|  | /* | 
|  | * Generic hugetlb support. | 
|  | * (C) Nadia Yvette Chambers, April 2004 | 
|  | */ | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/string_helpers.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/jhash.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/hugetlb_cgroup.h> | 
|  | #include <linux/node.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/page_owner.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | int hugetlb_max_hstate __read_mostly; | 
|  | unsigned int default_hstate_idx; | 
|  | struct hstate hstates[HUGE_MAX_HSTATE]; | 
|  | /* | 
|  | * Minimum page order among possible hugepage sizes, set to a proper value | 
|  | * at boot time. | 
|  | */ | 
|  | static unsigned int minimum_order __read_mostly = UINT_MAX; | 
|  |  | 
|  | __initdata LIST_HEAD(huge_boot_pages); | 
|  |  | 
|  | /* for command line parsing */ | 
|  | static struct hstate * __initdata parsed_hstate; | 
|  | static unsigned long __initdata default_hstate_max_huge_pages; | 
|  | static unsigned long __initdata default_hstate_size; | 
|  | static bool __initdata parsed_valid_hugepagesz = true; | 
|  |  | 
|  | /* | 
|  | * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, | 
|  | * free_huge_pages, and surplus_huge_pages. | 
|  | */ | 
|  | DEFINE_SPINLOCK(hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Serializes faults on the same logical page.  This is used to | 
|  | * prevent spurious OOMs when the hugepage pool is fully utilized. | 
|  | */ | 
|  | static int num_fault_mutexes; | 
|  | struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; | 
|  |  | 
|  | /* Forward declaration */ | 
|  | static int hugetlb_acct_memory(struct hstate *h, long delta); | 
|  |  | 
|  | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) | 
|  | { | 
|  | bool free = (spool->count == 0) && (spool->used_hpages == 0); | 
|  |  | 
|  | spin_unlock(&spool->lock); | 
|  |  | 
|  | /* If no pages are used, and no other handles to the subpool | 
|  | * remain, give up any reservations mased on minimum size and | 
|  | * free the subpool */ | 
|  | if (free) { | 
|  | if (spool->min_hpages != -1) | 
|  | hugetlb_acct_memory(spool->hstate, | 
|  | -spool->min_hpages); | 
|  | kfree(spool); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, | 
|  | long min_hpages) | 
|  | { | 
|  | struct hugepage_subpool *spool; | 
|  |  | 
|  | spool = kzalloc(sizeof(*spool), GFP_KERNEL); | 
|  | if (!spool) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_init(&spool->lock); | 
|  | spool->count = 1; | 
|  | spool->max_hpages = max_hpages; | 
|  | spool->hstate = h; | 
|  | spool->min_hpages = min_hpages; | 
|  |  | 
|  | if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { | 
|  | kfree(spool); | 
|  | return NULL; | 
|  | } | 
|  | spool->rsv_hpages = min_hpages; | 
|  |  | 
|  | return spool; | 
|  | } | 
|  |  | 
|  | void hugepage_put_subpool(struct hugepage_subpool *spool) | 
|  | { | 
|  | spin_lock(&spool->lock); | 
|  | BUG_ON(!spool->count); | 
|  | spool->count--; | 
|  | unlock_or_release_subpool(spool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subpool accounting for allocating and reserving pages. | 
|  | * Return -ENOMEM if there are not enough resources to satisfy the | 
|  | * the request.  Otherwise, return the number of pages by which the | 
|  | * global pools must be adjusted (upward).  The returned value may | 
|  | * only be different than the passed value (delta) in the case where | 
|  | * a subpool minimum size must be manitained. | 
|  | */ | 
|  | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, | 
|  | long delta) | 
|  | { | 
|  | long ret = delta; | 
|  |  | 
|  | if (!spool) | 
|  | return ret; | 
|  |  | 
|  | spin_lock(&spool->lock); | 
|  |  | 
|  | if (spool->max_hpages != -1) {		/* maximum size accounting */ | 
|  | if ((spool->used_hpages + delta) <= spool->max_hpages) | 
|  | spool->used_hpages += delta; | 
|  | else { | 
|  | ret = -ENOMEM; | 
|  | goto unlock_ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* minimum size accounting */ | 
|  | if (spool->min_hpages != -1 && spool->rsv_hpages) { | 
|  | if (delta > spool->rsv_hpages) { | 
|  | /* | 
|  | * Asking for more reserves than those already taken on | 
|  | * behalf of subpool.  Return difference. | 
|  | */ | 
|  | ret = delta - spool->rsv_hpages; | 
|  | spool->rsv_hpages = 0; | 
|  | } else { | 
|  | ret = 0;	/* reserves already accounted for */ | 
|  | spool->rsv_hpages -= delta; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock_ret: | 
|  | spin_unlock(&spool->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subpool accounting for freeing and unreserving pages. | 
|  | * Return the number of global page reservations that must be dropped. | 
|  | * The return value may only be different than the passed value (delta) | 
|  | * in the case where a subpool minimum size must be maintained. | 
|  | */ | 
|  | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, | 
|  | long delta) | 
|  | { | 
|  | long ret = delta; | 
|  |  | 
|  | if (!spool) | 
|  | return delta; | 
|  |  | 
|  | spin_lock(&spool->lock); | 
|  |  | 
|  | if (spool->max_hpages != -1)		/* maximum size accounting */ | 
|  | spool->used_hpages -= delta; | 
|  |  | 
|  | /* minimum size accounting */ | 
|  | if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { | 
|  | if (spool->rsv_hpages + delta <= spool->min_hpages) | 
|  | ret = 0; | 
|  | else | 
|  | ret = spool->rsv_hpages + delta - spool->min_hpages; | 
|  |  | 
|  | spool->rsv_hpages += delta; | 
|  | if (spool->rsv_hpages > spool->min_hpages) | 
|  | spool->rsv_hpages = spool->min_hpages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If hugetlbfs_put_super couldn't free spool due to an outstanding | 
|  | * quota reference, free it now. | 
|  | */ | 
|  | unlock_or_release_subpool(spool); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | 
|  | { | 
|  | return HUGETLBFS_SB(inode->i_sb)->spool; | 
|  | } | 
|  |  | 
|  | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | return subpool_inode(file_inode(vma->vm_file)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Region tracking -- allows tracking of reservations and instantiated pages | 
|  | *                    across the pages in a mapping. | 
|  | * | 
|  | * The region data structures are embedded into a resv_map and protected | 
|  | * by a resv_map's lock.  The set of regions within the resv_map represent | 
|  | * reservations for huge pages, or huge pages that have already been | 
|  | * instantiated within the map.  The from and to elements are huge page | 
|  | * indicies into the associated mapping.  from indicates the starting index | 
|  | * of the region.  to represents the first index past the end of  the region. | 
|  | * | 
|  | * For example, a file region structure with from == 0 and to == 4 represents | 
|  | * four huge pages in a mapping.  It is important to note that the to element | 
|  | * represents the first element past the end of the region. This is used in | 
|  | * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. | 
|  | * | 
|  | * Interval notation of the form [from, to) will be used to indicate that | 
|  | * the endpoint from is inclusive and to is exclusive. | 
|  | */ | 
|  | struct file_region { | 
|  | struct list_head link; | 
|  | long from; | 
|  | long to; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Add the huge page range represented by [f, t) to the reserve | 
|  | * map.  In the normal case, existing regions will be expanded | 
|  | * to accommodate the specified range.  Sufficient regions should | 
|  | * exist for expansion due to the previous call to region_chg | 
|  | * with the same range.  However, it is possible that region_del | 
|  | * could have been called after region_chg and modifed the map | 
|  | * in such a way that no region exists to be expanded.  In this | 
|  | * case, pull a region descriptor from the cache associated with | 
|  | * the map and use that for the new range. | 
|  | * | 
|  | * Return the number of new huge pages added to the map.  This | 
|  | * number is greater than or equal to zero. | 
|  | */ | 
|  | static long region_add(struct resv_map *resv, long f, long t) | 
|  | { | 
|  | struct list_head *head = &resv->regions; | 
|  | struct file_region *rg, *nrg, *trg; | 
|  | long add = 0; | 
|  |  | 
|  | spin_lock(&resv->lock); | 
|  | /* Locate the region we are either in or before. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (f <= rg->to) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If no region exists which can be expanded to include the | 
|  | * specified range, the list must have been modified by an | 
|  | * interleving call to region_del().  Pull a region descriptor | 
|  | * from the cache and use it for this range. | 
|  | */ | 
|  | if (&rg->link == head || t < rg->from) { | 
|  | VM_BUG_ON(resv->region_cache_count <= 0); | 
|  |  | 
|  | resv->region_cache_count--; | 
|  | nrg = list_first_entry(&resv->region_cache, struct file_region, | 
|  | link); | 
|  | list_del(&nrg->link); | 
|  |  | 
|  | nrg->from = f; | 
|  | nrg->to = t; | 
|  | list_add(&nrg->link, rg->link.prev); | 
|  |  | 
|  | add += t - f; | 
|  | goto out_locked; | 
|  | } | 
|  |  | 
|  | /* Round our left edge to the current segment if it encloses us. */ | 
|  | if (f > rg->from) | 
|  | f = rg->from; | 
|  |  | 
|  | /* Check for and consume any regions we now overlap with. */ | 
|  | nrg = rg; | 
|  | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | if (rg->from > t) | 
|  | break; | 
|  |  | 
|  | /* If this area reaches higher then extend our area to | 
|  | * include it completely.  If this is not the first area | 
|  | * which we intend to reuse, free it. */ | 
|  | if (rg->to > t) | 
|  | t = rg->to; | 
|  | if (rg != nrg) { | 
|  | /* Decrement return value by the deleted range. | 
|  | * Another range will span this area so that by | 
|  | * end of routine add will be >= zero | 
|  | */ | 
|  | add -= (rg->to - rg->from); | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  | } | 
|  |  | 
|  | add += (nrg->from - f);		/* Added to beginning of region */ | 
|  | nrg->from = f; | 
|  | add += t - nrg->to;		/* Added to end of region */ | 
|  | nrg->to = t; | 
|  |  | 
|  | out_locked: | 
|  | resv->adds_in_progress--; | 
|  | spin_unlock(&resv->lock); | 
|  | VM_BUG_ON(add < 0); | 
|  | return add; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examine the existing reserve map and determine how many | 
|  | * huge pages in the specified range [f, t) are NOT currently | 
|  | * represented.  This routine is called before a subsequent | 
|  | * call to region_add that will actually modify the reserve | 
|  | * map to add the specified range [f, t).  region_chg does | 
|  | * not change the number of huge pages represented by the | 
|  | * map.  However, if the existing regions in the map can not | 
|  | * be expanded to represent the new range, a new file_region | 
|  | * structure is added to the map as a placeholder.  This is | 
|  | * so that the subsequent region_add call will have all the | 
|  | * regions it needs and will not fail. | 
|  | * | 
|  | * Upon entry, region_chg will also examine the cache of region descriptors | 
|  | * associated with the map.  If there are not enough descriptors cached, one | 
|  | * will be allocated for the in progress add operation. | 
|  | * | 
|  | * Returns the number of huge pages that need to be added to the existing | 
|  | * reservation map for the range [f, t).  This number is greater or equal to | 
|  | * zero.  -ENOMEM is returned if a new file_region structure or cache entry | 
|  | * is needed and can not be allocated. | 
|  | */ | 
|  | static long region_chg(struct resv_map *resv, long f, long t) | 
|  | { | 
|  | struct list_head *head = &resv->regions; | 
|  | struct file_region *rg, *nrg = NULL; | 
|  | long chg = 0; | 
|  |  | 
|  | retry: | 
|  | spin_lock(&resv->lock); | 
|  | retry_locked: | 
|  | resv->adds_in_progress++; | 
|  |  | 
|  | /* | 
|  | * Check for sufficient descriptors in the cache to accommodate | 
|  | * the number of in progress add operations. | 
|  | */ | 
|  | if (resv->adds_in_progress > resv->region_cache_count) { | 
|  | struct file_region *trg; | 
|  |  | 
|  | VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); | 
|  | /* Must drop lock to allocate a new descriptor. */ | 
|  | resv->adds_in_progress--; | 
|  | spin_unlock(&resv->lock); | 
|  |  | 
|  | trg = kmalloc(sizeof(*trg), GFP_KERNEL); | 
|  | if (!trg) { | 
|  | kfree(nrg); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock(&resv->lock); | 
|  | list_add(&trg->link, &resv->region_cache); | 
|  | resv->region_cache_count++; | 
|  | goto retry_locked; | 
|  | } | 
|  |  | 
|  | /* Locate the region we are before or in. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (f <= rg->to) | 
|  | break; | 
|  |  | 
|  | /* If we are below the current region then a new region is required. | 
|  | * Subtle, allocate a new region at the position but make it zero | 
|  | * size such that we can guarantee to record the reservation. */ | 
|  | if (&rg->link == head || t < rg->from) { | 
|  | if (!nrg) { | 
|  | resv->adds_in_progress--; | 
|  | spin_unlock(&resv->lock); | 
|  | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
|  | if (!nrg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nrg->from = f; | 
|  | nrg->to   = f; | 
|  | INIT_LIST_HEAD(&nrg->link); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | list_add(&nrg->link, rg->link.prev); | 
|  | chg = t - f; | 
|  | goto out_nrg; | 
|  | } | 
|  |  | 
|  | /* Round our left edge to the current segment if it encloses us. */ | 
|  | if (f > rg->from) | 
|  | f = rg->from; | 
|  | chg = t - f; | 
|  |  | 
|  | /* Check for and consume any regions we now overlap with. */ | 
|  | list_for_each_entry(rg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | if (rg->from > t) | 
|  | goto out; | 
|  |  | 
|  | /* We overlap with this area, if it extends further than | 
|  | * us then we must extend ourselves.  Account for its | 
|  | * existing reservation. */ | 
|  | if (rg->to > t) { | 
|  | chg += rg->to - t; | 
|  | t = rg->to; | 
|  | } | 
|  | chg -= rg->to - rg->from; | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock(&resv->lock); | 
|  | /*  We already know we raced and no longer need the new region */ | 
|  | kfree(nrg); | 
|  | return chg; | 
|  | out_nrg: | 
|  | spin_unlock(&resv->lock); | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Abort the in progress add operation.  The adds_in_progress field | 
|  | * of the resv_map keeps track of the operations in progress between | 
|  | * calls to region_chg and region_add.  Operations are sometimes | 
|  | * aborted after the call to region_chg.  In such cases, region_abort | 
|  | * is called to decrement the adds_in_progress counter. | 
|  | * | 
|  | * NOTE: The range arguments [f, t) are not needed or used in this | 
|  | * routine.  They are kept to make reading the calling code easier as | 
|  | * arguments will match the associated region_chg call. | 
|  | */ | 
|  | static void region_abort(struct resv_map *resv, long f, long t) | 
|  | { | 
|  | spin_lock(&resv->lock); | 
|  | VM_BUG_ON(!resv->region_cache_count); | 
|  | resv->adds_in_progress--; | 
|  | spin_unlock(&resv->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete the specified range [f, t) from the reserve map.  If the | 
|  | * t parameter is LONG_MAX, this indicates that ALL regions after f | 
|  | * should be deleted.  Locate the regions which intersect [f, t) | 
|  | * and either trim, delete or split the existing regions. | 
|  | * | 
