| // SPDX-License-Identifier: GPL-2.0-only |
| // |
| // Copyright (C) 2020 NVIDIA CORPORATION. |
| |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/reset.h> |
| #include <linux/spi/spi.h> |
| #include <linux/acpi.h> |
| #include <linux/property.h> |
| |
| #define QSPI_COMMAND1 0x000 |
| #define QSPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) |
| #define QSPI_PACKED BIT(5) |
| #define QSPI_INTERFACE_WIDTH_MASK (0x03 << 7) |
| #define QSPI_INTERFACE_WIDTH(x) (((x) & 0x03) << 7) |
| #define QSPI_INTERFACE_WIDTH_SINGLE QSPI_INTERFACE_WIDTH(0) |
| #define QSPI_INTERFACE_WIDTH_DUAL QSPI_INTERFACE_WIDTH(1) |
| #define QSPI_INTERFACE_WIDTH_QUAD QSPI_INTERFACE_WIDTH(2) |
| #define QSPI_SDR_DDR_SEL BIT(9) |
| #define QSPI_TX_EN BIT(11) |
| #define QSPI_RX_EN BIT(12) |
| #define QSPI_CS_SW_VAL BIT(20) |
| #define QSPI_CS_SW_HW BIT(21) |
| |
| #define QSPI_CS_POL_INACTIVE(n) (1 << (22 + (n))) |
| #define QSPI_CS_POL_INACTIVE_MASK (0xF << 22) |
| #define QSPI_CS_SEL_0 (0 << 26) |
| #define QSPI_CS_SEL_1 (1 << 26) |
| #define QSPI_CS_SEL_2 (2 << 26) |
| #define QSPI_CS_SEL_3 (3 << 26) |
| #define QSPI_CS_SEL_MASK (3 << 26) |
| #define QSPI_CS_SEL(x) (((x) & 0x3) << 26) |
| |
| #define QSPI_CONTROL_MODE_0 (0 << 28) |
| #define QSPI_CONTROL_MODE_3 (3 << 28) |
| #define QSPI_CONTROL_MODE_MASK (3 << 28) |
| #define QSPI_M_S BIT(30) |
| #define QSPI_PIO BIT(31) |
| |
| #define QSPI_COMMAND2 0x004 |
| #define QSPI_TX_TAP_DELAY(x) (((x) & 0x3f) << 10) |
| #define QSPI_RX_TAP_DELAY(x) (((x) & 0xff) << 0) |
| |
| #define QSPI_CS_TIMING1 0x008 |
| #define QSPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold)) |
| |
| #define QSPI_CS_TIMING2 0x00c |
| #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1f) << 0) |
| #define CS_ACTIVE_BETWEEN_PACKETS_0 BIT(5) |
| |
| #define QSPI_TRANS_STATUS 0x010 |
| #define QSPI_BLK_CNT(val) (((val) >> 0) & 0xffff) |
| #define QSPI_RDY BIT(30) |
| |
| #define QSPI_FIFO_STATUS 0x014 |
| #define QSPI_RX_FIFO_EMPTY BIT(0) |
| #define QSPI_RX_FIFO_FULL BIT(1) |
| #define QSPI_TX_FIFO_EMPTY BIT(2) |
| #define QSPI_TX_FIFO_FULL BIT(3) |
| #define QSPI_RX_FIFO_UNF BIT(4) |
| #define QSPI_RX_FIFO_OVF BIT(5) |
| #define QSPI_TX_FIFO_UNF BIT(6) |
| #define QSPI_TX_FIFO_OVF BIT(7) |
| #define QSPI_ERR BIT(8) |
| #define QSPI_TX_FIFO_FLUSH BIT(14) |
| #define QSPI_RX_FIFO_FLUSH BIT(15) |
| #define QSPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7f) |
| #define QSPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7f) |
| |
| #define QSPI_FIFO_ERROR (QSPI_RX_FIFO_UNF | \ |
| QSPI_RX_FIFO_OVF | \ |
| QSPI_TX_FIFO_UNF | \ |
| QSPI_TX_FIFO_OVF) |
| #define QSPI_FIFO_EMPTY (QSPI_RX_FIFO_EMPTY | \ |
| QSPI_TX_FIFO_EMPTY) |
| |
| #define QSPI_TX_DATA 0x018 |
| #define QSPI_RX_DATA 0x01c |
| |
| #define QSPI_DMA_CTL 0x020 |
| #define QSPI_TX_TRIG(n) (((n) & 0x3) << 15) |
| #define QSPI_TX_TRIG_1 QSPI_TX_TRIG(0) |
| #define QSPI_TX_TRIG_4 QSPI_TX_TRIG(1) |
| #define QSPI_TX_TRIG_8 QSPI_TX_TRIG(2) |
| #define QSPI_TX_TRIG_16 QSPI_TX_TRIG(3) |
| |
| #define QSPI_RX_TRIG(n) (((n) & 0x3) << 19) |
| #define QSPI_RX_TRIG_1 QSPI_RX_TRIG(0) |
| #define QSPI_RX_TRIG_4 QSPI_RX_TRIG(1) |
| #define QSPI_RX_TRIG_8 QSPI_RX_TRIG(2) |
| #define QSPI_RX_TRIG_16 QSPI_RX_TRIG(3) |
| |
| #define QSPI_DMA_EN BIT(31) |
| |
| #define QSPI_DMA_BLK 0x024 |
| #define QSPI_DMA_BLK_SET(x) (((x) & 0xffff) << 0) |
| |
| #define QSPI_TX_FIFO 0x108 |
| #define QSPI_RX_FIFO 0x188 |
| |
| #define QSPI_FIFO_DEPTH 64 |
| |
| #define QSPI_INTR_MASK 0x18c |
| #define QSPI_INTR_RX_FIFO_UNF_MASK BIT(25) |
| #define QSPI_INTR_RX_FIFO_OVF_MASK BIT(26) |
| #define QSPI_INTR_TX_FIFO_UNF_MASK BIT(27) |
| #define QSPI_INTR_TX_FIFO_OVF_MASK BIT(28) |
| #define QSPI_INTR_RDY_MASK BIT(29) |
| #define QSPI_INTR_RX_TX_FIFO_ERR (QSPI_INTR_RX_FIFO_UNF_MASK | \ |
| QSPI_INTR_RX_FIFO_OVF_MASK | \ |
| QSPI_INTR_TX_FIFO_UNF_MASK | \ |
| QSPI_INTR_TX_FIFO_OVF_MASK) |
| |
| #define QSPI_MISC_REG 0x194 |
| #define QSPI_NUM_DUMMY_CYCLE(x) (((x) & 0xff) << 0) |
| #define QSPI_DUMMY_CYCLES_MAX 0xff |
| |
| #define QSPI_CMB_SEQ_CMD 0x19c |
| #define QSPI_COMMAND_VALUE_SET(X) (((x) & 0xFF) << 0) |
| |
| #define QSPI_CMB_SEQ_CMD_CFG 0x1a0 |
| #define QSPI_COMMAND_X1_X2_X4(x) (((x) & 0x3) << 13) |
| #define QSPI_COMMAND_X1_X2_X4_MASK (0x03 << 13) |
| #define QSPI_COMMAND_SDR_DDR BIT(12) |
| #define QSPI_COMMAND_SIZE_SET(x) (((x) & 0xFF) << 0) |
| |
| #define QSPI_GLOBAL_CONFIG 0X1a4 |
| #define QSPI_CMB_SEQ_EN BIT(0) |
| |
| #define QSPI_CMB_SEQ_ADDR 0x1a8 |
| #define QSPI_ADDRESS_VALUE_SET(X) (((x) & 0xFFFF) << 0) |
| |
| #define QSPI_CMB_SEQ_ADDR_CFG 0x1ac |
| #define QSPI_ADDRESS_X1_X2_X4(x) (((x) & 0x3) << 13) |
| #define QSPI_ADDRESS_X1_X2_X4_MASK (0x03 << 13) |
| #define QSPI_ADDRESS_SDR_DDR BIT(12) |
| #define QSPI_ADDRESS_SIZE_SET(x) (((x) & 0xFF) << 0) |
| |
| #define DATA_DIR_TX BIT(0) |
| #define DATA_DIR_RX BIT(1) |
| |
| #define QSPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) |
| #define DEFAULT_QSPI_DMA_BUF_LEN (64 * 1024) |
| #define CMD_TRANSFER 0 |
| #define ADDR_TRANSFER 1 |
| #define DATA_TRANSFER 2 |
| |
| struct tegra_qspi_soc_data { |
| bool has_dma; |
| bool cmb_xfer_capable; |
| unsigned int cs_count; |
| }; |
| |
| struct tegra_qspi_client_data { |
| int tx_clk_tap_delay; |
| int rx_clk_tap_delay; |
| }; |
| |
| struct tegra_qspi { |
| struct device *dev; |
| struct spi_master *master; |
| /* lock to protect data accessed by irq */ |
| spinlock_t lock; |
| |
| struct clk *clk; |
| void __iomem *base; |
| phys_addr_t phys; |
| unsigned int irq; |
| |
| u32 cur_speed; |
| unsigned int cur_pos; |
| unsigned int words_per_32bit; |
| unsigned int bytes_per_word; |
| unsigned int curr_dma_words; |
| unsigned int cur_direction; |
| |
| unsigned int cur_rx_pos; |
| unsigned int cur_tx_pos; |
| |
| unsigned int dma_buf_size; |
| unsigned int max_buf_size; |
| bool is_curr_dma_xfer; |
| |
| struct completion rx_dma_complete; |
| struct completion tx_dma_complete; |
| |
| u32 tx_status; |
| u32 rx_status; |
| u32 status_reg; |
| bool is_packed; |
| bool use_dma; |
| |
| u32 command1_reg; |
| u32 dma_control_reg; |
