bool use_wfq = false; | 
|  | int rc = 0; | 
|  | u16 i; | 
|  |  | 
|  | /* Validate all pre configured vports for wfq */ | 
|  | for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { | 
|  | u32 rate; | 
|  |  | 
|  | if (!p_hwfn->qm_info.wfq_data[i].configured) | 
|  | continue; | 
|  |  | 
|  | rate = p_hwfn->qm_info.wfq_data[i].min_speed; | 
|  | use_wfq = true; | 
|  |  | 
|  | rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "WFQ validation failed while configuring min rate\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!rc && use_wfq) | 
|  | qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); | 
|  | else | 
|  | qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Main API for qed clients to configure vport min rate. | 
|  | * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] | 
|  | * rate - Speed in Mbps needs to be assigned to a given vport. | 
|  | */ | 
|  | int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) | 
|  | { | 
|  | int i, rc = -EINVAL; | 
|  |  | 
|  | /* Currently not supported; Might change in future */ | 
|  | if (cdev->num_hwfns > 1) { | 
|  | DP_NOTICE(cdev, | 
|  | "WFQ configuration is not supported for this device\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  | struct qed_ptt *p_ptt; | 
|  |  | 
|  | p_ptt = qed_ptt_acquire(p_hwfn); | 
|  | if (!p_ptt) | 
|  | return -EBUSY; | 
|  |  | 
|  | rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); | 
|  |  | 
|  | if (rc) { | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* API to configure WFQ from mcp link change */ | 
|  | void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, | 
|  | struct qed_ptt *p_ptt, u32 min_pf_rate) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (cdev->num_hwfns > 1) { | 
|  | DP_VERBOSE(cdev, | 
|  | NETIF_MSG_LINK, | 
|  | "WFQ configuration is not supported for this device\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  |  | 
|  | __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, | 
|  | min_pf_rate); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | struct qed_mcp_link_state *p_link, | 
|  | u8 max_bw) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; | 
|  |  | 
|  | if (!p_link->line_speed && (max_bw != 100)) | 
|  | return rc; | 
|  |  | 
|  | p_link->speed = (p_link->line_speed * max_bw) / 100; | 
|  | p_hwfn->qm_info.pf_rl = p_link->speed; | 
|  |  | 
|  | /* Since the limiter also affects Tx-switched traffic, we don't want it | 
|  | * to limit such traffic in case there's no actual limit. | 
|  | * In that case, set limit to imaginary high boundary. | 
|  | */ | 
|  | if (max_bw == 100) | 
|  | p_hwfn->qm_info.pf_rl = 100000; | 
|  |  | 
|  | rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, | 
|  | p_hwfn->qm_info.pf_rl); | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, | 
|  | "Configured MAX bandwidth to be %08x Mb/sec\n", | 
|  | p_link->speed); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ | 
|  | int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) | 
|  | { | 
|  | int i, rc = -EINVAL; | 
|  |  | 
|  | if (max_bw < 1 || max_bw > 100) { | 
|  | DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn	*p_hwfn = &cdev->hwfns[i]; | 
|  | struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); | 
|  | struct qed_mcp_link_state *p_link; | 
|  | struct qed_ptt *p_ptt; | 
|  |  | 
|  | p_link = &p_lead->mcp_info->link_output; | 
|  |  | 
|  | p_ptt = qed_ptt_acquire(p_hwfn); | 
|  | if (!p_ptt) | 
|  | return -EBUSY; | 
|  |  | 
|  | rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, | 
|  | p_link, max_bw); | 
|  |  | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  |  | 
|  | if (rc) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | struct qed_mcp_link_state *p_link, | 
|  | u8 min_bw) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; | 
|  | p_hwfn->qm_info.pf_wfq = min_bw; | 
|  |  | 
|  | if (!p_link->line_speed) | 
|  | return rc; | 
|  |  | 
|  | p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; | 
|  |  | 
|  | rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, | 
|  | "Configured MIN bandwidth to be %d Mb/sec\n", | 
|  | p_link->min_pf_rate); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Main API to configure PF min bandwidth where bw range is [1-100] */ | 
|  | int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) | 
|  | { | 
|  | int i, rc = -EINVAL; | 
|  |  | 
|  | if (min_bw < 1 || min_bw > 100) { | 
|  | DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | for_each_hwfn(cdev, i) { | 
|  | struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; | 
|  | struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); | 
|  | struct qed_mcp_link_state *p_link; | 
|  | struct qed_ptt *p_ptt; | 
|  |  | 
|  | p_link = &p_lead->mcp_info->link_output; | 
|  |  | 
|  | p_ptt = qed_ptt_acquire(p_hwfn); | 
|  | if (!p_ptt) | 
|  | return -EBUSY; | 
|  |  | 
|  | rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, | 
|  | p_link, min_bw); | 
|  | if (rc) { | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | if (p_link->min_pf_rate) { | 
|  | u32 min_rate = p_link->min_pf_rate; | 
|  |  | 
|  | rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, | 
|  | p_ptt, | 
|  | min_rate); | 
|  | } | 
|  |  | 
|  | qed_ptt_release(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_mcp_link_state *p_link; | 
|  |  | 
|  | p_link = &p_hwfn->mcp_info->link_output; | 
|  |  | 
|  | if (p_link->min_pf_rate) | 
|  | qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, | 
|  | p_link->min_pf_rate); | 
|  |  | 
|  | memset(p_hwfn->qm_info.wfq_data, 0, | 
|  | sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); | 
|  | } | 
|  |  | 
|  | int qed_device_num_engines(struct qed_dev *cdev) | 
|  | { | 
|  | return QED_IS_BB(cdev) ? 2 : 1; | 
|  | } | 
|  |  | 
|  | static int qed_device_num_ports(struct qed_dev *cdev) | 
|  | { | 
|  | /* in CMT always only one port */ | 
|  | if (cdev->num_hwfns > 1) | 
|  | return 1; | 
|  |  | 
|  | return cdev->num_ports_in_engine * qed_device_num_engines(cdev); | 
|  | } | 
|  |  | 
|  | int qed_device_get_port_id(struct qed_dev *cdev) | 
|  | { | 
|  | return (QED_LEADING_HWFN(cdev)->abs_pf_id) % qed_device_num_ports(cdev); | 
|  | } | 
|  |  | 
|  | void qed_set_fw_mac_addr(__le16 *fw_msb, | 
|  | __le16 *fw_mid, __le16 *fw_lsb, u8 *mac) | 
|  | { | 
|  | ((u8 *)fw_msb)[0] = mac[1]; | 
|  | ((u8 *)fw_msb)[1] = mac[0]; | 
|  | ((u8 *)fw_mid)[0] = mac[3]; | 
|  | ((u8 *)fw_mid)[1] = mac[2]; | 
|  | ((u8 *)fw_lsb)[0] = mac[5]; | 
|  | ((u8 *)fw_lsb)[1] = mac[4]; | 
|  | } |