|  | * Returns the number of huge pages deleted from the reserve map. | 
|  | * In the normal case, the return value is zero or more.  In the | 
|  | * case where a region must be split, a new region descriptor must | 
|  | * be allocated.  If the allocation fails, -ENOMEM will be returned. | 
|  | * NOTE: If the parameter t == LONG_MAX, then we will never split | 
|  | * a region and possibly return -ENOMEM.  Callers specifying | 
|  | * t == LONG_MAX do not need to check for -ENOMEM error. | 
|  | */ | 
|  | static long region_del(struct resv_map *resv, long f, long t) | 
|  | { | 
|  | struct list_head *head = &resv->regions; | 
|  | struct file_region *rg, *trg; | 
|  | struct file_region *nrg = NULL; | 
|  | long del = 0; | 
|  |  | 
|  | retry: | 
|  | spin_lock(&resv->lock); | 
|  | list_for_each_entry_safe(rg, trg, head, link) { | 
|  | /* | 
|  | * Skip regions before the range to be deleted.  file_region | 
|  | * ranges are normally of the form [from, to).  However, there | 
|  | * may be a "placeholder" entry in the map which is of the form | 
|  | * (from, to) with from == to.  Check for placeholder entries | 
|  | * at the beginning of the range to be deleted. | 
|  | */ | 
|  | if (rg->to <= f && (rg->to != rg->from || rg->to != f)) | 
|  | continue; | 
|  |  | 
|  | if (rg->from >= t) | 
|  | break; | 
|  |  | 
|  | if (f > rg->from && t < rg->to) { /* Must split region */ | 
|  | /* | 
|  | * Check for an entry in the cache before dropping | 
|  | * lock and attempting allocation. | 
|  | */ | 
|  | if (!nrg && | 
|  | resv->region_cache_count > resv->adds_in_progress) { | 
|  | nrg = list_first_entry(&resv->region_cache, | 
|  | struct file_region, | 
|  | link); | 
|  | list_del(&nrg->link); | 
|  | resv->region_cache_count--; | 
|  | } | 
|  |  | 
|  | if (!nrg) { | 
|  | spin_unlock(&resv->lock); | 
|  | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
|  | if (!nrg) | 
|  | return -ENOMEM; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | del += t - f; | 
|  |  | 
|  | /* New entry for end of split region */ | 
|  | nrg->from = t; | 
|  | nrg->to = rg->to; | 
|  | INIT_LIST_HEAD(&nrg->link); | 
|  |  | 
|  | /* Original entry is trimmed */ | 
|  | rg->to = f; | 
|  |  | 
|  | list_add(&nrg->link, &rg->link); | 
|  | nrg = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (f <= rg->from && t >= rg->to) { /* Remove entire region */ | 
|  | del += rg->to - rg->from; | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (f <= rg->from) {	/* Trim beginning of region */ | 
|  | del += t - rg->from; | 
|  | rg->from = t; | 
|  | } else {		/* Trim end of region */ | 
|  | del += rg->to - f; | 
|  | rg->to = f; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&resv->lock); | 
|  | kfree(nrg); | 
|  | return del; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A rare out of memory error was encountered which prevented removal of | 
|  | * the reserve map region for a page.  The huge page itself was free'ed | 
|  | * and removed from the page cache.  This routine will adjust the subpool | 
|  | * usage count, and the global reserve count if needed.  By incrementing | 
|  | * these counts, the reserve map entry which could not be deleted will | 
|  | * appear as a "reserved" entry instead of simply dangling with incorrect | 
|  | * counts. | 
|  | */ | 
|  | void hugetlb_fix_reserve_counts(struct inode *inode) | 
|  | { | 
|  | struct hugepage_subpool *spool = subpool_inode(inode); | 
|  | long rsv_adjust; | 
|  |  | 
|  | rsv_adjust = hugepage_subpool_get_pages(spool, 1); | 
|  | if (rsv_adjust) { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  |  | 
|  | hugetlb_acct_memory(h, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Count and return the number of huge pages in the reserve map | 
|  | * that intersect with the range [f, t). | 
|  | */ | 
|  | static long region_count(struct resv_map *resv, long f, long t) | 
|  | { | 
|  | struct list_head *head = &resv->regions; | 
|  | struct file_region *rg; | 
|  | long chg = 0; | 
|  |  | 
|  | spin_lock(&resv->lock); | 
|  | /* Locate each segment we overlap with, and count that overlap. */ | 
|  | list_for_each_entry(rg, head, link) { | 
|  | long seg_from; | 
|  | long seg_to; | 
|  |  | 
|  | if (rg->to <= f) | 
|  | continue; | 
|  | if (rg->from >= t) | 
|  | break; | 
|  |  | 
|  | seg_from = max(rg->from, f); | 
|  | seg_to = min(rg->to, t); | 
|  |  | 
|  | chg += seg_to - seg_from; | 
|  | } | 
|  | spin_unlock(&resv->lock); | 
|  |  | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the address within this vma to the page offset within | 
|  | * the mapping, in pagecache page units; huge pages here. | 
|  | */ | 
|  | static pgoff_t vma_hugecache_offset(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | return ((address - vma->vm_start) >> huge_page_shift(h)) + | 
|  | (vma->vm_pgoff >> huge_page_order(h)); | 
|  | } | 
|  |  | 
|  | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | return vma_hugecache_offset(hstate_vma(vma), vma, address); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(linear_hugepage_index); | 
|  |  | 
|  | /* | 
|  | * Return the size of the pages allocated when backing a VMA. In the majority | 
|  | * cases this will be same size as used by the page table entries. | 
|  | */ | 
|  | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | struct hstate *hstate; | 
|  |  | 
|  | if (!is_vm_hugetlb_page(vma)) | 
|  | return PAGE_SIZE; | 
|  |  | 
|  | hstate = hstate_vma(vma); | 
|  |  | 
|  | return 1UL << huge_page_shift(hstate); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); | 
|  |  | 
|  | /* | 
|  | * Return the page size being used by the MMU to back a VMA. In the majority | 
|  | * of cases, the page size used by the kernel matches the MMU size. On | 
|  | * architectures where it differs, an architecture-specific version of this | 
|  | * function is required. | 
|  | */ | 
|  | #ifndef vma_mmu_pagesize | 
|  | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | return vma_kernel_pagesize(vma); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Flags for MAP_PRIVATE reservations.  These are stored in the bottom | 
|  | * bits of the reservation map pointer, which are always clear due to | 
|  | * alignment. | 
|  | */ | 
|  | #define HPAGE_RESV_OWNER    (1UL << 0) | 
|  | #define HPAGE_RESV_UNMAPPED (1UL << 1) | 
|  | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | 
|  |  | 
|  | /* | 
|  | * These helpers are used to track how many pages are reserved for | 
|  | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | 
|  | * is guaranteed to have their future faults succeed. | 
|  | * | 
|  | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | 
|  | * the reserve counters are updated with the hugetlb_lock held. It is safe | 
|  | * to reset the VMA at fork() time as it is not in use yet and there is no | 
|  | * chance of the global counters getting corrupted as a result of the values. | 
|  | * | 
|  | * The private mapping reservation is represented in a subtly different | 
|  | * manner to a shared mapping.  A shared mapping has a region map associated | 
|  | * with the underlying file, this region map represents the backing file | 
|  | * pages which have ever had a reservation assigned which this persists even | 
|  | * after the page is instantiated.  A private mapping has a region map | 
|  | * associated with the original mmap which is attached to all VMAs which | 
|  | * reference it, this region map represents those offsets which have consumed | 
|  | * reservation ie. where pages have been instantiated. | 
|  | */ | 
|  | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | 
|  | { | 
|  | return (unsigned long)vma->vm_private_data; | 
|  | } | 
|  |  | 
|  | static void set_vma_private_data(struct vm_area_struct *vma, | 
|  | unsigned long value) | 
|  | { | 
|  | vma->vm_private_data = (void *)value; | 
|  | } | 
|  |  | 
|  | struct resv_map *resv_map_alloc(void) | 
|  | { | 
|  | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 
|  | struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); | 
|  |  | 
|  | if (!resv_map || !rg) { | 
|  | kfree(resv_map); | 
|  | kfree(rg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | kref_init(&resv_map->refs); | 
|  | spin_lock_init(&resv_map->lock); | 
|  | INIT_LIST_HEAD(&resv_map->regions); | 
|  |  | 
|  | resv_map->adds_in_progress = 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&resv_map->region_cache); | 
|  | list_add(&rg->link, &resv_map->region_cache); | 
|  | resv_map->region_cache_count = 1; | 
|  |  | 
|  | return resv_map; | 
|  | } | 
|  |  | 
|  | void resv_map_release(struct kref *ref) | 
|  | { | 
|  | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 
|  | struct list_head *head = &resv_map->region_cache; | 
|  | struct file_region *rg, *trg; | 
|  |  | 
|  | /* Clear out any active regions before we release the map. */ | 
|  | region_del(resv_map, 0, LONG_MAX); | 
|  |  | 
|  | /* ... and any entries left in the cache */ | 
|  | list_for_each_entry_safe(rg, trg, head, link) { | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(resv_map->adds_in_progress); | 
|  |  | 
|  | kfree(resv_map); | 
|  | } | 
|  |  | 
|  | static inline struct resv_map *inode_resv_map(struct inode *inode) | 
|  | { | 
|  | return inode->i_mapping->private_data; | 
|  | } | 
|  |  | 
|  | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | return inode_resv_map(inode); | 
|  |  | 
|  | } else { | 
|  | return (struct resv_map *)(get_vma_private_data(vma) & | 
|  | ~HPAGE_RESV_MASK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
|  |  | 
|  | set_vma_private_data(vma, (get_vma_private_data(vma) & | 
|  | HPAGE_RESV_MASK) | (unsigned long)map); | 
|  | } | 
|  |  | 
|  | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
|  |  | 
|  | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | 
|  | } | 
|  |  | 
|  | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  |  | 
|  | return (get_vma_private_data(vma) & flag) != 0; | 
|  | } | 
|  |  | 
|  | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | 
|  | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | 
|  | { | 
|  | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | vma->vm_private_data = (void *)0; | 
|  | } | 
|  |  | 
|  | /* Returns true if the VMA has associated reserve pages */ | 
|  | static bool vma_has_reserves(struct vm_area_struct *vma, long chg) | 
|  | { | 
|  | if (vma->vm_flags & VM_NORESERVE) { | 
|  | /* | 
|  | * This address is already reserved by other process(chg == 0), | 
|  | * so, we should decrement reserved count. Without decrementing, | 
|  | * reserve count remains after releasing inode, because this | 
|  | * allocated page will go into page cache and is regarded as | 
|  | * coming from reserved pool in releasing step.  Currently, we | 
|  | * don't have any other solution to deal with this situation | 
|  | * properly, so add work-around here. | 
|  | */ | 
|  | if (vma->vm_flags & VM_MAYSHARE && chg == 0) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Shared mappings always use reserves */ | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | /* | 
|  | * We know VM_NORESERVE is not set.  Therefore, there SHOULD | 
|  | * be a region map for all pages.  The only situation where | 
|  | * there is no region map is if a hole was punched via | 
|  | * fallocate.  In this case, there really are no reverves to | 
|  | * use.  This situation is indicated if chg != 0. | 
|  | */ | 
|  | if (chg) | 
|  | return false; | 
|  | else | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only the process that called mmap() has reserves for | 
|  | * private mappings. | 
|  | */ | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | /* | 
|  | * Like the shared case above, a hole punch or truncate | 
|  | * could have been performed on the private mapping. | 
|  | * Examine the value of chg to determine if reserves | 
|  | * actually exist or were previously consumed. | 
|  | * Very Subtle - The value of chg comes from a previous | 
|  | * call to vma_needs_reserves().  The reserve map for | 
|  | * private mappings has different (opposite) semantics | 
|  | * than that of shared mappings.  vma_needs_reserves() | 
|  | * has already taken this difference in semantics into | 
|  | * account.  Therefore, the meaning of chg is the same | 
|  | * as in the shared case above.  Code could easily be | 
|  | * combined, but keeping it separate draws attention to | 
|  | * subtle differences. | 
|  | */ | 
|  | if (chg) | 
|  | return false; | 
|  | else | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void enqueue_huge_page(struct hstate *h, struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  | list_move(&page->lru, &h->hugepage_freelists[nid]); | 
|  | h->free_huge_pages++; | 
|  | h->free_huge_pages_node[nid]++; | 
|  | } | 
|  |  | 
|  | static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | list_for_each_entry(page, &h->hugepage_freelists[nid], lru) | 
|  | if (!PageHWPoison(page)) | 
|  | break; | 
|  | /* | 
|  | * if 'non-isolated free hugepage' not found on the list, | 
|  | * the allocation fails. | 
|  | */ | 
|  | if (&h->hugepage_freelists[nid] == &page->lru) | 
|  | return NULL; | 
|  | list_move(&page->lru, &h->hugepage_activelist); | 
|  | set_page_refcounted(page); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[nid]--; | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, | 
|  | nodemask_t *nmask) | 
|  | { | 
|  | unsigned int cpuset_mems_cookie; | 
|  | struct zonelist *zonelist; | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  | int node = -1; | 
|  |  | 
|  | zonelist = node_zonelist(nid, gfp_mask); | 
|  |  | 
|  | retry_cpuset: | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { | 
|  | struct page *page; | 
|  |  | 
|  | if (!cpuset_zone_allowed(zone, gfp_mask)) | 
|  | continue; | 
|  | /* | 
|  | * no need to ask again on the same node. Pool is node rather than | 
|  | * zone aware | 
|  | */ | 
|  | if (zone_to_nid(zone) == node) | 
|  | continue; | 
|  | node = zone_to_nid(zone); | 
|  |  | 
|  | page = dequeue_huge_page_node_exact(h, node); | 
|  | if (page) | 
|  | return page; | 
|  | } | 
|  | if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) | 
|  | goto retry_cpuset; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Movability of hugepages depends on migration support. */ | 
|  | static inline gfp_t htlb_alloc_mask(struct hstate *h) | 
|  | { | 
|  | if (hugepage_migration_supported(h)) | 
|  | return GFP_HIGHUSER_MOVABLE; | 
|  | else | 
|  | return GFP_HIGHUSER; | 
|  | } | 
|  |  | 
|  | static struct page *dequeue_huge_page_vma(struct hstate *h, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, int avoid_reserve, | 
|  | long chg) | 
|  | { | 
|  | struct page *page; | 
|  | struct mempolicy *mpol; | 
|  | gfp_t gfp_mask; | 
|  | nodemask_t *nodemask; | 
|  | int nid; | 
|  |  | 
|  | /* | 
|  | * A child process with MAP_PRIVATE mappings created by their parent | 
|  | * have no page reserves. This check ensures that reservations are | 
|  | * not "stolen". The child may still get SIGKILLed | 
|  | */ | 
|  | if (!vma_has_reserves(vma, chg) && | 
|  | h->free_huge_pages - h->resv_huge_pages == 0) | 
|  | goto err; | 
|  |  | 
|  | /* If reserves cannot be used, ensure enough pages are in the pool */ | 
|  | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | 
|  | goto err; | 
|  |  | 
|  | gfp_mask = htlb_alloc_mask(h); | 
|  | nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
|  | page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); | 
|  | if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { | 