| u32 def_command1_reg; |
| u32 def_command2_reg; |
| u32 spi_cs_timing1; |
| u32 spi_cs_timing2; |
| u8 dummy_cycles; |
| |
| struct completion xfer_completion; |
| struct spi_transfer *curr_xfer; |
| |
| struct dma_chan *rx_dma_chan; |
| u32 *rx_dma_buf; |
| dma_addr_t rx_dma_phys; |
| struct dma_async_tx_descriptor *rx_dma_desc; |
| |
| struct dma_chan *tx_dma_chan; |
| u32 *tx_dma_buf; |
| dma_addr_t tx_dma_phys; |
| struct dma_async_tx_descriptor *tx_dma_desc; |
| const struct tegra_qspi_soc_data *soc_data; |
| }; |
| |
| static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset) |
| { |
| return readl(tqspi->base + offset); |
| } |
| |
| static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset) |
| { |
| writel(value, tqspi->base + offset); |
| |
| /* read back register to make sure that register writes completed */ |
| if (offset != QSPI_TX_FIFO) |
| readl(tqspi->base + QSPI_COMMAND1); |
| } |
| |
| static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi) |
| { |
| u32 value; |
| |
| /* write 1 to clear status register */ |
| value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS); |
| tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS); |
| |
| value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK); |
| if (!(value & QSPI_INTR_RDY_MASK)) { |
| value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR); |
| tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK); |
| } |
| |
| /* clear fifo status error if any */ |
| value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); |
| if (value & QSPI_ERR) |
| tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS); |
| } |
| |
| static unsigned int |
| tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| unsigned int max_word, max_len, total_fifo_words; |
| unsigned int remain_len = t->len - tqspi->cur_pos; |
| unsigned int bits_per_word = t->bits_per_word; |
| |
| tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); |
| |
| /* |
| * Tegra QSPI controller supports packed or unpacked mode transfers. |
| * Packed mode is used for data transfers using 8, 16, or 32 bits per |
| * word with a minimum transfer of 1 word and for all other transfers |
| * unpacked mode will be used. |
| */ |
| |
| if ((bits_per_word == 8 || bits_per_word == 16 || |
| bits_per_word == 32) && t->len > 3) { |
| tqspi->is_packed = true; |
| tqspi->words_per_32bit = 32 / bits_per_word; |
| } else { |
| tqspi->is_packed = false; |
| tqspi->words_per_32bit = 1; |
| } |
| |
| if (tqspi->is_packed) { |
| max_len = min(remain_len, tqspi->max_buf_size); |
| tqspi->curr_dma_words = max_len / tqspi->bytes_per_word; |
| total_fifo_words = (max_len + 3) / 4; |
| } else { |
| max_word = (remain_len - 1) / tqspi->bytes_per_word + 1; |
| max_word = min(max_word, tqspi->max_buf_size / 4); |
| tqspi->curr_dma_words = max_word; |
| total_fifo_words = max_word; |
| } |
| |
| return total_fifo_words; |
| } |
| |
| static unsigned int |
| tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| unsigned int written_words, fifo_words_left, count; |
| unsigned int len, tx_empty_count, max_n_32bit, i; |
| u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos; |
| u32 fifo_status; |
| |
| fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); |
| tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status); |
| |
| if (tqspi->is_packed) { |
| fifo_words_left = tx_empty_count * tqspi->words_per_32bit; |
| written_words = min(fifo_words_left, tqspi->curr_dma_words); |
| len = written_words * tqspi->bytes_per_word; |
| max_n_32bit = DIV_ROUND_UP(len, 4); |
| for (count = 0; count < max_n_32bit; count++) { |
| u32 x = 0; |
| |
| for (i = 0; (i < 4) && len; i++, len--) |
| x |= (u32)(*tx_buf++) << (i * 8); |
| tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO); |
| } |
| |
| tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word; |
| } else { |
| unsigned int write_bytes; |
| u8 bytes_per_word = tqspi->bytes_per_word; |
| |
| max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count); |
| written_words = max_n_32bit; |
| len = written_words * tqspi->bytes_per_word; |
| if (len > t->len - tqspi->cur_pos) |
| len = t->len - tqspi->cur_pos; |
| write_bytes = len; |
| for (count = 0; count < max_n_32bit; count++) { |
| u32 x = 0; |
| |
| for (i = 0; len && (i < bytes_per_word); i++, len--) |
| x |= (u32)(*tx_buf++) << (i * 8); |
| tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO); |
| } |
| |
| tqspi->cur_tx_pos += write_bytes; |
| } |
| |
| return written_words; |
| } |
| |
| static unsigned int |
| tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos; |
| unsigned int len, rx_full_count, count, i; |
| unsigned int read_words = 0; |
| u32 fifo_status, x; |
| |
| fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); |
| rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status); |
| if (tqspi->is_packed) { |
| len = tqspi->curr_dma_words * tqspi->bytes_per_word; |
| for (count = 0; count < rx_full_count; count++) { |
| x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO); |
| |
| for (i = 0; len && (i < 4); i++, len--) |
| *rx_buf++ = (x >> i * 8) & 0xff; |
| } |
| |
| read_words += tqspi->curr_dma_words; |
| tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word; |
| } else { |
| u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; |
| u8 bytes_per_word = tqspi->bytes_per_word; |
| unsigned int read_bytes; |
| |
| len = rx_full_count * bytes_per_word; |
| if (len > t->len - tqspi->cur_pos) |
| len = t->len - tqspi->cur_pos; |
| read_bytes = len; |
| for (count = 0; count < rx_full_count; count++) { |
| x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask; |
| |
| for (i = 0; len && (i < bytes_per_word); i++, len--) |
| *rx_buf++ = (x >> (i * 8)) & 0xff; |
| } |
| |
| read_words += rx_full_count; |
| tqspi->cur_rx_pos += read_bytes; |
| } |
| |
| return read_words; |
| } |
| |
| static void |
| tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys, |
| tqspi->dma_buf_size, DMA_TO_DEVICE); |
| |
| /* |
| * In packed mode, each word in FIFO may contain multiple packets |
