blob: ec8557810c2102328a84e4b7c97100f503ef55da [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Western Digital Corporation or its affiliates.
*/
#include <linux/blkdev.h>
#include <linux/vmalloc.h>
#include "nvme.h"
int nvme_revalidate_zones(struct nvme_ns *ns)
{
struct request_queue *q = ns->queue;
blk_queue_chunk_sectors(q, ns->zsze);
blk_queue_max_zone_append_sectors(q, ns->ctrl->max_zone_append);
return blk_revalidate_disk_zones(ns->disk, NULL);
}
static int nvme_set_max_append(struct nvme_ctrl *ctrl)
{
struct nvme_command c = { };
struct nvme_id_ctrl_zns *id;
int status;
id = kzalloc(sizeof(*id), GFP_KERNEL);
if (!id)
return -ENOMEM;
c.identify.opcode = nvme_admin_identify;
c.identify.cns = NVME_ID_CNS_CS_CTRL;
c.identify.csi = NVME_CSI_ZNS;
status = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
if (status) {
kfree(id);
return status;
}
if (id->zasl)
ctrl->max_zone_append = 1 << (id->zasl + 3);
else
ctrl->max_zone_append = ctrl->max_hw_sectors;
kfree(id);
return 0;
}
int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
{
struct nvme_effects_log *log = ns->head->effects;
struct request_queue *q = ns->queue;
struct nvme_command c = { };
struct nvme_id_ns_zns *id;
int status;
/* Driver requires zone append support */
if ((le32_to_cpu(log->iocs[nvme_cmd_zone_append]) &
NVME_CMD_EFFECTS_CSUPP)) {
if (test_and_clear_bit(NVME_NS_FORCE_RO, &ns->flags))
dev_warn(ns->ctrl->device,
"Zone Append supported for zoned namespace:%d. Remove read-only mode\n",
ns->head->ns_id);
} else {
set_bit(NVME_NS_FORCE_RO, &ns->flags);
dev_warn(ns->ctrl->device,
"Zone Append not supported for zoned namespace:%d. Forcing to read-only mode\n",
ns->head->ns_id);
}
/* Lazily query controller append limit for the first zoned namespace */
if (!ns->ctrl->max_zone_append) {
status = nvme_set_max_append(ns->ctrl);
if (status)
return status;
}
id = kzalloc(sizeof(*id), GFP_KERNEL);
if (!id)
return -ENOMEM;
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(ns->head->ns_id);
c.identify.cns = NVME_ID_CNS_CS_NS;
c.identify.csi = NVME_CSI_ZNS;
status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, id, sizeof(*id));
if (status)
goto free_data;
/*
* We currently do not handle devices requiring any of the zoned
* operation characteristics.
*/
if (id->zoc) {
dev_warn(ns->ctrl->device,
"zone operations:%x not supported for namespace:%u\n",
le16_to_cpu(id->zoc), ns->head->ns_id);
status = -ENODEV;
goto free_data;
}
ns->zsze = nvme_lba_to_sect(ns, le64_to_cpu(id->lbafe[lbaf].zsze));
if (!is_power_of_2(ns->zsze)) {
dev_warn(ns->ctrl->device,
"invalid zone size:%llu for namespace:%u\n",
ns->zsze, ns->head->ns_id);
status = -ENODEV;
goto free_data;
}
disk_set_zoned(ns->disk, BLK_ZONED_HM);
blk_queue_flag_set(QUEUE_FLAG_ZONE_RESETALL, q);
disk_set_max_open_zones(ns->disk, le32_to_cpu(id->mor) + 1);
disk_set_max_active_zones(ns->disk, le32_to_cpu(id->mar) + 1);
free_data:
kfree(id);
return status;
}
static void *nvme_zns_alloc_report_buffer(struct nvme_ns *ns,