|  | SetPagePrivate(page); | 
|  | h->resv_huge_pages--; | 
|  | } | 
|  |  | 
|  | mpol_cond_put(mpol); | 
|  | return page; | 
|  |  | 
|  | err: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * common helper functions for hstate_next_node_to_{alloc|free}. | 
|  | * We may have allocated or freed a huge page based on a different | 
|  | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | 
|  | * be outside of *nodes_allowed.  Ensure that we use an allowed | 
|  | * node for alloc or free. | 
|  | */ | 
|  | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | 
|  | { | 
|  | nid = next_node_in(nid, *nodes_allowed); | 
|  | VM_BUG_ON(nid >= MAX_NUMNODES); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | 
|  | { | 
|  | if (!node_isset(nid, *nodes_allowed)) | 
|  | nid = next_node_allowed(nid, nodes_allowed); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns the previously saved node ["this node"] from which to | 
|  | * allocate a persistent huge page for the pool and advance the | 
|  | * next node from which to allocate, handling wrap at end of node | 
|  | * mask. | 
|  | */ | 
|  | static int hstate_next_node_to_alloc(struct hstate *h, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | VM_BUG_ON(!nodes_allowed); | 
|  |  | 
|  | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | 
|  | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper for free_pool_huge_page() - return the previously saved | 
|  | * node ["this node"] from which to free a huge page.  Advance the | 
|  | * next node id whether or not we find a free huge page to free so | 
|  | * that the next attempt to free addresses the next node. | 
|  | */ | 
|  | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | VM_BUG_ON(!nodes_allowed); | 
|  |  | 
|  | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | 
|  | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\ | 
|  | for (nr_nodes = nodes_weight(*mask);				\ | 
|  | nr_nodes > 0 &&						\ | 
|  | ((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\ | 
|  | nr_nodes--) | 
|  |  | 
|  | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\ | 
|  | for (nr_nodes = nodes_weight(*mask);				\ | 
|  | nr_nodes > 0 &&						\ | 
|  | ((node = hstate_next_node_to_free(hs, mask)) || 1);	\ | 
|  | nr_nodes--) | 
|  |  | 
|  | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE | 
|  | static void destroy_compound_gigantic_page(struct page *page, | 
|  | unsigned int order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  | struct page *p = page + 1; | 
|  |  | 
|  | atomic_set(compound_mapcount_ptr(page), 0); | 
|  | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
|  | clear_compound_head(p); | 
|  | set_page_refcounted(p); | 
|  | } | 
|  |  | 
|  | set_compound_order(page, 0); | 
|  | __ClearPageHead(page); | 
|  | } | 
|  |  | 
|  | static void free_gigantic_page(struct page *page, unsigned int order) | 
|  | { | 
|  | free_contig_range(page_to_pfn(page), 1 << order); | 
|  | } | 
|  |  | 
|  | static int __alloc_gigantic_page(unsigned long start_pfn, | 
|  | unsigned long nr_pages, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long end_pfn = start_pfn + nr_pages; | 
|  | return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, | 
|  | gfp_mask); | 
|  | } | 
|  |  | 
|  | static bool pfn_range_valid_gigantic(struct zone *z, | 
|  | unsigned long start_pfn, unsigned long nr_pages) | 
|  | { | 
|  | unsigned long i, end_pfn = start_pfn + nr_pages; | 
|  | struct page *page; | 
|  |  | 
|  | for (i = start_pfn; i < end_pfn; i++) { | 
|  | if (!pfn_valid(i)) | 
|  | return false; | 
|  |  | 
|  | page = pfn_to_page(i); | 
|  |  | 
|  | if (page_zone(page) != z) | 
|  | return false; | 
|  |  | 
|  | if (PageReserved(page)) | 
|  | return false; | 
|  |  | 
|  | if (page_count(page) > 0) | 
|  | return false; | 
|  |  | 
|  | if (PageHuge(page)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool zone_spans_last_pfn(const struct zone *zone, | 
|  | unsigned long start_pfn, unsigned long nr_pages) | 
|  | { | 
|  | unsigned long last_pfn = start_pfn + nr_pages - 1; | 
|  | return zone_spans_pfn(zone, last_pfn); | 
|  | } | 
|  |  | 
|  | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nodemask) | 
|  | { | 
|  | unsigned int order = huge_page_order(h); | 
|  | unsigned long nr_pages = 1 << order; | 
|  | unsigned long ret, pfn, flags; | 
|  | struct zonelist *zonelist; | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  |  | 
|  | zonelist = node_zonelist(nid, gfp_mask); | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  |  | 
|  | pfn = ALIGN(zone->zone_start_pfn, nr_pages); | 
|  | while (zone_spans_last_pfn(zone, pfn, nr_pages)) { | 
|  | if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { | 
|  | /* | 
|  | * We release the zone lock here because | 
|  | * alloc_contig_range() will also lock the zone | 
|  | * at some point. If there's an allocation | 
|  | * spinning on this lock, it may win the race | 
|  | * and cause alloc_contig_range() to fail... | 
|  | */ | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); | 
|  | if (!ret) | 
|  | return pfn_to_page(pfn); | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | } | 
|  | pfn += nr_pages; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); | 
|  | static void prep_compound_gigantic_page(struct page *page, unsigned int order); | 
|  |  | 
|  | #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ | 
|  | static inline bool gigantic_page_supported(void) { return false; } | 
|  | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nodemask) { return NULL; } | 
|  | static inline void free_gigantic_page(struct page *page, unsigned int order) { } | 
|  | static inline void destroy_compound_gigantic_page(struct page *page, | 
|  | unsigned int order) { } | 
|  | #endif | 
|  |  | 
|  | static void update_and_free_page(struct hstate *h, struct page *page) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_supported()) | 
|  | return; | 
|  |  | 
|  | h->nr_huge_pages--; | 
|  | h->nr_huge_pages_node[page_to_nid(page)]--; | 
|  | for (i = 0; i < pages_per_huge_page(h); i++) { | 
|  | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | | 
|  | 1 << PG_referenced | 1 << PG_dirty | | 
|  | 1 << PG_active | 1 << PG_private | | 
|  | 1 << PG_writeback); | 
|  | } | 
|  | VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); | 
|  | set_compound_page_dtor(page, NULL_COMPOUND_DTOR); | 
|  | set_page_refcounted(page); | 
|  | if (hstate_is_gigantic(h)) { | 
|  | destroy_compound_gigantic_page(page, huge_page_order(h)); | 
|  | free_gigantic_page(page, huge_page_order(h)); | 
|  | } else { | 
|  | __free_pages(page, huge_page_order(h)); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct hstate *size_to_hstate(unsigned long size) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | if (huge_page_size(h) == size) | 
|  | return h; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test to determine whether the hugepage is "active/in-use" (i.e. being linked | 
|  | * to hstate->hugepage_activelist.) | 
|  | * | 
|  | * This function can be called for tail pages, but never returns true for them. | 
|  | */ | 
|  | bool page_huge_active(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!PageHuge(page), page); | 
|  | return PageHead(page) && PagePrivate(&page[1]); | 
|  | } | 
|  |  | 
|  | /* never called for tail page */ | 
|  | static void set_page_huge_active(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | 
|  | SetPagePrivate(&page[1]); | 
|  | } | 
|  |  | 
|  | static void clear_page_huge_active(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); | 
|  | ClearPagePrivate(&page[1]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Internal hugetlb specific page flag. Do not use outside of the hugetlb | 
|  | * code | 
|  | */ | 
|  | static inline bool PageHugeTemporary(struct page *page) | 
|  | { | 
|  | if (!PageHuge(page)) | 
|  | return false; | 
|  |  | 
|  | return (unsigned long)page[2].mapping == -1U; | 
|  | } | 
|  |  | 
|  | static inline void SetPageHugeTemporary(struct page *page) | 
|  | { | 
|  | page[2].mapping = (void *)-1U; | 
|  | } | 
|  |  | 
|  | static inline void ClearPageHugeTemporary(struct page *page) | 
|  | { | 
|  | page[2].mapping = NULL; | 
|  | } | 
|  |  | 
|  | void free_huge_page(struct page *page) | 
|  | { | 
|  | /* | 
|  | * Can't pass hstate in here because it is called from the | 
|  | * compound page destructor. | 
|  | */ | 
|  | struct hstate *h = page_hstate(page); | 
|  | int nid = page_to_nid(page); | 
|  | struct hugepage_subpool *spool = | 
|  | (struct hugepage_subpool *)page_private(page); | 
|  | bool restore_reserve; | 
|  |  | 
|  | set_page_private(page, 0); | 
|  | page->mapping = NULL; | 
|  | VM_BUG_ON_PAGE(page_count(page), page); | 
|  | VM_BUG_ON_PAGE(page_mapcount(page), page); | 
|  | restore_reserve = PagePrivate(page); | 
|  | ClearPagePrivate(page); | 
|  |  | 
|  | /* | 
|  | * A return code of zero implies that the subpool will be under its | 
|  | * minimum size if the reservation is not restored after page is free. | 
|  | * Therefore, force restore_reserve operation. | 
|  | */ | 
|  | if (hugepage_subpool_put_pages(spool, 1) == 0) | 
|  | restore_reserve = true; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | clear_page_huge_active(page); | 
|  | hugetlb_cgroup_uncharge_page(hstate_index(h), | 
|  | pages_per_huge_page(h), page); | 
|  | if (restore_reserve) | 
|  | h->resv_huge_pages++; | 
|  |  | 
|  | if (PageHugeTemporary(page)) { | 
|  | list_del(&page->lru); | 
|  | ClearPageHugeTemporary(page); | 
|  | update_and_free_page(h, page); | 
|  | } else if (h->surplus_huge_pages_node[nid]) { | 
|  | /* remove the page from active list */ | 
|  | list_del(&page->lru); | 
|  | update_and_free_page(h, page); | 
|  | h->surplus_huge_pages--; | 
|  | h->surplus_huge_pages_node[nid]--; | 
|  | } else { | 
|  | arch_clear_hugepage_flags(page); | 
|  | enqueue_huge_page(h, page); | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) | 
|  | { | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  | set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); | 
|  | spin_lock(&hugetlb_lock); | 
|  | set_hugetlb_cgroup(page, NULL); | 
|  | h->nr_huge_pages++; | 
|  | h->nr_huge_pages_node[nid]++; | 
|  | spin_unlock(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  | static void prep_compound_gigantic_page(struct page *page, unsigned int order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  | struct page *p = page + 1; | 
|  |  | 
|  | /* we rely on prep_new_huge_page to set the destructor */ | 
|  | set_compound_order(page, order); | 
|  | __ClearPageReserved(page); | 
|  | __SetPageHead(page); | 
|  | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
|  | /* | 
|  | * For gigantic hugepages allocated through bootmem at | 
|  | * boot, it's safer to be consistent with the not-gigantic | 
|  | * hugepages and clear the PG_reserved bit from all tail pages | 
|  | * too.  Otherwse drivers using get_user_pages() to access tail | 
|  | * pages may get the reference counting wrong if they see | 
|  | * PG_reserved set on a tail page (despite the head page not | 
|  | * having PG_reserved set).  Enforcing this consistency between | 
|  | * head and tail pages allows drivers to optimize away a check | 
|  | * on the head page when they need know if put_page() is needed | 
|  | * after get_user_pages(). | 
|  | */ | 
|  | __ClearPageReserved(p); | 
|  | set_page_count(p, 0); | 
|  | set_compound_head(p, page); | 
|  | } | 
|  | atomic_set(compound_mapcount_ptr(page), -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PageHuge() only returns true for hugetlbfs pages, but not for normal or | 
|  | * transparent huge pages.  See the PageTransHuge() documentation for more | 
|  | * details. | 
|  | */ | 
|  | int PageHuge(struct page *page) | 
|  | { | 
|  | if (!PageCompound(page)) | 
|  | return 0; | 
|  |  | 
|  | page = compound_head(page); | 
|  | return page[1].compound_dtor == HUGETLB_PAGE_DTOR; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(PageHuge); | 
|  |  | 
|  | /* | 
|  | * PageHeadHuge() only returns true for hugetlbfs head page, but not for | 
|  | * normal or transparent huge pages. | 
|  | */ | 
|  | int PageHeadHuge(struct page *page_head) | 
|  | { | 
|  | if (!PageHead(page_head)) | 
|  | return 0; | 
|  |  | 
|  | return get_compound_page_dtor(page_head) == free_huge_page; | 
|  | } | 
|  |  | 
|  | pgoff_t __basepage_index(struct page *page) | 
|  | { | 
|  | struct page *page_head = compound_head(page); | 
|  | pgoff_t index = page_index(page_head); | 
|  | unsigned long compound_idx; | 
|  |  | 
|  | if (!PageHuge(page_head)) | 
|  | return page_index(page); | 
|  |  | 
|  | if (compound_order(page_head) >= MAX_ORDER) | 
|  | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | 
|  | else | 
|  | compound_idx = page - page_head; | 
|  |  | 
|  | return (index << compound_order(page_head)) + compound_idx; | 
|  | } | 
|  |  | 
|  | static struct page *alloc_buddy_huge_page(struct hstate *h, | 
|  | gfp_t gfp_mask, int nid, nodemask_t *nmask) | 
|  | { | 
|  | int order = huge_page_order(h); | 
|  | struct page *page; | 
|  |  | 
|  | gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nid = numa_mem_id(); | 
|  | page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); | 
|  | if (page) | 
|  | __count_vm_event(HTLB_BUDDY_PGALLOC); | 
|  | else | 
|  | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common helper to allocate a fresh hugetlb page. All specific allocators | 
|  | * should use this function to get new hugetlb pages | 
|  | */ | 
|  | static struct page *alloc_fresh_huge_page(struct hstate *h, | 
|  | gfp_t gfp_mask, int nid, nodemask_t *nmask) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | page = alloc_gigantic_page(h, gfp_mask, nid, nmask); | 
|  | else | 
|  | page = alloc_buddy_huge_page(h, gfp_mask, | 
|  | nid, nmask); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | prep_compound_gigantic_page(page, huge_page_order(h)); | 
|  | prep_new_huge_page(h, page, page_to_nid(page)); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates a fresh page to the hugetlb allocator pool in the node interleaved | 
|  | * manner. | 
|  | */ | 
|  | static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) | 
|  | { | 
|  | struct page *page; | 
|  | int nr_nodes, node; | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
|  |  | 
|  | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
|  | page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); | 
|  | if (page) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!page) | 
|  | return 0; | 
|  |  | 
|  | put_page(page); /* free it into the hugepage allocator */ | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free huge page from pool from next node to free. | 
|  | * Attempt to keep persistent huge pages more or less | 
|  | * balanced over allowed nodes. | 
|  | * Called with hugetlb_lock locked. | 
|  | */ | 
|  | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | 
|  | bool acct_surplus) | 
|  | { | 
|  | int nr_nodes, node; | 
|  | int ret = 0; | 
|  |  | 
|  | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
|  | /* | 
|  | * If we're returning unused surplus pages, only examine | 
|  | * nodes with surplus pages. | 
|  | */ | 
|  | if ((!acct_surplus || h->surplus_huge_pages_node[node]) && | 
|  | !list_empty(&h->hugepage_freelists[node])) { | 
|  | struct page *page = | 
|  | list_entry(h->hugepage_freelists[node].next, | 
|  | struct page, lru); | 
|  | list_del(&page->lru); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[node]--; | 