| * based on bits per word. So all bytes in each FIFO word are valid. |
| * |
| * In unpacked mode, each word in FIFO contains single packet and |
| * based on bits per word any remaining bits in FIFO word will be |
| * ignored by the hardware and are invalid bits. |
| */ |
| if (tqspi->is_packed) { |
| tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word; |
| } else { |
| u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos; |
| unsigned int i, count, consume, write_bytes; |
| |
| /* |
| * Fill tx_dma_buf to contain single packet in each word based |
| * on bits per word from SPI core tx_buf. |
| */ |
| consume = tqspi->curr_dma_words * tqspi->bytes_per_word; |
| if (consume > t->len - tqspi->cur_pos) |
| consume = t->len - tqspi->cur_pos; |
| write_bytes = consume; |
| for (count = 0; count < tqspi->curr_dma_words; count++) { |
| u32 x = 0; |
| |
| for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--) |
| x |= (u32)(*tx_buf++) << (i * 8); |
| tqspi->tx_dma_buf[count] = x; |
| } |
| |
| tqspi->cur_tx_pos += write_bytes; |
| } |
| |
| dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys, |
| tqspi->dma_buf_size, DMA_TO_DEVICE); |
| } |
| |
| static void |
| tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys, |
| tqspi->dma_buf_size, DMA_FROM_DEVICE); |
| |
| if (tqspi->is_packed) { |
| tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word; |
| } else { |
| unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos; |
| u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; |
| unsigned int i, count, consume, read_bytes; |
| |
| /* |
| * Each FIFO word contains single data packet. |
| * Skip invalid bits in each FIFO word based on bits per word |
| * and align bytes while filling in SPI core rx_buf. |
| */ |
| consume = tqspi->curr_dma_words * tqspi->bytes_per_word; |
| if (consume > t->len - tqspi->cur_pos) |
| consume = t->len - tqspi->cur_pos; |
| read_bytes = consume; |
| for (count = 0; count < tqspi->curr_dma_words; count++) { |
| u32 x = tqspi->rx_dma_buf[count] & rx_mask; |
| |
| for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--) |
| *rx_buf++ = (x >> (i * 8)) & 0xff; |
| } |
| |
| tqspi->cur_rx_pos += read_bytes; |
| } |
| |
| dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys, |
| tqspi->dma_buf_size, DMA_FROM_DEVICE); |
| } |
| |
| static void tegra_qspi_dma_complete(void *args) |
| { |
| struct completion *dma_complete = args; |
| |
| complete(dma_complete); |
| } |
| |
| static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len) |
| { |
| dma_addr_t tx_dma_phys; |
| |
| reinit_completion(&tqspi->tx_dma_complete); |
| |
| if (tqspi->is_packed) |
| tx_dma_phys = t->tx_dma; |
| else |
| tx_dma_phys = tqspi->tx_dma_phys; |
| |
| tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys, |
| len, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| |
| if (!tqspi->tx_dma_desc) { |
| dev_err(tqspi->dev, "Unable to get TX descriptor\n"); |
| return -EIO; |
| } |
| |
| tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete; |
| tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete; |
| dmaengine_submit(tqspi->tx_dma_desc); |
| dma_async_issue_pending(tqspi->tx_dma_chan); |
| |
| return 0; |
| } |
| |
| static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len) |
| { |
| dma_addr_t rx_dma_phys; |
| |
| reinit_completion(&tqspi->rx_dma_complete); |
| |
| if (tqspi->is_packed) |
| rx_dma_phys = t->rx_dma; |
| else |
| rx_dma_phys = tqspi->rx_dma_phys; |
| |
| tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys, |
| len, DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| |
| if (!tqspi->rx_dma_desc) { |
| dev_err(tqspi->dev, "Unable to get RX descriptor\n"); |
| return -EIO; |
| } |
| |
| tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete; |
| tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete; |
| dmaengine_submit(tqspi->rx_dma_desc); |
| dma_async_issue_pending(tqspi->rx_dma_chan); |
| |
| return 0; |
| } |
| |
| static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic) |
| { |
| void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS; |
| u32 val; |
| |
| val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); |
| if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY) |
| return 0; |
| |
| val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH; |
| tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS); |
| |
| if (!atomic) |
| return readl_relaxed_poll_timeout(addr, val, |
| (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY, |
| 1000, 1000000); |
| |
| return readl_relaxed_poll_timeout_atomic(addr, val, |
| (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY, |
| 1000, 1000000); |
| } |
| |
| static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi) |
| { |
| u32 intr_mask; |
| |
| intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK); |
| intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR); |
| tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK); |
| } |
| |
| static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos; |
| u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos; |
| unsigned int len; |
| |
| len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4; |
| |
| if (t->tx_buf) { |
| t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE); |
| if (dma_mapping_error(tqspi->dev, t->tx_dma)) |
| return -ENOMEM; |
| } |
| |
| if (t->rx_buf) { |
| t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE); |
| if (dma_mapping_error(tqspi->dev, t->rx_dma)) { |
| dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| unsigned int len; |
| |
| len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4; |
| |
| dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE); |
| dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE); |
| } |
| |
| static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t) |
| { |
| struct dma_slave_config dma_sconfig = { 0 }; |
| unsigned int len; |
| u8 dma_burst; |
| int ret = 0; |
| u32 val; |
| |
| if (tqspi->is_packed) { |
| ret = tegra_qspi_dma_map_xfer(tqspi, t); |
| if (ret < 0) |
| return ret; |
| } |
| |
| val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1); |
| tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK); |
| |
| tegra_qspi_unmask_irq(tqspi); |
| |
| if (tqspi->is_packed) |
| len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4; |
| else |
| len = tqspi->curr_dma_words * 4; |
| |
| /* set attention level based on length of transfer */ |
| val = 0; |
| if (len & 0xf) { |
| val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1; |
| dma_burst = 1; |
| } else if (((len) >> 4) & 0x1) { |
| val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4; |
| dma_burst = 4; |
| } else { |
| val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8; |
| dma_burst = 8; |
| } |
| |
| tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL); |
| tqspi->dma_control_reg = val; |
| |
| dma_sconfig.device_fc = true; |
| if (tqspi->cur_direction & DATA_DIR_TX) { |
| dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO; |
| dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_sconfig.dst_maxburst = dma_burst; |
| ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig); |
| if (ret < 0) { |
| dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret); |
| return ret; |
| } |
| |
| tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t); |
| ret = tegra_qspi_start_tx_dma(tqspi, t, len); |
| if (ret < 0) { |
| dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| if (tqspi->cur_direction & DATA_DIR_RX) { |
| dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO; |
| dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_sconfig.src_maxburst = dma_burst; |
| ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig); |
| if (ret < 0) { |
| dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret); |
| return ret; |
| } |
| |
| dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys, |
| tqspi->dma_buf_size, |
| DMA_FROM_DEVICE); |
| |
| ret = tegra_qspi_start_rx_dma(tqspi, t, len); |
| if (ret < 0) { |
| dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret); |
| if (tqspi->cur_direction & DATA_DIR_TX) |
| dmaengine_terminate_all(tqspi->tx_dma_chan); |
| return ret; |
| } |
| } |
| |
| tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1); |
| |
| tqspi->is_curr_dma_xfer = true; |
| tqspi->dma_control_reg = val; |
| val |= QSPI_DMA_EN; |
| tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL); |
| |
| return ret; |
| } |
| |
| static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t) |
| { |
| u32 val; |
| unsigned int cur_words; |
| |
| if (qspi->cur_direction & DATA_DIR_TX) |
| cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t); |
| else |
| cur_words = qspi->curr_dma_words; |
| |
| val = QSPI_DMA_BLK_SET(cur_words - 1); |
| tegra_qspi_writel(qspi, val, QSPI_DMA_BLK); |
| |
| tegra_qspi_unmask_irq(qspi); |
| |
| qspi->is_curr_dma_xfer = false; |
| val = qspi->command1_reg; |
| val |= QSPI_PIO; |
| tegra_qspi_writel(qspi, val, QSPI_COMMAND1); |
| |
| return 0; |
| } |
| |
| static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi) |
| { |
| if (tqspi->tx_dma_buf) { |
| dma_free_coherent(tqspi->dev, tqspi->dma_buf_size, |
| tqspi->tx_dma_buf, tqspi->tx_dma_phys); |
| tqspi->tx_dma_buf = NULL; |
| } |
| |
| if (tqspi->tx_dma_chan) { |
| dma_release_channel(tqspi->tx_dma_chan); |
| tqspi->tx_dma_chan = NULL; |
| } |
| |
| if (tqspi->rx_dma_buf) { |
| dma_free_coherent(tqspi->dev, tqspi->dma_buf_size, |
| tqspi->rx_dma_buf, tqspi->rx_dma_phys); |
| tqspi->rx_dma_buf = NULL; |
| } |
| |
| if (tqspi->rx_dma_chan) { |
| dma_release_channel(tqspi->rx_dma_chan); |
| tqspi->rx_dma_chan = NULL; |
| } |
| } |
| |
| static int tegra_qspi_init_dma(struct tegra_qspi *tqspi) |
| { |
| struct dma_chan *dma_chan; |
| dma_addr_t dma_phys; |
| u32 *dma_buf; |
| int err; |
| |
| dma_chan = dma_request_chan(tqspi->dev, "rx"); |
| if (IS_ERR(dma_chan)) { |
| err = PTR_ERR(dma_chan); |
| goto err_out; |
| } |
| |
| tqspi->rx_dma_chan = dma_chan; |
| |
| dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL); |
| if (!dma_buf) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| tqspi->rx_dma_buf = dma_buf; |
| tqspi->rx_dma_phys = dma_phys; |
| |
| dma_chan = dma_request_chan(tqspi->dev, "tx"); |
| if (IS_ERR(dma_chan)) { |
| err = PTR_ERR(dma_chan); |
| goto err_out; |
| } |
| |
| tqspi->tx_dma_chan = dma_chan; |
| |
| dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL); |
| if (!dma_buf) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| tqspi->tx_dma_buf = dma_buf; |
| tqspi->tx_dma_phys = dma_phys; |
| tqspi->use_dma = true; |
| |
| return 0; |
| |
| err_out: |
| tegra_qspi_deinit_dma(tqspi); |
| |
| if (err != -EPROBE_DEFER) { |
| dev_err(tqspi->dev, "cannot use DMA: %d\n", err); |
| dev_err(tqspi->dev, "falling back to PIO\n"); |
| return 0; |
| } |
| |
| return err; |
| } |
| |
| static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t, |
| bool is_first_of_msg) |
| { |
| struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master); |
| struct tegra_qspi_client_data *cdata = spi->controller_data; |
| u32 command1, command2, speed = t->speed_hz; |
| u8 bits_per_word = t->bits_per_word; |
| u32 tx_tap = 0, rx_tap = 0; |
| int req_mode; |
| |
| if (!has_acpi_companion(tqspi->dev) && speed != tqspi->cur_speed) { |
| clk_set_rate(tqspi->clk, speed); |
| tqspi->cur_speed = speed; |
| } |
| |
| tqspi->cur_pos = 0; |
| tqspi->cur_rx_pos = 0; |
| tqspi->cur_tx_pos = 0; |
| tqspi->curr_xfer = t; |
| |
| if (is_first_of_msg) { |
| tegra_qspi_mask_clear_irq(tqspi); |
| |
| command1 = tqspi->def_command1_reg; |
| command1 |= QSPI_CS_SEL(spi->chip_select); |
| command1 |= QSPI_BIT_LENGTH(bits_per_word - 1); |
| |
| command1 &= ~QSPI_CONTROL_MODE_MASK; |
| req_mode = spi->mode & 0x3; |
| if (req_mode == SPI_MODE_3) |
| command1 |= QSPI_CONTROL_MODE_3; |
| else |
| command1 |= QSPI_CONTROL_MODE_0; |
| |
| if (spi->mode & SPI_CS_HIGH) |
| command1 |= QSPI_CS_SW_VAL; |
| else |
| command1 &= ~QSPI_CS_SW_VAL; |
| tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1); |
| |
| if (cdata && cdata->tx_clk_tap_delay) |
| tx_tap = cdata->tx_clk_tap_delay; |
| |
| if (cdata && cdata->rx_clk_tap_delay) |