unsigned int nr_zones, size_t *buflen)
{
struct request_queue *q = ns->disk->queue;
size_t bufsize;
void *buf;
const size_t min_bufsize = sizeof(struct nvme_zone_report) +
sizeof(struct nvme_zone_descriptor);
nr_zones = min_t(unsigned int, nr_zones,
get_capacity(ns->disk) >> ilog2(ns->zsze));
bufsize = sizeof(struct nvme_zone_report) +
nr_zones * sizeof(struct nvme_zone_descriptor);
bufsize = min_t(size_t, bufsize,
queue_max_hw_sectors(q) << SECTOR_SHIFT);
bufsize = min_t(size_t, bufsize, queue_max_segments(q) << PAGE_SHIFT);
while (bufsize >= min_bufsize) {
buf = __vmalloc(bufsize, GFP_KERNEL | __GFP_NORETRY);
if (buf) {
*buflen = bufsize;
return buf;
}
bufsize >>= 1;
}
return NULL;
}
static int nvme_zone_parse_entry(struct nvme_ns *ns,
struct nvme_zone_descriptor *entry,
unsigned int idx, report_zones_cb cb,
void *data)
{
struct blk_zone zone = { };
if ((entry->zt & 0xf) != NVME_ZONE_TYPE_SEQWRITE_REQ) {
dev_err(ns->ctrl->device, "invalid zone type %#x\n",
entry->zt);
return -EINVAL;
}
zone.type = BLK_ZONE_TYPE_SEQWRITE_REQ;
zone.cond = entry->zs >> 4;
zone.len = ns->zsze;
zone.capacity = nvme_lba_to_sect(ns, le64_to_cpu(entry->zcap));
zone.start = nvme_lba_to_sect(ns, le64_to_cpu(entry->zslba));
if (zone.cond == BLK_ZONE_COND_FULL)
zone.wp = zone.start + zone.len;
else
zone.wp = nvme_lba_to_sect(ns, le64_to_cpu(entry->wp));
return cb(&zone, idx, data);
}
int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data)
{
struct nvme_zone_report *report;
struct nvme_command c = { };
int ret, zone_idx = 0;
unsigned int nz, i;
size_t buflen;
if (ns->head->ids.csi != NVME_CSI_ZNS)
return -EINVAL;
report = nvme_zns_alloc_report_buffer(ns, nr_zones, &buflen);
if (!report)
return -ENOMEM;
c.zmr.opcode = nvme_cmd_zone_mgmt_recv;
c.zmr.nsid = cpu_to_le32(ns->head->ns_id);
c.zmr.numd = cpu_to_le32(nvme_bytes_to_numd(buflen));
c.zmr.zra = NVME_ZRA_ZONE_REPORT;
c.zmr.zrasf = NVME_ZRASF_ZONE_REPORT_ALL;
c.zmr.pr = NVME_REPORT_ZONE_PARTIAL;
sector &= ~(ns->zsze - 1);
while (zone_idx < nr_zones && sector < get_capacity(ns->disk)) {
memset(report, 0, buflen);
c.zmr.slba = cpu_to_le64(nvme_sect_to_lba(ns, sector));
ret = nvme_submit_sync_cmd(ns->queue, &c, report, buflen);
if (ret) {
if (ret > 0)
ret = -EIO;
goto out_free;
}
nz = min((unsigned int)le64_to_cpu(report->nr_zones), nr_zones);
if (!nz)
break;
for (i = 0; i < nz && zone_idx < nr_zones; i++) {
ret = nvme_zone_parse_entry(ns, &report->entries[i],
zone_idx, cb, data);
if (ret)
goto out_free;
zone_idx++;
}
sector += ns->zsze * nz;
}
if (zone_idx > 0)
ret = zone_idx;
else
ret = -EINVAL;
out_free:
kvfree(report);
return ret;
}
blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
struct nvme_command *c, enum nvme_zone_mgmt_action action)
{
memset(c, 0, sizeof(*c));
c->zms.opcode = nvme_cmd_zone_mgmt_send;
c->zms.nsid = cpu_to_le32(ns->head->ns_id);
c->zms.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
c->zms.zsa = action;
if (req_op(req) == REQ_OP_ZONE_RESET_ALL)
c->zms.select_all = 1;
return BLK_STS_OK;
}