|  | if (acct_surplus) { | 
|  | h->surplus_huge_pages--; | 
|  | h->surplus_huge_pages_node[node]--; | 
|  | } | 
|  | update_and_free_page(h, page); | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dissolve a given free hugepage into free buddy pages. This function does | 
|  | * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the | 
|  | * number of free hugepages would be reduced below the number of reserved | 
|  | * hugepages. | 
|  | */ | 
|  | int dissolve_free_huge_page(struct page *page) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (PageHuge(page) && !page_count(page)) { | 
|  | struct page *head = compound_head(page); | 
|  | struct hstate *h = page_hstate(head); | 
|  | int nid = page_to_nid(head); | 
|  | if (h->free_huge_pages - h->resv_huge_pages == 0) { | 
|  | rc = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Move PageHWPoison flag from head page to the raw error page, | 
|  | * which makes any subpages rather than the error page reusable. | 
|  | */ | 
|  | if (PageHWPoison(head) && page != head) { | 
|  | SetPageHWPoison(page); | 
|  | ClearPageHWPoison(head); | 
|  | } | 
|  | list_del(&head->lru); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[nid]--; | 
|  | h->max_huge_pages--; | 
|  | update_and_free_page(h, head); | 
|  | } | 
|  | out: | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dissolve free hugepages in a given pfn range. Used by memory hotplug to | 
|  | * make specified memory blocks removable from the system. | 
|  | * Note that this will dissolve a free gigantic hugepage completely, if any | 
|  | * part of it lies within the given range. | 
|  | * Also note that if dissolve_free_huge_page() returns with an error, all | 
|  | * free hugepages that were dissolved before that error are lost. | 
|  | */ | 
|  | int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | struct page *page; | 
|  | int rc = 0; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return rc; | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { | 
|  | page = pfn_to_page(pfn); | 
|  | if (PageHuge(page) && !page_count(page)) { | 
|  | rc = dissolve_free_huge_page(page); | 
|  | if (rc) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates a fresh surplus page from the page allocator. | 
|  | */ | 
|  | static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nmask) | 
|  | { | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) | 
|  | goto out_unlock; | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | /* | 
|  | * We could have raced with the pool size change. | 
|  | * Double check that and simply deallocate the new page | 
|  | * if we would end up overcommiting the surpluses. Abuse | 
|  | * temporary page to workaround the nasty free_huge_page | 
|  | * codeflow | 
|  | */ | 
|  | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | 
|  | SetPageHugeTemporary(page); | 
|  | put_page(page); | 
|  | page = NULL; | 
|  | } else { | 
|  | h->surplus_huge_pages++; | 
|  | h->nr_huge_pages_node[page_to_nid(page)]++; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, | 
|  | int nid, nodemask_t *nmask) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | return NULL; | 
|  |  | 
|  | page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We do not account these pages as surplus because they are only | 
|  | * temporary and will be released properly on the last reference | 
|  | */ | 
|  | SetPageHugeTemporary(page); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the VMA's mpolicy to allocate a huge page from the buddy. | 
|  | */ | 
|  | static | 
|  | struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct page *page; | 
|  | struct mempolicy *mpol; | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h); | 
|  | int nid; | 
|  | nodemask_t *nodemask; | 
|  |  | 
|  | nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); | 
|  | page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); | 
|  | mpol_cond_put(mpol); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* page migration callback function */ | 
|  | struct page *alloc_huge_page_node(struct hstate *h, int nid) | 
|  | { | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h); | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (nid != NUMA_NO_NODE) | 
|  | gfp_mask |= __GFP_THISNODE; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (h->free_huge_pages - h->resv_huge_pages > 0) | 
|  | page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | if (!page) | 
|  | page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* page migration callback function */ | 
|  | struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, | 
|  | nodemask_t *nmask) | 
|  | { | 
|  | gfp_t gfp_mask = htlb_alloc_mask(h); | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (h->free_huge_pages - h->resv_huge_pages > 0) { | 
|  | struct page *page; | 
|  |  | 
|  | page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); | 
|  | if (page) { | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return page; | 
|  | } | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); | 
|  | } | 
|  |  | 
|  | /* mempolicy aware migration callback */ | 
|  | struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | struct mempolicy *mpol; | 
|  | nodemask_t *nodemask; | 
|  | struct page *page; | 
|  | gfp_t gfp_mask; | 
|  | int node; | 
|  |  | 
|  | gfp_mask = htlb_alloc_mask(h); | 
|  | node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
|  | page = alloc_huge_page_nodemask(h, node, nodemask); | 
|  | mpol_cond_put(mpol); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increase the hugetlb pool such that it can accommodate a reservation | 
|  | * of size 'delta'. | 
|  | */ | 
|  | static int gather_surplus_pages(struct hstate *h, int delta) | 
|  | { | 
|  | struct list_head surplus_list; | 
|  | struct page *page, *tmp; | 
|  | int ret, i; | 
|  | int needed, allocated; | 
|  | bool alloc_ok = true; | 
|  |  | 
|  | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; | 
|  | if (needed <= 0) { | 
|  | h->resv_huge_pages += delta; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | allocated = 0; | 
|  | INIT_LIST_HEAD(&surplus_list); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | retry: | 
|  | spin_unlock(&hugetlb_lock); | 
|  | for (i = 0; i < needed; i++) { | 
|  | page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), | 
|  | NUMA_NO_NODE, NULL); | 
|  | if (!page) { | 
|  | alloc_ok = false; | 
|  | break; | 
|  | } | 
|  | list_add(&page->lru, &surplus_list); | 
|  | cond_resched(); | 
|  | } | 
|  | allocated += i; | 
|  |  | 
|  | /* | 
|  | * After retaking hugetlb_lock, we need to recalculate 'needed' | 
|  | * because either resv_huge_pages or free_huge_pages may have changed. | 
|  | */ | 
|  | spin_lock(&hugetlb_lock); | 
|  | needed = (h->resv_huge_pages + delta) - | 
|  | (h->free_huge_pages + allocated); | 
|  | if (needed > 0) { | 
|  | if (alloc_ok) | 
|  | goto retry; | 
|  | /* | 
|  | * We were not able to allocate enough pages to | 
|  | * satisfy the entire reservation so we free what | 
|  | * we've allocated so far. | 
|  | */ | 
|  | goto free; | 
|  | } | 
|  | /* | 
|  | * The surplus_list now contains _at_least_ the number of extra pages | 
|  | * needed to accommodate the reservation.  Add the appropriate number | 
|  | * of pages to the hugetlb pool and free the extras back to the buddy | 
|  | * allocator.  Commit the entire reservation here to prevent another | 
|  | * process from stealing the pages as they are added to the pool but | 
|  | * before they are reserved. | 
|  | */ | 
|  | needed += allocated; | 
|  | h->resv_huge_pages += delta; | 
|  | ret = 0; | 
|  |  | 
|  | /* Free the needed pages to the hugetlb pool */ | 
|  | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
|  | if ((--needed) < 0) | 
|  | break; | 
|  | /* | 
|  | * This page is now managed by the hugetlb allocator and has | 
|  | * no users -- drop the buddy allocator's reference. | 
|  | */ | 
|  | put_page_testzero(page); | 
|  | VM_BUG_ON_PAGE(page_count(page), page); | 
|  | enqueue_huge_page(h, page); | 
|  | } | 
|  | free: | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | /* Free unnecessary surplus pages to the buddy allocator */ | 
|  | list_for_each_entry_safe(page, tmp, &surplus_list, lru) | 
|  | put_page(page); | 
|  | spin_lock(&hugetlb_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine has two main purposes: | 
|  | * 1) Decrement the reservation count (resv_huge_pages) by the value passed | 
|  | *    in unused_resv_pages.  This corresponds to the prior adjustments made | 
|  | *    to the associated reservation map. | 
|  | * 2) Free any unused surplus pages that may have been allocated to satisfy | 
|  | *    the reservation.  As many as unused_resv_pages may be freed. | 
|  | * | 
|  | * Called with hugetlb_lock held.  However, the lock could be dropped (and | 
|  | * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock, | 
|  | * we must make sure nobody else can claim pages we are in the process of | 
|  | * freeing.  Do this by ensuring resv_huge_page always is greater than the | 
|  | * number of huge pages we plan to free when dropping the lock. | 
|  | */ | 
|  | static void return_unused_surplus_pages(struct hstate *h, | 
|  | unsigned long unused_resv_pages) | 
|  | { | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | /* Cannot return gigantic pages currently */ | 
|  | if (hstate_is_gigantic(h)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Part (or even all) of the reservation could have been backed | 
|  | * by pre-allocated pages. Only free surplus pages. | 
|  | */ | 
|  | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | 
|  |  | 
|  | /* | 
|  | * We want to release as many surplus pages as possible, spread | 
|  | * evenly across all nodes with memory. Iterate across these nodes | 
|  | * until we can no longer free unreserved surplus pages. This occurs | 
|  | * when the nodes with surplus pages have no free pages. | 
|  | * free_pool_huge_page() will balance the the freed pages across the | 
|  | * on-line nodes with memory and will handle the hstate accounting. | 
|  | * | 
|  | * Note that we decrement resv_huge_pages as we free the pages.  If | 
|  | * we drop the lock, resv_huge_pages will still be sufficiently large | 
|  | * to cover subsequent pages we may free. | 
|  | */ | 
|  | while (nr_pages--) { | 
|  | h->resv_huge_pages--; | 
|  | unused_resv_pages--; | 
|  | if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) | 
|  | goto out; | 
|  | cond_resched_lock(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* Fully uncommit the reservation */ | 
|  | h->resv_huge_pages -= unused_resv_pages; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vma_needs_reservation, vma_commit_reservation and vma_end_reservation | 
|  | * are used by the huge page allocation routines to manage reservations. | 
|  | * | 
|  | * vma_needs_reservation is called to determine if the huge page at addr | 
|  | * within the vma has an associated reservation.  If a reservation is | 
|  | * needed, the value 1 is returned.  The caller is then responsible for | 
|  | * managing the global reservation and subpool usage counts.  After | 
|  | * the huge page has been allocated, vma_commit_reservation is called | 
|  | * to add the page to the reservation map.  If the page allocation fails, | 
|  | * the reservation must be ended instead of committed.  vma_end_reservation | 
|  | * is called in such cases. | 
|  | * | 
|  | * In the normal case, vma_commit_reservation returns the same value | 
|  | * as the preceding vma_needs_reservation call.  The only time this | 
|  | * is not the case is if a reserve map was changed between calls.  It | 
|  | * is the responsibility of the caller to notice the difference and | 
|  | * take appropriate action. | 
|  | * | 
|  | * vma_add_reservation is used in error paths where a reservation must | 
|  | * be restored when a newly allocated huge page must be freed.  It is | 
|  | * to be called after calling vma_needs_reservation to determine if a | 
|  | * reservation exists. | 
|  | */ | 
|  | enum vma_resv_mode { | 
|  | VMA_NEEDS_RESV, | 
|  | VMA_COMMIT_RESV, | 
|  | VMA_END_RESV, | 
|  | VMA_ADD_RESV, | 
|  | }; | 
|  | static long __vma_reservation_common(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr, | 
|  | enum vma_resv_mode mode) | 
|  | { | 
|  | struct resv_map *resv; | 
|  | pgoff_t idx; | 
|  | long ret; | 
|  |  | 
|  | resv = vma_resv_map(vma); | 
|  | if (!resv) | 
|  | return 1; | 
|  |  | 
|  | idx = vma_hugecache_offset(h, vma, addr); | 
|  | switch (mode) { | 
|  | case VMA_NEEDS_RESV: | 
|  | ret = region_chg(resv, idx, idx + 1); | 
|  | break; | 
|  | case VMA_COMMIT_RESV: | 
|  | ret = region_add(resv, idx, idx + 1); | 
|  | break; | 
|  | case VMA_END_RESV: | 
|  | region_abort(resv, idx, idx + 1); | 
|  | ret = 0; | 
|  | break; | 
|  | case VMA_ADD_RESV: | 
|  | if (vma->vm_flags & VM_MAYSHARE) | 
|  | ret = region_add(resv, idx, idx + 1); | 
|  | else { | 
|  | region_abort(resv, idx, idx + 1); | 
|  | ret = region_del(resv, idx, idx + 1); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) | 
|  | return ret; | 
|  | else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { | 
|  | /* | 
|  | * In most cases, reserves always exist for private mappings. | 
|  | * However, a file associated with mapping could have been | 
|  | * hole punched or truncated after reserves were consumed. | 
|  | * As subsequent fault on such a range will not use reserves. | 
|  | * Subtle - The reserve map for private mappings has the | 
|  | * opposite meaning than that of shared mappings.  If NO | 
|  | * entry is in the reserve map, it means a reservation exists. | 
|  | * If an entry exists in the reserve map, it means the | 
|  | * reservation has already been consumed.  As a result, the | 
|  | * return value of this routine is the opposite of the | 
|  | * value returned from reserve map manipulation routines above. | 
|  | */ | 
|  | if (ret) | 
|  | return 0; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | static long vma_needs_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); | 
|  | } | 
|  |  | 
|  | static long vma_commit_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); | 
|  | } | 
|  |  | 
|  | static void vma_end_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); | 
|  | } | 
|  |  | 
|  | static long vma_add_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called to restore a reservation on error paths.  In the | 
|  | * specific error paths, a huge page was allocated (via alloc_huge_page) | 
|  | * and is about to be freed.  If a reservation for the page existed, | 
|  | * alloc_huge_page would have consumed the reservation and set PagePrivate | 
|  | * in the newly allocated page.  When the page is freed via free_huge_page, | 
|  | * the global reservation count will be incremented if PagePrivate is set. | 
|  | * However, free_huge_page can not adjust the reserve map.  Adjust the | 
|  | * reserve map here to be consistent with global reserve count adjustments | 
|  | * to be made by free_huge_page. | 
|  | */ | 
|  | static void restore_reserve_on_error(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address, | 
|  | struct page *page) | 
|  | { | 
|  | if (unlikely(PagePrivate(page))) { | 
|  | long rc = vma_needs_reservation(h, vma, address); | 
|  |  | 
|  | if (unlikely(rc < 0)) { | 
|  | /* | 
|  | * Rare out of memory condition in reserve map | 
|  | * manipulation.  Clear PagePrivate so that | 
|  | * global reserve count will not be incremented | 
|  | * by free_huge_page.  This will make it appear | 