| rx_tap = cdata->rx_clk_tap_delay; |
| |
| command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap); |
| if (command2 != tqspi->def_command2_reg) |
| tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2); |
| |
| } else { |
| command1 = tqspi->command1_reg; |
| command1 &= ~QSPI_BIT_LENGTH(~0); |
| command1 |= QSPI_BIT_LENGTH(bits_per_word - 1); |
| } |
| |
| command1 &= ~QSPI_SDR_DDR_SEL; |
| |
| return command1; |
| } |
| |
| static int tegra_qspi_start_transfer_one(struct spi_device *spi, |
| struct spi_transfer *t, u32 command1) |
| { |
| struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master); |
| unsigned int total_fifo_words; |
| u8 bus_width = 0; |
| int ret; |
| |
| total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t); |
| |
| command1 &= ~QSPI_PACKED; |
| if (tqspi->is_packed) |
| command1 |= QSPI_PACKED; |
| tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1); |
| |
| tqspi->cur_direction = 0; |
| |
| command1 &= ~(QSPI_TX_EN | QSPI_RX_EN); |
| if (t->rx_buf) { |
| command1 |= QSPI_RX_EN; |
| tqspi->cur_direction |= DATA_DIR_RX; |
| bus_width = t->rx_nbits; |
| } |
| |
| if (t->tx_buf) { |
| command1 |= QSPI_TX_EN; |
| tqspi->cur_direction |= DATA_DIR_TX; |
| bus_width = t->tx_nbits; |
| } |
| |
| command1 &= ~QSPI_INTERFACE_WIDTH_MASK; |
| |
| if (bus_width == SPI_NBITS_QUAD) |
| command1 |= QSPI_INTERFACE_WIDTH_QUAD; |
| else if (bus_width == SPI_NBITS_DUAL) |
| command1 |= QSPI_INTERFACE_WIDTH_DUAL; |
| else |
| command1 |= QSPI_INTERFACE_WIDTH_SINGLE; |
| |
| tqspi->command1_reg = command1; |
| |
| tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG); |
| |
| ret = tegra_qspi_flush_fifos(tqspi, false); |
| if (ret < 0) |
| return ret; |
| |
| if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH) |
| ret = tegra_qspi_start_dma_based_transfer(tqspi, t); |
| else |
| ret = tegra_qspi_start_cpu_based_transfer(tqspi, t); |
| |
| return ret; |
| } |
| |
| static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi) |
| { |
| struct tegra_qspi_client_data *cdata; |
| |
| cdata = devm_kzalloc(&spi->dev, sizeof(*cdata), GFP_KERNEL); |
| if (!cdata) |
| return NULL; |
| |
| device_property_read_u32(&spi->dev, "nvidia,tx-clk-tap-delay", |
| &cdata->tx_clk_tap_delay); |
| device_property_read_u32(&spi->dev, "nvidia,rx-clk-tap-delay", |
| &cdata->rx_clk_tap_delay); |
| |
| return cdata; |
| } |
| |
| static int tegra_qspi_setup(struct spi_device *spi) |
| { |
| struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master); |
| struct tegra_qspi_client_data *cdata = spi->controller_data; |
| unsigned long flags; |
| u32 val; |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(tqspi->dev); |
| if (ret < 0) { |
| dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret); |
| return ret; |
| } |
| |
| if (!cdata) { |
| cdata = tegra_qspi_parse_cdata_dt(spi); |
| spi->controller_data = cdata; |
| } |
| spin_lock_irqsave(&tqspi->lock, flags); |
| |
| /* keep default cs state to inactive */ |
| val = tqspi->def_command1_reg; |
| val |= QSPI_CS_SEL(spi->chip_select); |
| if (spi->mode & SPI_CS_HIGH) |
| val &= ~QSPI_CS_POL_INACTIVE(spi->chip_select); |
| else |
| val |= QSPI_CS_POL_INACTIVE(spi->chip_select); |
| |
| tqspi->def_command1_reg = val; |
| tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1); |
| |
| spin_unlock_irqrestore(&tqspi->lock, flags); |
| |
| pm_runtime_put(tqspi->dev); |
| |
| return 0; |
| } |
| |
| static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi) |
| { |
| dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n"); |
| dev_dbg(tqspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n", |
| tegra_qspi_readl(tqspi, QSPI_COMMAND1), |
| tegra_qspi_readl(tqspi, QSPI_COMMAND2)); |
| dev_dbg(tqspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n", |
| tegra_qspi_readl(tqspi, QSPI_DMA_CTL), |
| tegra_qspi_readl(tqspi, QSPI_DMA_BLK)); |
| dev_dbg(tqspi->dev, "INTR_MASK: 0x%08x | MISC: 0x%08x\n", |
| tegra_qspi_readl(tqspi, QSPI_INTR_MASK), |
| tegra_qspi_readl(tqspi, QSPI_MISC_REG)); |
| dev_dbg(tqspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n", |
| tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS), |
| tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS)); |
| } |
| |
| static void tegra_qspi_handle_error(struct tegra_qspi *tqspi) |
| { |
| dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg); |
| tegra_qspi_dump_regs(tqspi); |
| tegra_qspi_flush_fifos(tqspi, true); |
| if (device_reset(tqspi->dev) < 0) |
| dev_warn_once(tqspi->dev, "device reset failed\n"); |
| } |
| |
| static void tegra_qspi_transfer_end(struct spi_device *spi) |
| { |
| struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master); |
| int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1; |
| |
| if (cs_val) |
| tqspi->command1_reg |= QSPI_CS_SW_VAL; |
| else |
| tqspi->command1_reg &= ~QSPI_CS_SW_VAL; |
| tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1); |
| tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1); |
| } |
| |
| static u32 tegra_qspi_cmd_config(bool is_ddr, u8 bus_width, u8 len) |
| { |
| u32 cmd_config = 0; |
| |
| /* Extract Command configuration and value */ |
| if (is_ddr) |
| cmd_config |= QSPI_COMMAND_SDR_DDR; |
| else |
| cmd_config &= ~QSPI_COMMAND_SDR_DDR; |
| |
| cmd_config |= QSPI_COMMAND_X1_X2_X4(bus_width); |
| cmd_config |= QSPI_COMMAND_SIZE_SET((len * 8) - 1); |
| |
| return cmd_config; |
| } |
| |
| static u32 tegra_qspi_addr_config(bool is_ddr, u8 bus_width, u8 len) |
| { |
| u32 addr_config = 0; |
| |
| /* Extract Address configuration and value */ |
| is_ddr = 0; //Only SDR mode supported |
| bus_width = 0; //X1 mode |
| |
| if (is_ddr) |
| addr_config |= QSPI_ADDRESS_SDR_DDR; |
| else |
| addr_config &= ~QSPI_ADDRESS_SDR_DDR; |
| |
| addr_config |= QSPI_ADDRESS_X1_X2_X4(bus_width); |
| addr_config |= QSPI_ADDRESS_SIZE_SET((len * 8) - 1); |
| |
| return addr_config; |
| } |
| |
| static int tegra_qspi_combined_seq_xfer(struct tegra_qspi *tqspi, |
| struct spi_message *msg) |
| { |
| bool is_first_msg = true; |
| struct spi_transfer *xfer; |
| struct spi_device *spi = msg->spi; |