|  | * as though the reservation for this page was | 
|  | * consumed.  This may prevent the task from | 
|  | * faulting in the page at a later time.  This | 
|  | * is better than inconsistent global huge page | 
|  | * accounting of reserve counts. | 
|  | */ | 
|  | ClearPagePrivate(page); | 
|  | } else if (rc) { | 
|  | rc = vma_add_reservation(h, vma, address); | 
|  | if (unlikely(rc < 0)) | 
|  | /* | 
|  | * See above comment about rare out of | 
|  | * memory condition. | 
|  | */ | 
|  | ClearPagePrivate(page); | 
|  | } else | 
|  | vma_end_reservation(h, vma, address); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct page *alloc_huge_page(struct vm_area_struct *vma, | 
|  | unsigned long addr, int avoid_reserve) | 
|  | { | 
|  | struct hugepage_subpool *spool = subpool_vma(vma); | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct page *page; | 
|  | long map_chg, map_commit; | 
|  | long gbl_chg; | 
|  | int ret, idx; | 
|  | struct hugetlb_cgroup *h_cg; | 
|  |  | 
|  | idx = hstate_index(h); | 
|  | /* | 
|  | * Examine the region/reserve map to determine if the process | 
|  | * has a reservation for the page to be allocated.  A return | 
|  | * code of zero indicates a reservation exists (no change). | 
|  | */ | 
|  | map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); | 
|  | if (map_chg < 0) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Processes that did not create the mapping will have no | 
|  | * reserves as indicated by the region/reserve map. Check | 
|  | * that the allocation will not exceed the subpool limit. | 
|  | * Allocations for MAP_NORESERVE mappings also need to be | 
|  | * checked against any subpool limit. | 
|  | */ | 
|  | if (map_chg || avoid_reserve) { | 
|  | gbl_chg = hugepage_subpool_get_pages(spool, 1); | 
|  | if (gbl_chg < 0) { | 
|  | vma_end_reservation(h, vma, addr); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even though there was no reservation in the region/reserve | 
|  | * map, there could be reservations associated with the | 
|  | * subpool that can be used.  This would be indicated if the | 
|  | * return value of hugepage_subpool_get_pages() is zero. | 
|  | * However, if avoid_reserve is specified we still avoid even | 
|  | * the subpool reservations. | 
|  | */ | 
|  | if (avoid_reserve) | 
|  | gbl_chg = 1; | 
|  | } | 
|  |  | 
|  | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); | 
|  | if (ret) | 
|  | goto out_subpool_put; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | /* | 
|  | * glb_chg is passed to indicate whether or not a page must be taken | 
|  | * from the global free pool (global change).  gbl_chg == 0 indicates | 
|  | * a reservation exists for the allocation. | 
|  | */ | 
|  | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); | 
|  | if (!page) { | 
|  | spin_unlock(&hugetlb_lock); | 
|  | page = alloc_buddy_huge_page_with_mpol(h, vma, addr); | 
|  | if (!page) | 
|  | goto out_uncharge_cgroup; | 
|  | if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { | 
|  | SetPagePrivate(page); | 
|  | h->resv_huge_pages--; | 
|  | } | 
|  | spin_lock(&hugetlb_lock); | 
|  | list_move(&page->lru, &h->hugepage_activelist); | 
|  | /* Fall through */ | 
|  | } | 
|  | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | set_page_private(page, (unsigned long)spool); | 
|  |  | 
|  | map_commit = vma_commit_reservation(h, vma, addr); | 
|  | if (unlikely(map_chg > map_commit)) { | 
|  | /* | 
|  | * The page was added to the reservation map between | 
|  | * vma_needs_reservation and vma_commit_reservation. | 
|  | * This indicates a race with hugetlb_reserve_pages. | 
|  | * Adjust for the subpool count incremented above AND | 
|  | * in hugetlb_reserve_pages for the same page.  Also, | 
|  | * the reservation count added in hugetlb_reserve_pages | 
|  | * no longer applies. | 
|  | */ | 
|  | long rsv_adjust; | 
|  |  | 
|  | rsv_adjust = hugepage_subpool_put_pages(spool, 1); | 
|  | hugetlb_acct_memory(h, -rsv_adjust); | 
|  | } | 
|  | return page; | 
|  |  | 
|  | out_uncharge_cgroup: | 
|  | hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); | 
|  | out_subpool_put: | 
|  | if (map_chg || avoid_reserve) | 
|  | hugepage_subpool_put_pages(spool, 1); | 
|  | vma_end_reservation(h, vma, addr); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | int alloc_bootmem_huge_page(struct hstate *h) | 
|  | __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); | 
|  | int __alloc_bootmem_huge_page(struct hstate *h) | 
|  | { | 
|  | struct huge_bootmem_page *m; | 
|  | int nr_nodes, node; | 
|  |  | 
|  | for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { | 
|  | void *addr; | 
|  |  | 
|  | addr = memblock_virt_alloc_try_nid_nopanic( | 
|  | huge_page_size(h), huge_page_size(h), | 
|  | 0, BOOTMEM_ALLOC_ACCESSIBLE, node); | 
|  | if (addr) { | 
|  | /* | 
|  | * Use the beginning of the huge page to store the | 
|  | * huge_bootmem_page struct (until gather_bootmem | 
|  | * puts them into the mem_map). | 
|  | */ | 
|  | m = addr; | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | found: | 
|  | BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); | 
|  | /* Put them into a private list first because mem_map is not up yet */ | 
|  | list_add(&m->list, &huge_boot_pages); | 
|  | m->hstate = h; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void __init prep_compound_huge_page(struct page *page, | 
|  | unsigned int order) | 
|  | { | 
|  | if (unlikely(order > (MAX_ORDER - 1))) | 
|  | prep_compound_gigantic_page(page, order); | 
|  | else | 
|  | prep_compound_page(page, order); | 
|  | } | 
|  |  | 
|  | /* Put bootmem huge pages into the standard lists after mem_map is up */ | 
|  | static void __init gather_bootmem_prealloc(void) | 
|  | { | 
|  | struct huge_bootmem_page *m; | 
|  |  | 
|  | list_for_each_entry(m, &huge_boot_pages, list) { | 
|  | struct hstate *h = m->hstate; | 
|  | struct page *page; | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | page = pfn_to_page(m->phys >> PAGE_SHIFT); | 
|  | memblock_free_late(__pa(m), | 
|  | sizeof(struct huge_bootmem_page)); | 
|  | #else | 
|  | page = virt_to_page(m); | 
|  | #endif | 
|  | WARN_ON(page_count(page) != 1); | 
|  | prep_compound_huge_page(page, h->order); | 
|  | WARN_ON(PageReserved(page)); | 
|  | prep_new_huge_page(h, page, page_to_nid(page)); | 
|  | put_page(page); /* free it into the hugepage allocator */ | 
|  |  | 
|  | /* | 
|  | * If we had gigantic hugepages allocated at boot time, we need | 
|  | * to restore the 'stolen' pages to totalram_pages in order to | 
|  | * fix confusing memory reports from free(1) and another | 
|  | * side-effects, like CommitLimit going negative. | 
|  | */ | 
|  | if (hstate_is_gigantic(h)) | 
|  | adjust_managed_page_count(page, 1 << h->order); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < h->max_huge_pages; ++i) { | 
|  | if (hstate_is_gigantic(h)) { | 
|  | if (!alloc_bootmem_huge_page(h)) | 
|  | break; | 
|  | } else if (!alloc_pool_huge_page(h, | 
|  | &node_states[N_MEMORY])) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | if (i < h->max_huge_pages) { | 
|  | char buf[32]; | 
|  |  | 
|  | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
|  | pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n", | 
|  | h->max_huge_pages, buf, i); | 
|  | h->max_huge_pages = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_init_hstates(void) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | if (minimum_order > huge_page_order(h)) | 
|  | minimum_order = huge_page_order(h); | 
|  |  | 
|  | /* oversize hugepages were init'ed in early boot */ | 
|  | if (!hstate_is_gigantic(h)) | 
|  | hugetlb_hstate_alloc_pages(h); | 
|  | } | 
|  | VM_BUG_ON(minimum_order == UINT_MAX); | 
|  | } | 
|  |  | 
|  | static void __init report_hugepages(void) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | char buf[32]; | 
|  |  | 
|  | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
|  | pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", | 
|  | buf, h->free_huge_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | static void try_to_free_low(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | return; | 
|  |  | 
|  | for_each_node_mask(i, *nodes_allowed) { | 
|  | struct page *page, *next; | 
|  | struct list_head *freel = &h->hugepage_freelists[i]; | 
|  | list_for_each_entry_safe(page, next, freel, lru) { | 
|  | if (count >= h->nr_huge_pages) | 
|  | return; | 
|  | if (PageHighMem(page)) | 
|  | continue; | 
|  | list_del(&page->lru); | 
|  | update_and_free_page(h, page); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[page_to_nid(page)]--; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void try_to_free_low(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Increment or decrement surplus_huge_pages.  Keep node-specific counters | 
|  | * balanced by operating on them in a round-robin fashion. | 
|  | * Returns 1 if an adjustment was made. | 
|  | */ | 
|  | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, | 
|  | int delta) | 
|  | { | 
|  | int nr_nodes, node; | 
|  |  | 
|  | VM_BUG_ON(delta != -1 && delta != 1); | 
|  |  | 
|  | if (delta < 0) { | 
|  | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
|  | if (h->surplus_huge_pages_node[node]) | 
|  | goto found; | 
|  | } | 
|  | } else { | 
|  | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
|  | if (h->surplus_huge_pages_node[node] < | 
|  | h->nr_huge_pages_node[node]) | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | found: | 
|  | h->surplus_huge_pages += delta; | 
|  | h->surplus_huge_pages_node[node] += delta; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) | 
|  | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | unsigned long min_count, ret; | 
|  |  | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_supported()) | 
|  | return h->max_huge_pages; | 
|  |  | 
|  | /* | 
|  | * Increase the pool size | 
|  | * First take pages out of surplus state.  Then make up the | 
|  | * remaining difference by allocating fresh huge pages. | 
|  | * | 
|  | * We might race with alloc_surplus_huge_page() here and be unable | 
|  | * to convert a surplus huge page to a normal huge page. That is | 
|  | * not critical, though, it just means the overall size of the | 
|  | * pool might be one hugepage larger than it needs to be, but | 
|  | * within all the constraints specified by the sysctls. | 
|  | */ | 
|  | spin_lock(&hugetlb_lock); | 
|  | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { | 
|  | if (!adjust_pool_surplus(h, nodes_allowed, -1)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (count > persistent_huge_pages(h)) { | 
|  | /* | 
|  | * If this allocation races such that we no longer need the | 
|  | * page, free_huge_page will handle it by freeing the page | 
|  | * and reducing the surplus. | 
|  | */ | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | /* yield cpu to avoid soft lockup */ | 
|  | cond_resched(); | 
|  |  | 
|  | ret = alloc_pool_huge_page(h, nodes_allowed); | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (!ret) | 
|  | goto out; | 
|  |  | 
|  | /* Bail for signals. Probably ctrl-c from user */ | 
|  | if (signal_pending(current)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrease the pool size | 
|  | * First return free pages to the buddy allocator (being careful | 
|  | * to keep enough around to satisfy reservations).  Then place | 
|  | * pages into surplus state as needed so the pool will shrink | 
|  | * to the desired size as pages become free. | 
|  | * | 
|  | * By placing pages into the surplus state independent of the | 
|  | * overcommit value, we are allowing the surplus pool size to | 
|  | * exceed overcommit. There are few sane options here. Since | 
|  | * alloc_surplus_huge_page() is checking the global counter, | 
|  | * though, we'll note that we're not allowed to exceed surplus | 
|  | * and won't grow the pool anywhere else. Not until one of the | 
|  | * sysctls are changed, or the surplus pages go out of use. | 
|  | */ | 
|  | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; | 
|  | min_count = max(count, min_count); | 
|  | try_to_free_low(h, min_count, nodes_allowed); | 
|  | while (min_count < persistent_huge_pages(h)) { | 
|  | if (!free_pool_huge_page(h, nodes_allowed, 0)) | 
|  | break; | 
|  | cond_resched_lock(&hugetlb_lock); | 
|  | } | 
|  | while (count < persistent_huge_pages(h)) { | 
|  | if (!adjust_pool_surplus(h, nodes_allowed, 1)) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | ret = persistent_huge_pages(h); | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define HSTATE_ATTR_RO(_name) \ | 
|  | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
|  |  | 
|  | #define HSTATE_ATTR(_name) \ | 
|  | static struct kobj_attribute _name##_attr = \ | 
|  | __ATTR(_name, 0644, _name##_show, _name##_store) | 
|  |  | 
|  | static struct kobject *hugepages_kobj; | 
|  | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | 
|  |  | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); | 
|  |  | 
|  | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
|  | if (hstate_kobjs[i] == kobj) { | 
|  | if (nidp) | 
|  | *nidp = NUMA_NO_NODE; | 
|  | return &hstates[i]; | 
|  | } | 
|  |  | 
|  | return kobj_to_node_hstate(kobj, nidp); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_show_common(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long nr_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nr_huge_pages = h->nr_huge_pages; | 
|  | else | 
|  | nr_huge_pages = h->nr_huge_pages_node[nid]; | 
|  |  | 
|  | return sprintf(buf, "%lu\n", nr_huge_pages); | 
|  | } | 
|  |  | 
|  | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, | 
|  | struct hstate *h, int nid, | 
|  | unsigned long count, size_t len) | 
|  | { | 
|  | int err; | 
|  | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); | 
|  |  | 
|  | if (hstate_is_gigantic(h) && !gigantic_page_supported()) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (nid == NUMA_NO_NODE) { | 
|  | /* | 
|  | * global hstate attribute | 
|  | */ | 
|  | if (!(obey_mempolicy && | 
|  | init_nodemask_of_mempolicy(nodes_allowed))) { | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  | nodes_allowed = &node_states[N_MEMORY]; | 
|  | } | 
|  | } else if (nodes_allowed) { | 
|  | /* | 
|  | * per node hstate attribute: adjust count to global, | 
|  | * but restrict alloc/free to the specified node. | 
|  | */ | 
|  | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | 
|  | init_nodemask_of_node(nodes_allowed, nid); | 
|  | } else | 
|  | nodes_allowed = &node_states[N_MEMORY]; | 
|  |  | 
|  | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); | 
|  |  | 
|  | if (nodes_allowed != &node_states[N_MEMORY]) | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  |  | 
|  | return len; | 
|  | out: | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, | 
|  | struct kobject *kobj, const char *buf, | 
|  | size_t len) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long count; | 
|  | int nid; | 
|  | int err; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &count); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return nr_hugepages_show_common(kobj, attr, buf); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t len) | 
|  | { | 
|  | return nr_hugepages_store_common(false, kobj, buf, len); | 
|  | } | 
|  | HSTATE_ATTR(nr_hugepages); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* | 
|  | * hstate attribute for optionally mempolicy-based constraint on persistent | 
|  | * huge page alloc/free. | 
|  | */ | 
|  | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return nr_hugepages_show_common(kobj, attr, buf); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t len) | 
|  | { | 
|  | return nr_hugepages_store_common(true, kobj, buf, len); | 
|  | } | 
|  | HSTATE_ATTR(nr_hugepages_mempolicy); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long input; | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  |  | 
|  | if (hstate_is_gigantic(h)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &input); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | h->nr_overcommit_huge_pages = input; | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | HSTATE_ATTR(nr_overcommit_hugepages); | 
|  |  | 
|  | static ssize_t free_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long free_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | free_huge_pages = h->free_huge_pages; | 
|  | else | 
|  | free_huge_pages = h->free_huge_pages_node[nid]; | 
|  |  | 
|  | return sprintf(buf, "%lu\n", free_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(free_hugepages); | 
|  |  | 
|  | static ssize_t resv_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  | return sprintf(buf, "%lu\n", h->resv_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(resv_hugepages); | 
|  |  | 
|  | static ssize_t surplus_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long surplus_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | surplus_huge_pages = h->surplus_huge_pages; | 
|  | else | 
|  | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | 
|  |  | 
|  | return sprintf(buf, "%lu\n", surplus_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(surplus_hugepages); | 
|  |  | 
|  | static struct attribute *hstate_attrs[] = { | 
|  | &nr_hugepages_attr.attr, | 
|  | &nr_overcommit_hugepages_attr.attr, | 
|  | &free_hugepages_attr.attr, | 
|  | &resv_hugepages_attr.attr, | 
|  | &surplus_hugepages_attr.attr, | 
|  | #ifdef CONFIG_NUMA | 
|  | &nr_hugepages_mempolicy_attr.attr, | 
|  | #endif | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group hstate_attr_group = { | 
|  | .attrs = hstate_attrs, | 
|  | }; | 
|  |  | 
|  | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, | 
|  | struct kobject **hstate_kobjs, | 
|  | const struct attribute_group *hstate_attr_group) | 
|  | { | 
|  | int retval; | 
|  | int hi = hstate_index(h); | 
|  |  | 
|  | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); | 
|  | if (!hstate_kobjs[hi]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); | 
|  | if (retval) | 
|  | kobject_put(hstate_kobjs[hi]); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_sysfs_init(void) | 
|  | { | 
|  | struct hstate *h; | 
|  | int err; | 
|  |  | 
|  | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | 
|  | if (!hugepages_kobj) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, | 
|  | hstate_kobjs, &hstate_attr_group); | 
|  | if (err) | 
|  | pr_err("Hugetlb: Unable to add hstate %s", h->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* | 
|  | * node_hstate/s - associate per node hstate attributes, via their kobjects, | 
|  | * with node devices in node_devices[] using a parallel array.  The array | 
|  | * index of a node device or _hstate == node id. | 
|  | * This is here to avoid any static dependency of the node device driver, in | 
|  | * the base kernel, on the hugetlb module. | 
|  | */ | 
|  | struct node_hstate { | 
|  | struct kobject		*hugepages_kobj; | 
|  | struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE]; | 
|  | }; | 
|  | static struct node_hstate node_hstates[MAX_NUMNODES]; | 
|  |  | 
|  | /* | 
|  | * A subset of global hstate attributes for node devices | 
|  | */ | 
|  | static struct attribute *per_node_hstate_attrs[] = { | 
|  | &nr_hugepages_attr.attr, | 
|  | &free_hugepages_attr.attr, | 
|  | &surplus_hugepages_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group per_node_hstate_attr_group = { | 
|  | .attrs = per_node_hstate_attrs, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. | 
|  | * Returns node id via non-NULL nidp. | 
|  | */ | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for (nid = 0; nid < nr_node_ids; nid++) { | 
|  | struct node_hstate *nhs = &node_hstates[nid]; | 
|  | int i; | 
|  | for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
|  | if (nhs->hstate_kobjs[i] == kobj) { | 
|  | if (nidp) | 
|  | *nidp = nid; | 
|  | return &hstates[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister hstate attributes from a single node device. | 
|  | * No-op if no hstate attributes attached. | 
|  | */ | 
|  | static void hugetlb_unregister_node(struct node *node) | 
|  | { | 
|  | struct hstate *h; | 
|  | struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
|  |  | 
|  | if (!nhs->hugepages_kobj) | 
|  | return;		/* no hstate attributes */ | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | int idx = hstate_index(h); | 
|  | if (nhs->hstate_kobjs[idx]) { | 
|  | kobject_put(nhs->hstate_kobjs[idx]); | 
|  | nhs->hstate_kobjs[idx] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | kobject_put(nhs->hugepages_kobj); | 
|  | nhs->hugepages_kobj = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Register hstate attributes for a single node device. | 
|  | * No-op if attributes already registered. | 
|  | */ | 
|  | static void hugetlb_register_node(struct node *node) | 
|  | { | 
|  | struct hstate *h; | 
|  | struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
|  | int err; | 
|  |  | 
|  | if (nhs->hugepages_kobj) | 
|  | return;		/* already allocated */ | 
|  |  | 
|  | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | 
|  | &node->dev.kobj); | 
|  | if (!nhs->hugepages_kobj) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | 
|  | nhs->hstate_kobjs, | 
|  | &per_node_hstate_attr_group); | 
|  | if (err) { | 
|  | pr_err("Hugetlb: Unable to add hstate %s for node %d\n", | 
|  | h->name, node->dev.id); | 
|  | hugetlb_unregister_node(node); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb init time:  register hstate attributes for all registered node | 
|  | * devices of nodes that have memory.  All on-line nodes should have | 
|  | * registered their associated device by this time. | 
|  | */ | 
|  | static void __init hugetlb_register_all_nodes(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | struct node *node = node_devices[nid]; | 
|  | if (node->dev.id == nid) | 
|  | hugetlb_register_node(node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let the node device driver know we're here so it can | 
|  | * [un]register hstate attributes on node hotplug. | 
|  | */ | 
|  | register_hugetlbfs_with_node(hugetlb_register_node, | 
|  | hugetlb_unregister_node); | 
|  | } | 
|  | #else	/* !CONFIG_NUMA */ | 
|  |  | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | BUG(); | 
|  | if (nidp) | 
|  | *nidp = -1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void hugetlb_register_all_nodes(void) { } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int __init hugetlb_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return 0; | 
|  |  | 
|  | if (!size_to_hstate(default_hstate_size)) { | 
|  | if (default_hstate_size != 0) { | 
|  | pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", | 
|  | default_hstate_size, HPAGE_SIZE); | 
|  | } | 
|  |  | 
|  | default_hstate_size = HPAGE_SIZE; | 
|  | if (!size_to_hstate(default_hstate_size)) | 
|  | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | 
|  | } | 
|  | default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); | 
|  | if (default_hstate_max_huge_pages) { | 
|  | if (!default_hstate.max_huge_pages) | 
|  | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | 
|  | } | 
|  |  | 
|  | hugetlb_init_hstates(); | 
|  | gather_bootmem_prealloc(); | 
|  | report_hugepages(); | 
|  |  | 
|  | hugetlb_sysfs_init(); | 
|  | hugetlb_register_all_nodes(); | 
|  | hugetlb_cgroup_file_init(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); | 
|  | #else | 
|  | num_fault_mutexes = 1; | 
|  | #endif | 
|  | hugetlb_fault_mutex_table = | 
|  | kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); | 
|  | BUG_ON(!hugetlb_fault_mutex_table); | 
|  |  | 
|  | for (i = 0; i < num_fault_mutexes; i++) | 
|  | mutex_init(&hugetlb_fault_mutex_table[i]); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(hugetlb_init); | 
|  |  | 
|  | /* Should be called on processing a hugepagesz=... option */ | 
|  | void __init hugetlb_bad_size(void) | 
|  | { | 
|  | parsed_valid_hugepagesz = false; | 
|  | } | 
|  |  | 
|  | void __init hugetlb_add_hstate(unsigned int order) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long i; | 
|  |  | 
|  | if (size_to_hstate(PAGE_SIZE << order)) { | 
|  | pr_warn("hugepagesz= specified twice, ignoring\n"); | 
|  | return; | 
|  | } | 
|  | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); | 
|  | BUG_ON(order == 0); | 
|  | h = &hstates[hugetlb_max_hstate++]; | 
|  | h->order = order; | 
|  | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | 
|  | h->nr_huge_pages = 0; | 
|  | h->free_huge_pages = 0; | 
|  | for (i = 0; i < MAX_NUMNODES; ++i) | 
|  | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | 
|  | INIT_LIST_HEAD(&h->hugepage_activelist); | 
|  | h->next_nid_to_alloc = first_memory_node; | 
|  | h->next_nid_to_free = first_memory_node; | 
|  | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | 
|  | huge_page_size(h)/1024); | 
|  |  | 
|  | parsed_hstate = h; | 
|  | } | 
|  |  | 
|  | static int __init hugetlb_nrpages_setup(char *s) | 
|  | { | 
|  | unsigned long *mhp; | 
|  | static unsigned long *last_mhp; | 
|  |  | 
|  | if (!parsed_valid_hugepagesz) { | 
|  | pr_warn("hugepages = %s preceded by " | 
|  | "an unsupported hugepagesz, ignoring\n", s); | 
|  | parsed_valid_hugepagesz = true; | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, | 
|  | * so this hugepages= parameter goes to the "default hstate". | 
|  | */ | 
|  | else if (!hugetlb_max_hstate) | 
|  | mhp = &default_hstate_max_huge_pages; | 
|  | else | 
|  | mhp = &parsed_hstate->max_huge_pages; | 
|  |  | 
|  | if (mhp == last_mhp) { | 
|  | pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (sscanf(s, "%lu", mhp) <= 0) | 
|  | *mhp = 0; | 
|  |  | 
|  | /* | 
|  | * Global state is always initialized later in hugetlb_init. | 
|  | * But we need to allocate >= MAX_ORDER hstates here early to still | 
|  | * use the bootmem allocator. | 
|  | */ | 
|  | if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) | 
|  | hugetlb_hstate_alloc_pages(parsed_hstate); | 
|  |  | 
|  | last_mhp = mhp; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("hugepages=", hugetlb_nrpages_setup); | 
|  |  | 
|  | static int __init hugetlb_default_setup(char *s) | 
|  | { | 
|  | default_hstate_size = memparse(s, &s); | 
|  | return 1; | 
|  | } | 
|  | __setup("default_hugepagesz=", hugetlb_default_setup); | 
|  |  | 
|  | static unsigned int cpuset_mems_nr(unsigned int *array) | 
|  | { | 
|  | int node; | 
|  | unsigned int nr = 0; | 
|  |  | 
|  | for_each_node_mask(node, cpuset_current_mems_allowed) | 
|  | nr += array[node]; | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, | 
|  | struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | unsigned long tmp = h->max_huge_pages; | 
|  | int ret; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | table->data = &tmp; | 
|  | table->maxlen = sizeof(unsigned long); | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (write) | 
|  | ret = __nr_hugepages_store_common(obey_mempolicy, h, | 
|  | NUMA_NO_NODE, tmp, *length); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  |  | 
|  | return hugetlb_sysctl_handler_common(false, table, write, | 
|  | buffer, length, ppos); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | return hugetlb_sysctl_handler_common(true, table, write, | 
|  | buffer, length, ppos); | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | int hugetlb_overcommit_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, | 
|  | size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | unsigned long tmp; | 
|  | int ret; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | tmp = h->nr_overcommit_huge_pages; | 
|  |  | 
|  | if (write && hstate_is_gigantic(h)) | 
|  | return -EINVAL; | 
|  |  | 
|  | table->data = &tmp; | 
|  | table->maxlen = sizeof(unsigned long); | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (write) { | 
|  | spin_lock(&hugetlb_lock); | 
|  | h->nr_overcommit_huge_pages = tmp; | 
|  | spin_unlock(&hugetlb_lock); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | void hugetlb_report_meminfo(struct seq_file *m) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long total = 0; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | unsigned long count = h->nr_huge_pages; | 
|  |  | 
|  | total += (PAGE_SIZE << huge_page_order(h)) * count; | 
|  |  | 
|  | if (h == &default_hstate) | 
|  | seq_printf(m, | 
|  | "HugePages_Total:   %5lu\n" | 
|  | "HugePages_Free:    %5lu\n" | 
|  | "HugePages_Rsvd:    %5lu\n" | 
|  | "HugePages_Surp:    %5lu\n" | 
|  | "Hugepagesize:   %8lu kB\n", | 
|  | count, | 
|  | h->free_huge_pages, | 
|  | h->resv_huge_pages, | 
|  | h->surplus_huge_pages, | 
|  | (PAGE_SIZE << huge_page_order(h)) / 1024); | 
|  | } | 
|  |  | 
|  | seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024); | 
|  | } | 
|  |  | 
|  | int hugetlb_report_node_meminfo(int nid, char *buf) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | if (!hugepages_supported()) | 
|  | return 0; | 
|  | return sprintf(buf, | 
|  | "Node %d HugePages_Total: %5u\n" | 
|  | "Node %d HugePages_Free:  %5u\n" | 
|  | "Node %d HugePages_Surp:  %5u\n", | 
|  | nid, h->nr_huge_pages_node[nid], | 
|  | nid, h->free_huge_pages_node[nid], | 
|  | nid, h->surplus_huge_pages_node[nid]); | 
|  | } | 
|  |  | 
|  | void hugetlb_show_meminfo(void) | 
|  | { | 
|  | struct hstate *h; | 
|  | int nid; | 
|  |  | 
|  | if (!hugepages_supported()) | 
|  | return; | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) | 
|  | for_each_hstate(h) | 
|  | pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | 
|  | nid, | 
|  | h->nr_huge_pages_node[nid], | 
|  | h->free_huge_pages_node[nid], | 
|  | h->surplus_huge_pages_node[nid], | 
|  | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | 
|  | } | 
|  |  | 
|  | void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) | 
|  | { | 
|  | seq_printf(m, "HugetlbPages:\t%8lu kB\n", | 
|  | atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); | 
|  | } | 
|  |  | 
|  | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
|  | unsigned long hugetlb_total_pages(void) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long nr_total_pages = 0; | 
|  |  | 
|  | for_each_hstate(h) | 
|  | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | 
|  | return nr_total_pages; | 
|  | } | 
|  |  | 
|  | static int hugetlb_acct_memory(struct hstate *h, long delta) | 
|  | { | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | /* | 
|  | * When cpuset is configured, it breaks the strict hugetlb page | 
|  | * reservation as the accounting is done on a global variable. Such | 
|  | * reservation is completely rubbish in the presence of cpuset because | 
|  | * the reservation is not checked against page availability for the | 
|  | * current cpuset. Application can still potentially OOM'ed by kernel | 
|  | * with lack of free htlb page in cpuset that the task is in. | 
|  | * Attempt to enforce strict accounting with cpuset is almost | 
|  | * impossible (or too ugly) because cpuset is too fluid that | 
|  | * task or memory node can be dynamically moved between cpusets. | 
|  | * | 