| u8 transfer_phase = 0; |
| u32 cmd1 = 0, dma_ctl = 0; |
| int ret = 0; |
| u32 address_value = 0; |
| u32 cmd_config = 0, addr_config = 0; |
| u8 cmd_value = 0, val = 0; |
| |
| /* Enable Combined sequence mode */ |
| val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG); |
| val |= QSPI_CMB_SEQ_EN; |
| tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG); |
| /* Process individual transfer list */ |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| switch (transfer_phase) { |
| case CMD_TRANSFER: |
| /* X1 SDR mode */ |
| cmd_config = tegra_qspi_cmd_config(false, 0, |
| xfer->len); |
| cmd_value = *((const u8 *)(xfer->tx_buf)); |
| break; |
| case ADDR_TRANSFER: |
| /* X1 SDR mode */ |
| addr_config = tegra_qspi_addr_config(false, 0, |
| xfer->len); |
| address_value = *((const u32 *)(xfer->tx_buf)); |
| break; |
| case DATA_TRANSFER: |
| /* Program Command, Address value in register */ |
| tegra_qspi_writel(tqspi, cmd_value, QSPI_CMB_SEQ_CMD); |
| tegra_qspi_writel(tqspi, address_value, |
| QSPI_CMB_SEQ_ADDR); |
| /* Program Command and Address config in register */ |
| tegra_qspi_writel(tqspi, cmd_config, |
| QSPI_CMB_SEQ_CMD_CFG); |
| tegra_qspi_writel(tqspi, addr_config, |
| QSPI_CMB_SEQ_ADDR_CFG); |
| |
| reinit_completion(&tqspi->xfer_completion); |
| cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, |
| is_first_msg); |
| ret = tegra_qspi_start_transfer_one(spi, xfer, |
| cmd1); |
| |
| if (ret < 0) { |
| dev_err(tqspi->dev, "Failed to start transfer-one: %d\n", |
| ret); |
| return ret; |
| } |
| |
| is_first_msg = false; |
| ret = wait_for_completion_timeout |
| (&tqspi->xfer_completion, |
| QSPI_DMA_TIMEOUT); |
| |
| if (WARN_ON(ret == 0)) { |
| dev_err(tqspi->dev, "QSPI Transfer failed with timeout: %d\n", |
| ret); |
| if (tqspi->is_curr_dma_xfer && |
| (tqspi->cur_direction & DATA_DIR_TX)) |
| dmaengine_terminate_all |
| (tqspi->tx_dma_chan); |
| |
| if (tqspi->is_curr_dma_xfer && |
| (tqspi->cur_direction & DATA_DIR_RX)) |
| dmaengine_terminate_all |
| (tqspi->rx_dma_chan); |
| |
| /* Abort transfer by resetting pio/dma bit */ |
| if (!tqspi->is_curr_dma_xfer) { |
| cmd1 = tegra_qspi_readl |
| (tqspi, |
| QSPI_COMMAND1); |
| cmd1 &= ~QSPI_PIO; |
| tegra_qspi_writel |
| (tqspi, cmd1, |
| QSPI_COMMAND1); |
| } else { |
| dma_ctl = tegra_qspi_readl |
| (tqspi, |
| QSPI_DMA_CTL); |
| dma_ctl &= ~QSPI_DMA_EN; |
| tegra_qspi_writel(tqspi, dma_ctl, |
| QSPI_DMA_CTL); |
| } |
| |
| /* Reset controller if timeout happens */ |
| if (device_reset(tqspi->dev) < 0) |
| dev_warn_once(tqspi->dev, |
| "device reset failed\n"); |
| ret = -EIO; |
| goto exit; |
| } |
| |
| if (tqspi->tx_status || tqspi->rx_status) { |
| dev_err(tqspi->dev, "QSPI Transfer failed\n"); |
| tqspi->tx_status = 0; |
| tqspi->rx_status = 0; |
| ret = -EIO; |
| goto exit; |
| } |
| break; |
| default: |
| ret = -EINVAL; |
| goto exit; |
| } |
| msg->actual_length += xfer->len; |
| transfer_phase++; |
| } |
| if (!xfer->cs_change) { |
| tegra_qspi_transfer_end(spi); |
| spi_transfer_delay_exec(xfer); |
| } |
| ret = 0; |
| |
| exit: |
| msg->status = ret; |
| |
| return ret; |
| } |
| |
| static int tegra_qspi_non_combined_seq_xfer(struct tegra_qspi *tqspi, |
| struct spi_message *msg) |
| { |
| struct spi_device *spi = msg->spi; |
| struct spi_transfer *transfer; |
| bool is_first_msg = true; |
| int ret = 0, val = 0; |
| |
| msg->status = 0; |
| msg->actual_length = 0; |
| tqspi->tx_status = 0; |
| tqspi->rx_status = 0; |
| |
| /* Disable Combined sequence mode */ |
| val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG); |
| val &= ~QSPI_CMB_SEQ_EN; |
| tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG); |
| list_for_each_entry(transfer, &msg->transfers, transfer_list) { |
| struct spi_transfer *xfer = transfer; |
| u8 dummy_bytes = 0; |
| u32 cmd1; |
| |
| tqspi->dummy_cycles = 0; |
| /* |
| * Tegra QSPI hardware supports dummy bytes transfer after actual transfer |
| * bytes based on programmed dummy clock cycles in the QSPI_MISC register. |
| * So, check if the next transfer is dummy data transfer and program dummy |
| * clock cycles along with the current transfer and skip next transfer. |
| */ |
| if (!list_is_last(&xfer->transfer_list, &msg->transfers)) { |
| struct spi_transfer *next_xfer; |
| |
| next_xfer = list_next_entry(xfer, transfer_list); |
| if (next_xfer->dummy_data) { |
| u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits; |
| |
| if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) { |
| tqspi->dummy_cycles = dummy_cycles; |
| dummy_bytes = next_xfer->len; |
| transfer = next_xfer; |
| } |
| } |
| } |
| |
| reinit_completion(&tqspi->xfer_completion); |
| |
| cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg); |
| |
| ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1); |
| if (ret < 0) { |
| dev_err(tqspi->dev, "failed to start transfer: %d\n", ret); |
| goto complete_xfer; |
| } |
| |
| ret = wait_for_completion_timeout(&tqspi->xfer_completion, |
| QSPI_DMA_TIMEOUT); |
| if (WARN_ON(ret == 0)) { |
| dev_err(tqspi->dev, "transfer timeout\n"); |
| if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX)) |
| dmaengine_terminate_all(tqspi->tx_dma_chan); |
| if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX)) |
| dmaengine_terminate_all(tqspi->rx_dma_chan); |
| tegra_qspi_handle_error(tqspi); |
| ret = -EIO; |
| goto complete_xfer; |
| } |
| |
| if (tqspi->tx_status || tqspi->rx_status) { |
| tegra_qspi_handle_error(tqspi); |
| ret = -EIO; |
| goto complete_xfer; |
| } |
| |
| msg->actual_length += xfer->len + dummy_bytes; |
| |
| complete_xfer: |
| if (ret < 0) { |
| tegra_qspi_transfer_end(spi); |
| spi_transfer_delay_exec(xfer); |
| goto exit; |
| } |
| |
| if (list_is_last(&xfer->transfer_list, &msg->transfers)) { |
| /* de-activate CS after last transfer only when cs_change is not set */ |
| if (!xfer->cs_change) { |
| tegra_qspi_transfer_end(spi); |
| spi_transfer_delay_exec(xfer); |
| } |
| } else if (xfer->cs_change) { |
| /* de-activated CS between the transfers only when cs_change is set */ |
| tegra_qspi_transfer_end(spi); |