|  | * The change of semantics for shared hugetlb mapping with cpuset is | 
|  | * undesirable. However, in order to preserve some of the semantics, | 
|  | * we fall back to check against current free page availability as | 
|  | * a best attempt and hopefully to minimize the impact of changing | 
|  | * semantics that cpuset has. | 
|  | */ | 
|  | if (delta > 0) { | 
|  | if (gather_surplus_pages(h, delta) < 0) | 
|  | goto out; | 
|  |  | 
|  | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | 
|  | return_unused_surplus_pages(h, delta); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (delta < 0) | 
|  | return_unused_surplus_pages(h, (unsigned long) -delta); | 
|  |  | 
|  | out: | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | 
|  | { | 
|  | struct resv_map *resv = vma_resv_map(vma); | 
|  |  | 
|  | /* | 
|  | * This new VMA should share its siblings reservation map if present. | 
|  | * The VMA will only ever have a valid reservation map pointer where | 
|  | * it is being copied for another still existing VMA.  As that VMA | 
|  | * has a reference to the reservation map it cannot disappear until | 
|  | * after this open call completes.  It is therefore safe to take a | 
|  | * new reference here without additional locking. | 
|  | */ | 
|  | if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
|  | kref_get(&resv->refs); | 
|  | } | 
|  |  | 
|  | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct resv_map *resv = vma_resv_map(vma); | 
|  | struct hugepage_subpool *spool = subpool_vma(vma); | 
|  | unsigned long reserve, start, end; | 
|  | long gbl_reserve; | 
|  |  | 
|  | if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
|  | return; | 
|  |  | 
|  | start = vma_hugecache_offset(h, vma, vma->vm_start); | 
|  | end = vma_hugecache_offset(h, vma, vma->vm_end); | 
|  |  | 
|  | reserve = (end - start) - region_count(resv, start, end); | 
|  |  | 
|  | kref_put(&resv->refs, resv_map_release); | 
|  |  | 
|  | if (reserve) { | 
|  | /* | 
|  | * Decrement reserve counts.  The global reserve count may be | 
|  | * adjusted if the subpool has a minimum size. | 
|  | */ | 
|  | gbl_reserve = hugepage_subpool_put_pages(spool, reserve); | 
|  | hugetlb_acct_memory(h, -gbl_reserve); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | if (addr & ~(huge_page_mask(hstate_vma(vma)))) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
|  | * handle_mm_fault() to try to instantiate regular-sized pages in the | 
|  | * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
|  | * this far. | 
|  | */ | 
|  | static int hugetlb_vm_op_fault(struct vm_fault *vmf) | 
|  | { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct vm_operations_struct hugetlb_vm_ops = { | 
|  | .fault = hugetlb_vm_op_fault, | 
|  | .open = hugetlb_vm_op_open, | 
|  | .close = hugetlb_vm_op_close, | 
|  | .split = hugetlb_vm_op_split, | 
|  | }; | 
|  |  | 
|  | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
|  | int writable) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | if (writable) { | 
|  | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, | 
|  | vma->vm_page_prot))); | 
|  | } else { | 
|  | entry = huge_pte_wrprotect(mk_huge_pte(page, | 
|  | vma->vm_page_prot)); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | entry = pte_mkhuge(entry); | 
|  | entry = arch_make_huge_pte(entry, vma, page, writable); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); | 
|  | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) | 
|  | update_mmu_cache(vma, address, ptep); | 
|  | } | 
|  |  | 
|  | bool is_hugetlb_entry_migration(pte_t pte) | 
|  | { | 
|  | swp_entry_t swp; | 
|  |  | 
|  | if (huge_pte_none(pte) || pte_present(pte)) | 
|  | return false; | 
|  | swp = pte_to_swp_entry(pte); | 
|  | if (non_swap_entry(swp) && is_migration_entry(swp)) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | 
|  | { | 
|  | swp_entry_t swp; | 
|  |  | 
|  | if (huge_pte_none(pte) || pte_present(pte)) | 
|  | return 0; | 
|  | swp = pte_to_swp_entry(pte); | 
|  | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | pte_t *src_pte, *dst_pte, entry; | 
|  | struct page *ptepage; | 
|  | unsigned long addr; | 
|  | int cow; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long sz = huge_page_size(h); | 
|  | unsigned long mmun_start;	/* For mmu_notifiers */ | 
|  | unsigned long mmun_end;		/* For mmu_notifiers */ | 
|  | int ret = 0; | 
|  |  | 
|  | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
|  |  | 
|  | mmun_start = vma->vm_start; | 
|  | mmun_end = vma->vm_end; | 
|  | if (cow) | 
|  | mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); | 
|  |  | 
|  | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { | 
|  | spinlock_t *src_ptl, *dst_ptl; | 
|  | src_pte = huge_pte_offset(src, addr, sz); | 
|  | if (!src_pte) | 
|  | continue; | 
|  | dst_pte = huge_pte_alloc(dst, addr, sz); | 
|  | if (!dst_pte) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If the pagetables are shared don't copy or take references */ | 
|  | if (dst_pte == src_pte) | 
|  | continue; | 
|  |  | 
|  | dst_ptl = huge_pte_lock(h, dst, dst_pte); | 
|  | src_ptl = huge_pte_lockptr(h, src, src_pte); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  | entry = huge_ptep_get(src_pte); | 
|  | if (huge_pte_none(entry)) { /* skip none entry */ | 
|  | ; | 
|  | } else if (unlikely(is_hugetlb_entry_migration(entry) || | 
|  | is_hugetlb_entry_hwpoisoned(entry))) { | 
|  | swp_entry_t swp_entry = pte_to_swp_entry(entry); | 
|  |  | 
|  | if (is_write_migration_entry(swp_entry) && cow) { | 
|  | /* | 
|  | * COW mappings require pages in both | 
|  | * parent and child to be set to read. | 
|  | */ | 
|  | make_migration_entry_read(&swp_entry); | 
|  | entry = swp_entry_to_pte(swp_entry); | 
|  | set_huge_swap_pte_at(src, addr, src_pte, | 
|  | entry, sz); | 
|  | } | 
|  | set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); | 
|  | } else { | 
|  | if (cow) { | 
|  | /* | 
|  | * No need to notify as we are downgrading page | 
|  | * table protection not changing it to point | 
|  | * to a new page. | 
|  | * | 
|  | * See Documentation/vm/mmu_notifier.txt | 
|  | */ | 
|  | huge_ptep_set_wrprotect(src, addr, src_pte); | 
|  | } | 
|  | entry = huge_ptep_get(src_pte); | 
|  | ptepage = pte_page(entry); | 
|  | get_page(ptepage); | 
|  | page_dup_rmap(ptepage, true); | 
|  | set_huge_pte_at(dst, addr, dst_pte, entry); | 
|  | hugetlb_count_add(pages_per_huge_page(h), dst); | 
|  | } | 
|  | spin_unlock(src_ptl); | 
|  | spin_unlock(dst_ptl); | 
|  | } | 
|  |  | 
|  | if (cow) | 
|  | mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end, | 
|  | struct page *ref_page) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long sz = huge_page_size(h); | 
|  | const unsigned long mmun_start = start;	/* For mmu_notifiers */ | 
|  | const unsigned long mmun_end   = end;	/* For mmu_notifiers */ | 
|  |  | 
|  | WARN_ON(!is_vm_hugetlb_page(vma)); | 
|  | BUG_ON(start & ~huge_page_mask(h)); | 
|  | BUG_ON(end & ~huge_page_mask(h)); | 
|  |  | 
|  | /* | 
|  | * This is a hugetlb vma, all the pte entries should point | 
|  | * to huge page. | 
|  | */ | 
|  | tlb_remove_check_page_size_change(tlb, sz); | 
|  | tlb_start_vma(tlb, vma); | 
|  | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
|  | address = start; | 
|  | for (; address < end; address += sz) { | 
|  | ptep = huge_pte_offset(mm, address, sz); | 
|  | if (!ptep) | 
|  | continue; | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | if (huge_pmd_unshare(mm, &address, ptep)) { | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pte = huge_ptep_get(ptep); | 
|  | if (huge_pte_none(pte)) { | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrating hugepage or HWPoisoned hugepage is already | 
|  | * unmapped and its refcount is dropped, so just clear pte here. | 
|  | */ | 
|  | if (unlikely(!pte_present(pte))) { | 
|  | huge_pte_clear(mm, address, ptep, sz); | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | page = pte_page(pte); | 
|  | /* | 
|  | * If a reference page is supplied, it is because a specific | 
|  | * page is being unmapped, not a range. Ensure the page we | 
|  | * are about to unmap is the actual page of interest. | 
|  | */ | 
|  | if (ref_page) { | 
|  | if (page != ref_page) { | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Mark the VMA as having unmapped its page so that | 
|  | * future faults in this VMA will fail rather than | 
|  | * looking like data was lost | 
|  | */ | 
|  | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | 
|  | } | 
|  |  | 
|  | pte = huge_ptep_get_and_clear(mm, address, ptep); | 
|  | tlb_remove_huge_tlb_entry(h, tlb, ptep, address); | 
|  | if (huge_pte_dirty(pte)) | 
|  | set_page_dirty(page); | 
|  |  | 
|  | hugetlb_count_sub(pages_per_huge_page(h), mm); | 
|  | page_remove_rmap(page, true); | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | tlb_remove_page_size(tlb, page, huge_page_size(h)); | 
|  | /* | 
|  | * Bail out after unmapping reference page if supplied | 
|  | */ | 
|  | if (ref_page) | 
|  | break; | 
|  | } | 
|  | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
|  | tlb_end_vma(tlb, vma); | 
|  | } | 
|  |  | 
|  | void __unmap_hugepage_range_final(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, struct page *ref_page) | 
|  | { | 
|  | __unmap_hugepage_range(tlb, vma, start, end, ref_page); | 
|  |  | 
|  | /* | 
|  | * Clear this flag so that x86's huge_pmd_share page_table_shareable | 
|  | * test will fail on a vma being torn down, and not grab a page table | 
|  | * on its way out.  We're lucky that the flag has such an appropriate | 
|  | * name, and can in fact be safely cleared here. We could clear it | 
|  | * before the __unmap_hugepage_range above, but all that's necessary | 
|  | * is to clear it before releasing the i_mmap_rwsem. This works | 
|  | * because in the context this is called, the VMA is about to be | 
|  | * destroyed and the i_mmap_rwsem is held. | 
|  | */ | 
|  | vma->vm_flags &= ~VM_MAYSHARE; | 
|  | } | 
|  |  | 
|  | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, struct page *ref_page) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | mm = vma->vm_mm; | 
|  |  | 
|  | tlb_gather_mmu(&tlb, mm, start, end); | 
|  | __unmap_hugepage_range(&tlb, vma, start, end, ref_page); | 
|  | tlb_finish_mmu(&tlb, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when the original mapper is failing to COW a MAP_PRIVATE | 
|  | * mappping it owns the reserve page for. The intention is to unmap the page | 
|  | * from other VMAs and let the children be SIGKILLed if they are faulting the | 
|  | * same region. | 
|  | */ | 
|  | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct page *page, unsigned long address) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct vm_area_struct *iter_vma; | 
|  | struct address_space *mapping; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | /* | 
|  | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | 
|  | * from page cache lookup which is in HPAGE_SIZE units. | 
|  | */ | 
|  | address = address & huge_page_mask(h); | 
|  | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + | 
|  | vma->vm_pgoff; | 
|  | mapping = vma->vm_file->f_mapping; | 
|  |  | 
|  | /* | 
|  | * Take the mapping lock for the duration of the table walk. As | 
|  | * this mapping should be shared between all the VMAs, | 
|  | * __unmap_hugepage_range() is called as the lock is already held | 
|  | */ | 
|  | i_mmap_lock_write(mapping); | 
|  | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { | 
|  | /* Do not unmap the current VMA */ | 
|  | if (iter_vma == vma) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Shared VMAs have their own reserves and do not affect | 
|  | * MAP_PRIVATE accounting but it is possible that a shared | 
|  | * VMA is using the same page so check and skip such VMAs. | 
|  | */ | 
|  | if (iter_vma->vm_flags & VM_MAYSHARE) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Unmap the page from other VMAs without their own reserves. | 
|  | * They get marked to be SIGKILLed if they fault in these | 
|  | * areas. This is because a future no-page fault on this VMA | 
|  | * could insert a zeroed page instead of the data existing | 
|  | * from the time of fork. This would look like data corruption | 
|  | */ | 
|  | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | 
|  | unmap_hugepage_range(iter_vma, address, | 
|  | address + huge_page_size(h), page); | 
|  | } | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hugetlb_cow() should be called with page lock of the original hugepage held. | 
|  | * Called with hugetlb_instantiation_mutex held and pte_page locked so we | 
|  | * cannot race with other handlers or page migration. | 
|  | * Keep the pte_same checks anyway to make transition from the mutex easier. | 
|  | */ | 
|  | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, | 
|  | struct page *pagecache_page, spinlock_t *ptl) | 
|  | { | 
|  | pte_t pte; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct page *old_page, *new_page; | 
|  | int ret = 0, outside_reserve = 0; | 
|  | unsigned long mmun_start;	/* For mmu_notifiers */ | 
|  | unsigned long mmun_end;		/* For mmu_notifiers */ | 
|  |  | 
|  | pte = huge_ptep_get(ptep); | 
|  | old_page = pte_page(pte); | 
|  |  | 
|  | retry_avoidcopy: | 
|  | /* If no-one else is actually using this page, avoid the copy | 
|  | * and just make the page writable */ | 
|  | if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { | 
|  | page_move_anon_rmap(old_page, vma); | 
|  | set_huge_ptep_writable(vma, address, ptep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the process that created a MAP_PRIVATE mapping is about to | 
|  | * perform a COW due to a shared page count, attempt to satisfy | 
|  | * the allocation without using the existing reserves. The pagecache | 
|  | * page is used to determine if the reserve at this address was | 
|  | * consumed or not. If reserves were used, a partial faulted mapping | 
|  | * at the time of fork() could consume its reserves on COW instead | 
|  | * of the full address range. | 
|  | */ | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | 
|  | old_page != pagecache_page) | 
|  | outside_reserve = 1; | 
|  |  | 
|  | get_page(old_page); | 
|  |  | 
|  | /* | 
|  | * Drop page table lock as buddy allocator may be called. It will | 
|  | * be acquired again before returning to the caller, as expected. | 
|  | */ | 
|  | spin_unlock(ptl); | 
|  | new_page = alloc_huge_page(vma, address, outside_reserve); | 
|  |  | 
|  | if (IS_ERR(new_page)) { | 
|  | /* | 
|  | * If a process owning a MAP_PRIVATE mapping fails to COW, | 
|  | * it is due to references held by a child and an insufficient | 
|  | * huge page pool. To guarantee the original mappers | 
|  | * reliability, unmap the page from child processes. The child | 
|  | * may get SIGKILLed if it later faults. | 
|  | */ | 
|  | if (outside_reserve) { | 
|  | put_page(old_page); | 
|  | BUG_ON(huge_pte_none(pte)); | 
|  | unmap_ref_private(mm, vma, old_page, address); | 
|  | BUG_ON(huge_pte_none(pte)); | 
|  | spin_lock(ptl); | 
|  | ptep = huge_pte_offset(mm, address & huge_page_mask(h), | 
|  | huge_page_size(h)); | 
|  | if (likely(ptep && | 
|  | pte_same(huge_ptep_get(ptep), pte))) | 
|  | goto retry_avoidcopy; | 
|  | /* | 
|  | * race occurs while re-acquiring page table | 
|  | * lock, and our job is done. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = (PTR_ERR(new_page) == -ENOMEM) ? | 
|  | VM_FAULT_OOM : VM_FAULT_SIGBUS; | 
|  | goto out_release_old; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the original hugepage is shared one, it does not have | 