| spi_transfer_delay_exec(xfer); |
| } |
| } |
| |
| ret = 0; |
| exit: |
| msg->status = ret; |
| |
| return ret; |
| } |
| |
| static bool tegra_qspi_validate_cmb_seq(struct tegra_qspi *tqspi, |
| struct spi_message *msg) |
| { |
| int transfer_count = 0; |
| struct spi_transfer *xfer; |
| |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| transfer_count++; |
| } |
| if (!tqspi->soc_data->cmb_xfer_capable || transfer_count != 3) |
| return false; |
| xfer = list_first_entry(&msg->transfers, typeof(*xfer), |
| transfer_list); |
| if (xfer->len > 2) |
| return false; |
| xfer = list_next_entry(xfer, transfer_list); |
| if (xfer->len > 4 || xfer->len < 3) |
| return false; |
| xfer = list_next_entry(xfer, transfer_list); |
| if (!tqspi->soc_data->has_dma || xfer->len > (QSPI_FIFO_DEPTH << 2)) |
| return false; |
| |
| return true; |
| } |
| |
| static int tegra_qspi_transfer_one_message(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| struct tegra_qspi *tqspi = spi_master_get_devdata(master); |
| int ret; |
| |
| if (tegra_qspi_validate_cmb_seq(tqspi, msg)) |
| ret = tegra_qspi_combined_seq_xfer(tqspi, msg); |
| else |
| ret = tegra_qspi_non_combined_seq_xfer(tqspi, msg); |
| |
| spi_finalize_current_message(master); |
| |
| return ret; |
| } |
| |
| static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi) |
| { |
| struct spi_transfer *t = tqspi->curr_xfer; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&tqspi->lock, flags); |
| |
| if (tqspi->tx_status || tqspi->rx_status) { |
| tegra_qspi_handle_error(tqspi); |
| complete(&tqspi->xfer_completion); |
| goto exit; |
| } |
| |
| if (tqspi->cur_direction & DATA_DIR_RX) |
| tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t); |
| |
| if (tqspi->cur_direction & DATA_DIR_TX) |
| tqspi->cur_pos = tqspi->cur_tx_pos; |
| else |
| tqspi->cur_pos = tqspi->cur_rx_pos; |
| |
| if (tqspi->cur_pos == t->len) { |
| complete(&tqspi->xfer_completion); |
| goto exit; |
| } |
| |
| tegra_qspi_calculate_curr_xfer_param(tqspi, t); |
| tegra_qspi_start_cpu_based_transfer(tqspi, t); |
| exit: |
| spin_unlock_irqrestore(&tqspi->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi) |
| { |
| struct spi_transfer *t = tqspi->curr_xfer; |
| unsigned int total_fifo_words; |
| unsigned long flags; |
| long wait_status; |
| int err = 0; |
| |
| if (tqspi->cur_direction & DATA_DIR_TX) { |
| if (tqspi->tx_status) { |
| dmaengine_terminate_all(tqspi->tx_dma_chan); |
| err += 1; |
| } else { |
| wait_status = wait_for_completion_interruptible_timeout( |
| &tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT); |
| if (wait_status <= 0) { |
| dmaengine_terminate_all(tqspi->tx_dma_chan); |
| dev_err(tqspi->dev, "failed TX DMA transfer\n"); |
| err += 1; |
| } |
| } |
| } |
| |
| if (tqspi->cur_direction & DATA_DIR_RX) { |
| if (tqspi->rx_status) { |
| dmaengine_terminate_all(tqspi->rx_dma_chan); |
| err += 2; |
| } else { |
| wait_status = wait_for_completion_interruptible_timeout( |
| &tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT); |
| if (wait_status <= 0) { |
| dmaengine_terminate_all(tqspi->rx_dma_chan); |
| dev_err(tqspi->dev, "failed RX DMA transfer\n"); |
| err += 2; |
| } |
| } |
| } |
| |
| spin_lock_irqsave(&tqspi->lock, flags); |
| |
| if (err) { |
| tegra_qspi_dma_unmap_xfer(tqspi, t); |
| tegra_qspi_handle_error(tqspi); |
| complete(&tqspi->xfer_completion); |
| goto exit; |
| } |
| |
| if (tqspi->cur_direction & DATA_DIR_RX) |
| tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t); |
| |
| if (tqspi->cur_direction & DATA_DIR_TX) |
| tqspi->cur_pos = tqspi->cur_tx_pos; |
| else |
| tqspi->cur_pos = tqspi->cur_rx_pos; |
| |
| if (tqspi->cur_pos == t->len) { |
| tegra_qspi_dma_unmap_xfer(tqspi, t); |
| complete(&tqspi->xfer_completion); |
| goto exit; |
| } |
| |
| tegra_qspi_dma_unmap_xfer(tqspi, t); |
| |
| /* continue transfer in current message */ |
| total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t); |
| if (total_fifo_words > QSPI_FIFO_DEPTH) |
| err = tegra_qspi_start_dma_based_transfer(tqspi, t); |
| else |
| err = tegra_qspi_start_cpu_based_transfer(tqspi, t); |
| |
| exit: |
| spin_unlock_irqrestore(&tqspi->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data) |
| { |
| struct tegra_qspi *tqspi = context_data; |
| |
| tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS); |
| |
| if (tqspi->cur_direction & DATA_DIR_TX) |
| tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF); |
| |
| if (tqspi->cur_direction & DATA_DIR_RX) |
| tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF); |
| |
| tegra_qspi_mask_clear_irq(tqspi); |
| |
| if (!tqspi->is_curr_dma_xfer) |
| return handle_cpu_based_xfer(tqspi); |
| |
| return handle_dma_based_xfer(tqspi); |
| } |
| |
| static struct tegra_qspi_soc_data tegra210_qspi_soc_data = { |
| .has_dma = true, |
| .cmb_xfer_capable = false, |
| .cs_count = 1, |
| }; |
| |
| static struct tegra_qspi_soc_data tegra186_qspi_soc_data = { |
| .has_dma = true, |
| .cmb_xfer_capable = true, |
| .cs_count = 1, |
| }; |
| |
| static struct tegra_qspi_soc_data tegra234_qspi_soc_data = { |
| .has_dma = false, |
| .cmb_xfer_capable = true, |
| .cs_count = 1, |
| }; |
| |
| static struct tegra_qspi_soc_data tegra241_qspi_soc_data = { |
| .has_dma = false, |
| .cmb_xfer_capable = true, |
| .cs_count = 4, |
| }; |
| |
| static const struct of_device_id tegra_qspi_of_match[] = { |
| { |
| .compatible = "nvidia,tegra210-qspi", |
| .data = &tegra210_qspi_soc_data, |
| }, { |
| .compatible = "nvidia,tegra186-qspi", |
| .data = &tegra186_qspi_soc_data, |
| }, { |
| .compatible = "nvidia,tegra194-qspi", |
| .data = &tegra186_qspi_soc_data, |
| }, { |
| .compatible = "nvidia,tegra234-qspi", |
| .data = &tegra234_qspi_soc_data, |
| }, { |
| .compatible = "nvidia,tegra241-qspi", |
| .data = &tegra241_qspi_soc_data, |
| }, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(of, tegra_qspi_of_match); |
| |
| #ifdef CONFIG_ACPI |
| static const struct acpi_device_id tegra_qspi_acpi_match[] = { |
| { |
| .id = "NVDA1213", |
| .driver_data = (kernel_ulong_t)&tegra210_qspi_soc_data, |
| }, { |
| .id = "NVDA1313", |
| .driver_data = (kernel_ulong_t)&tegra186_qspi_soc_data, |
| }, { |
| .id = "NVDA1413", |
| .driver_data = (kernel_ulong_t)&tegra234_qspi_soc_data, |
| }, { |
| .id = "NVDA1513", |
| .driver_data = (kernel_ulong_t)&tegra241_qspi_soc_data, |
| }, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(acpi, tegra_qspi_acpi_match); |
| #endif |
| |
| static int tegra_qspi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct tegra_qspi *tqspi; |
| struct resource *r; |
| int ret, qspi_irq; |
| int bus_num; |
| |
| master = devm_spi_alloc_master(&pdev->dev, sizeof(*tqspi)); |
| if (!master) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, master); |
| tqspi = spi_master_get_devdata(master); |
| |
| master->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH | |
| SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD; |
| master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8); |
| master->setup = tegra_qspi_setup; |
| master->transfer_one_message = tegra_qspi_transfer_one_message; |
| master->num_chipselect = 1; |
| master->auto_runtime_pm = true; |
| |
| bus_num = of_alias_get_id(pdev->dev.of_node, "spi"); |
| if (bus_num >= 0) |
| master->bus_num = bus_num; |
| |
| tqspi->master = master; |
| tqspi->dev = &pdev->dev; |
| spin_lock_init(&tqspi->lock); |
| |
| tqspi->soc_data = device_get_match_data(&pdev->dev); |
| master->num_chipselect = tqspi->soc_data->cs_count; |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| tqspi->base = devm_ioremap_resource(&pdev->dev, r); |
| if (IS_ERR(tqspi->base)) |
| return PTR_ERR(tqspi->base); |
| |
| tqspi->phys = r->start; |
| qspi_irq = platform_get_irq(pdev, 0); |
| if (qspi_irq < 0) |
| return qspi_irq; |
| tqspi->irq = qspi_irq; |
| |
| if (!has_acpi_companion(tqspi->dev)) { |
| tqspi->clk = devm_clk_get(&pdev->dev, "qspi"); |
| if (IS_ERR(tqspi->clk)) { |
| ret = PTR_ERR(tqspi->clk); |
| dev_err(&pdev->dev, "failed to get clock: %d\n", ret); |
| return ret; |
| } |
| |
| } |
| |
| tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2; |
| tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN; |
| |
| ret = tegra_qspi_init_dma(tqspi); |
| if (ret < 0) |
| return ret; |
| |
| if (tqspi->use_dma) |
| tqspi->max_buf_size = tqspi->dma_buf_size; |
| |
| init_completion(&tqspi->tx_dma_complete); |
| init_completion(&tqspi->rx_dma_complete); |
| init_completion(&tqspi->xfer_completion); |
| |
| pm_runtime_enable(&pdev->dev); |
| ret = pm_runtime_resume_and_get(&pdev->dev); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret); |
| goto exit_pm_disable; |
| } |
| |
| if (device_reset(tqspi->dev) < 0) |
| dev_warn_once(tqspi->dev, "device reset failed\n"); |
| |
| tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW | QSPI_CS_SW_VAL; |
| tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1); |
| tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1); |
| tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2); |
| tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2); |
| |
| pm_runtime_put(&pdev->dev); |
| |
| ret = request_threaded_irq(tqspi->irq, NULL, |
| tegra_qspi_isr_thread, IRQF_ONESHOT, |
| dev_name(&pdev->dev), tqspi); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret); |
| goto exit_pm_disable; |
| } |
| |
| master->dev.of_node = pdev->dev.of_node; |
| ret = spi_register_master(master); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to register master: %d\n", ret); |
| goto exit_free_irq; |
| } |
| |
| return 0; |
| |
| exit_free_irq: |
| free_irq(qspi_irq, tqspi); |
| exit_pm_disable: |
| pm_runtime_force_suspend(&pdev->dev); |
| tegra_qspi_deinit_dma(tqspi); |
| return ret; |
| } |
| |
| static int tegra_qspi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct tegra_qspi *tqspi = spi_master_get_devdata(master); |
| |
| spi_unregister_master(master); |
| free_irq(tqspi->irq, tqspi); |
| pm_runtime_force_suspend(&pdev->dev); |
| tegra_qspi_deinit_dma(tqspi); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused tegra_qspi_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| |
| return spi_master_suspend(master); |
| } |
| |
| static int __maybe_unused tegra_qspi_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct tegra_qspi *tqspi = spi_master_get_devdata(master); |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret < 0) { |
| dev_err(dev, "failed to get runtime PM: %d\n", ret); |
| return ret; |
| } |
| |
| tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1); |
| tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2); |
| pm_runtime_put(dev); |
| |
| return spi_master_resume(master); |
| } |
| |
| static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct tegra_qspi *tqspi = spi_master_get_devdata(master); |
| |
| /* Runtime pm disabled with ACPI */ |
| if (has_acpi_companion(tqspi->dev)) |
| return 0; |
| /* flush all write which are in PPSB queue by reading back */ |
| tegra_qspi_readl(tqspi, QSPI_COMMAND1); |
| |
| clk_disable_unprepare(tqspi->clk); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct tegra_qspi *tqspi = spi_master_get_devdata(master); |
| int ret; |
| |
| /* Runtime pm disabled with ACPI */ |
| if (has_acpi_companion(tqspi->dev)) |
| return 0; |
| ret = clk_prepare_enable(tqspi->clk); |
| if (ret < 0) |
| dev_err(tqspi->dev, "failed to enable clock: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static const struct dev_pm_ops tegra_qspi_pm_ops = { |
| SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL) |
| SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume) |
| }; |
| |
| static struct platform_driver tegra_qspi_driver = { |
| .driver = { |
| .name = "tegra-qspi", |
| .pm = &tegra_qspi_pm_ops, |
| .of_match_table = tegra_qspi_of_match, |
| .acpi_match_table = ACPI_PTR(tegra_qspi_acpi_match), |
| }, |
| .probe = tegra_qspi_probe, |
| .remove = tegra_qspi_remove, |
| }; |
| module_platform_driver(tegra_qspi_driver); |
| |
| MODULE_ALIAS("platform:qspi-tegra"); |
| MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver"); |
| MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>"); |
| MODULE_LICENSE("GPL v2"); |