|  | * anon_vma prepared. | 
|  | */ | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_release_all; | 
|  | } | 
|  |  | 
|  | copy_user_huge_page(new_page, old_page, address, vma, | 
|  | pages_per_huge_page(h)); | 
|  | __SetPageUptodate(new_page); | 
|  | set_page_huge_active(new_page); | 
|  |  | 
|  | mmun_start = address & huge_page_mask(h); | 
|  | mmun_end = mmun_start + huge_page_size(h); | 
|  | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
|  |  | 
|  | /* | 
|  | * Retake the page table lock to check for racing updates | 
|  | * before the page tables are altered | 
|  | */ | 
|  | spin_lock(ptl); | 
|  | ptep = huge_pte_offset(mm, address & huge_page_mask(h), | 
|  | huge_page_size(h)); | 
|  | if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { | 
|  | ClearPagePrivate(new_page); | 
|  |  | 
|  | /* Break COW */ | 
|  | huge_ptep_clear_flush(vma, address, ptep); | 
|  | mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); | 
|  | set_huge_pte_at(mm, address, ptep, | 
|  | make_huge_pte(vma, new_page, 1)); | 
|  | page_remove_rmap(old_page, true); | 
|  | hugepage_add_new_anon_rmap(new_page, vma, address); | 
|  | /* Make the old page be freed below */ | 
|  | new_page = old_page; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
|  | out_release_all: | 
|  | restore_reserve_on_error(h, vma, address, new_page); | 
|  | put_page(new_page); | 
|  | out_release_old: | 
|  | put_page(old_page); | 
|  |  | 
|  | spin_lock(ptl); /* Caller expects lock to be held */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Return the pagecache page at a given address within a VMA */ | 
|  | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | pgoff_t idx; | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, vma, address); | 
|  |  | 
|  | return find_lock_page(mapping, idx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return whether there is a pagecache page to back given address within VMA. | 
|  | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | 
|  | */ | 
|  | static bool hugetlbfs_pagecache_present(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | pgoff_t idx; | 
|  | struct page *page; | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, vma, address); | 
|  |  | 
|  | page = find_get_page(mapping, idx); | 
|  | if (page) | 
|  | put_page(page); | 
|  | return page != NULL; | 
|  | } | 
|  |  | 
|  | int huge_add_to_page_cache(struct page *page, struct address_space *mapping, | 
|  | pgoff_t idx) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | ClearPagePrivate(page); | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_blocks += blocks_per_huge_page(h); | 
|  | spin_unlock(&inode->i_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct address_space *mapping, pgoff_t idx, | 
|  | unsigned long address, pte_t *ptep, unsigned int flags) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | int ret = VM_FAULT_SIGBUS; | 
|  | int anon_rmap = 0; | 
|  | unsigned long size; | 
|  | struct page *page; | 
|  | pte_t new_pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | /* | 
|  | * Currently, we are forced to kill the process in the event the | 
|  | * original mapper has unmapped pages from the child due to a failed | 
|  | * COW. Warn that such a situation has occurred as it may not be obvious | 
|  | */ | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | 
|  | pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", | 
|  | current->pid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use page lock to guard against racing truncation | 
|  | * before we get page_table_lock. | 
|  | */ | 
|  | retry: | 
|  | page = find_lock_page(mapping, idx); | 
|  | if (!page) { | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | if (idx >= size) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check for page in userfault range | 
|  | */ | 
|  | if (userfaultfd_missing(vma)) { | 
|  | u32 hash; | 
|  | struct vm_fault vmf = { | 
|  | .vma = vma, | 
|  | .address = address, | 
|  | .flags = flags, | 
|  | /* | 
|  | * Hard to debug if it ends up being | 
|  | * used by a callee that assumes | 
|  | * something about the other | 
|  | * uninitialized fields... same as in | 
|  | * memory.c | 
|  | */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * hugetlb_fault_mutex must be dropped before | 
|  | * handling userfault.  Reacquire after handling | 
|  | * fault to make calling code simpler. | 
|  | */ | 
|  | hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, | 
|  | idx, address); | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | ret = handle_userfault(&vmf, VM_UFFD_MISSING); | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = alloc_huge_page(vma, address, 0); | 
|  | if (IS_ERR(page)) { | 
|  | ret = PTR_ERR(page); | 
|  | if (ret == -ENOMEM) | 
|  | ret = VM_FAULT_OOM; | 
|  | else | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out; | 
|  | } | 
|  | clear_huge_page(page, address, pages_per_huge_page(h)); | 
|  | __SetPageUptodate(page); | 
|  | set_page_huge_active(page); | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | int err = huge_add_to_page_cache(page, mapping, idx); | 
|  | if (err) { | 
|  | put_page(page); | 
|  | if (err == -EEXIST) | 
|  | goto retry; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | lock_page(page); | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto backout_unlocked; | 
|  | } | 
|  | anon_rmap = 1; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * If memory error occurs between mmap() and fault, some process | 
|  | * don't have hwpoisoned swap entry for errored virtual address. | 
|  | * So we need to block hugepage fault by PG_hwpoison bit check. | 
|  | */ | 
|  | if (unlikely(PageHWPoison(page))) { | 
|  | ret = VM_FAULT_HWPOISON | | 
|  | VM_FAULT_SET_HINDEX(hstate_index(h)); | 
|  | goto backout_unlocked; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are going to COW a private mapping later, we examine the | 
|  | * pending reservations for this page now. This will ensure that | 
|  | * any allocations necessary to record that reservation occur outside | 
|  | * the spinlock. | 
|  | */ | 
|  | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
|  | if (vma_needs_reservation(h, vma, address) < 0) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto backout_unlocked; | 
|  | } | 
|  | /* Just decrements count, does not deallocate */ | 
|  | vma_end_reservation(h, vma, address); | 
|  | } | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | if (idx >= size) | 
|  | goto backout; | 
|  |  | 
|  | ret = 0; | 
|  | if (!huge_pte_none(huge_ptep_get(ptep))) | 
|  | goto backout; | 
|  |  | 
|  | if (anon_rmap) { | 
|  | ClearPagePrivate(page); | 
|  | hugepage_add_new_anon_rmap(page, vma, address); | 
|  | } else | 
|  | page_dup_rmap(page, true); | 
|  | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | 
|  | && (vma->vm_flags & VM_SHARED))); | 
|  | set_huge_pte_at(mm, address, ptep, new_pte); | 
|  |  | 
|  | hugetlb_count_add(pages_per_huge_page(h), mm); | 
|  | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
|  | /* Optimization, do the COW without a second fault */ | 
|  | ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); | 
|  | } | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | unlock_page(page); | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | backout: | 
|  | spin_unlock(ptl); | 
|  | backout_unlocked: | 
|  | unlock_page(page); | 
|  | restore_reserve_on_error(h, vma, address, page); | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | struct address_space *mapping, | 
|  | pgoff_t idx, unsigned long address) | 
|  | { | 
|  | unsigned long key[2]; | 
|  | u32 hash; | 
|  |  | 
|  | if (vma->vm_flags & VM_SHARED) { | 
|  | key[0] = (unsigned long) mapping; | 
|  | key[1] = idx; | 
|  | } else { | 
|  | key[0] = (unsigned long) mm; | 
|  | key[1] = address >> huge_page_shift(h); | 
|  | } | 
|  |  | 
|  | hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); | 
|  |  | 
|  | return hash & (num_fault_mutexes - 1); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * For uniprocesor systems we always use a single mutex, so just | 
|  | * return 0 and avoid the hashing overhead. | 
|  | */ | 
|  | u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | struct address_space *mapping, | 
|  | pgoff_t idx, unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags) | 
|  | { | 
|  | pte_t *ptep, entry; | 
|  | spinlock_t *ptl; | 
|  | int ret; | 
|  | u32 hash; | 
|  | pgoff_t idx; | 
|  | struct page *page = NULL; | 
|  | struct page *pagecache_page = NULL; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct address_space *mapping; | 
|  | int need_wait_lock = 0; | 
|  |  | 
|  | address &= huge_page_mask(h); | 
|  |  | 
|  | ptep = huge_pte_offset(mm, address, huge_page_size(h)); | 
|  | if (ptep) { | 
|  | entry = huge_ptep_get(ptep); | 
|  | if (unlikely(is_hugetlb_entry_migration(entry))) { | 
|  | migration_entry_wait_huge(vma, mm, ptep); | 
|  | return 0; | 
|  | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 
|  | return VM_FAULT_HWPOISON_LARGE | | 
|  | VM_FAULT_SET_HINDEX(hstate_index(h)); | 
|  | } else { | 
|  | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 
|  | if (!ptep) | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, vma, address); | 
|  |  | 
|  | /* | 
|  | * Serialize hugepage allocation and instantiation, so that we don't | 
|  | * get spurious allocation failures if two CPUs race to instantiate | 
|  | * the same page in the page cache. | 
|  | */ | 
|  | hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); | 
|  | mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
|  |  | 
|  | entry = huge_ptep_get(ptep); | 
|  | if (huge_pte_none(entry)) { | 
|  | ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); | 
|  | goto out_mutex; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * entry could be a migration/hwpoison entry at this point, so this | 
|  | * check prevents the kernel from going below assuming that we have | 
|  | * a active hugepage in pagecache. This goto expects the 2nd page fault, | 
|  | * and is_hugetlb_entry_(migration|hwpoisoned) check will properly | 
|  | * handle it. | 
|  | */ | 
|  | if (!pte_present(entry)) | 
|  | goto out_mutex; | 
|  |  | 
|  | /* | 
|  | * If we are going to COW the mapping later, we examine the pending | 
|  | * reservations for this page now. This will ensure that any | 
|  | * allocations necessary to record that reservation occur outside the | 
|  | * spinlock. For private mappings, we also lookup the pagecache | 
|  | * page now as it is used to determine if a reservation has been | 
|  | * consumed. | 
|  | */ | 
|  | if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { | 
|  | if (vma_needs_reservation(h, vma, address) < 0) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_mutex; | 
|  | } | 
|  | /* Just decrements count, does not deallocate */ | 
|  | vma_end_reservation(h, vma, address); | 
|  |  | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | pagecache_page = hugetlbfs_pagecache_page(h, | 
|  | vma, address); | 
|  | } | 
|  |  | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  |  | 
|  | /* Check for a racing update before calling hugetlb_cow */ | 
|  | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 
|  | goto out_ptl; | 
|  |  | 
|  | /* | 
|  | * hugetlb_cow() requires page locks of pte_page(entry) and | 
|  | * pagecache_page, so here we need take the former one | 
|  | * when page != pagecache_page or !pagecache_page. | 
|  | */ | 
|  | page = pte_page(entry); | 
|  | if (page != pagecache_page) | 
|  | if (!trylock_page(page)) { | 
|  | need_wait_lock = 1; | 
|  | goto out_ptl; | 
|  | } | 
|  |  | 
|  | get_page(page); | 
|  |  | 
|  | if (flags & FAULT_FLAG_WRITE) { | 
|  | if (!huge_pte_write(entry)) { | 
|  | ret = hugetlb_cow(mm, vma, address, ptep, | 
|  | pagecache_page, ptl); | 
|  | goto out_put_page; | 
|  | } | 
|  | entry = huge_pte_mkdirty(entry); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | if (huge_ptep_set_access_flags(vma, address, ptep, entry, | 
|  | flags & FAULT_FLAG_WRITE)) | 
|  | update_mmu_cache(vma, address, ptep); | 
|  | out_put_page: | 
|  | if (page != pagecache_page) | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | out_ptl: | 
|  | spin_unlock(ptl); | 
|  |  | 
|  | if (pagecache_page) { | 
|  | unlock_page(pagecache_page); | 
|  | put_page(pagecache_page); | 
|  | } | 
|  | out_mutex: | 
|  | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
|  | /* | 
|  | * Generally it's safe to hold refcount during waiting page lock. But | 
|  | * here we just wait to defer the next page fault to avoid busy loop and | 
|  | * the page is not used after unlocked before returning from the current | 
|  | * page fault. So we are safe from accessing freed page, even if we wait | 
|  | * here without taking refcount. | 
|  | */ | 
|  | if (need_wait_lock) | 
|  | wait_on_page_locked(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with | 
|  | * modifications for huge pages. | 
|  | */ | 
|  | int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, | 
|  | pte_t *dst_pte, | 
|  | struct vm_area_struct *dst_vma, | 
|  | unsigned long dst_addr, | 
|  | unsigned long src_addr, | 
|  | struct page **pagep) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | pgoff_t idx; | 
|  | unsigned long size; | 
|  | int vm_shared = dst_vma->vm_flags & VM_SHARED; | 
|  | struct hstate *h = hstate_vma(dst_vma); | 
|  | pte_t _dst_pte; | 
|  | spinlock_t *ptl; | 
|  | int ret; | 
|  | struct page *page; | 
|  |  | 
|  | if (!*pagep) { | 
|  | ret = -ENOMEM; | 
|  | page = alloc_huge_page(dst_vma, dst_addr, 0); | 
|  | if (IS_ERR(page)) | 
|  | goto out; | 
|  |  | 
|  | ret = copy_huge_page_from_user(page, | 
|  | (const void __user *) src_addr, | 
|  | pages_per_huge_page(h), false); | 
|  |  | 
|  | /* fallback to copy_from_user outside mmap_sem */ | 
|  | if (unlikely(ret)) { | 
|  | ret = -EFAULT; | 
|  | *pagep = page; | 
|  | /* don't free the page */ | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | page = *pagep; | 
|  | *pagep = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The memory barrier inside __SetPageUptodate makes sure that | 
|  | * preceding stores to the page contents become visible before | 
|  | * the set_pte_at() write. | 
|  | */ | 
|  | __SetPageUptodate(page); | 
|  | set_page_huge_active(page); | 
|  |  | 
|  | mapping = dst_vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, dst_vma, dst_addr); | 
|  |  | 
|  | /* | 
|  | * If shared, add to page cache | 
|  | */ | 
|  | if (vm_shared) { | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | ret = -EFAULT; | 
|  | if (idx >= size) | 
|  | goto out_release_nounlock; | 
|  |  | 
|  | /* | 
|  | * Serialization between remove_inode_hugepages() and | 
|  | * huge_add_to_page_cache() below happens through the | 
|  | * hugetlb_fault_mutex_table that here must be hold by | 
|  | * the caller. | 
|  | */ | 
|  | ret = huge_add_to_page_cache(page, mapping, idx); | 
|  | if (ret) | 
|  | goto out_release_nounlock; | 
|  | } | 
|  |  | 
|  | ptl = huge_pte_lockptr(h, dst_mm, dst_pte); | 
|  | spin_lock(ptl); | 
|  |  | 
|  | /* | 
|  | * Recheck the i_size after holding PT lock to make sure not | 
|  | * to leave any page mapped (as page_mapped()) beyond the end | 
|  | * of the i_size (remove_inode_hugepages() is strict about | 
|  | * enforcing that). If we bail out here, we'll also leave a | 
|  | * page in the radix tree in the vm_shared case beyond the end | 
|  | * of the i_size, but remove_inode_hugepages() will take care | 
|  | * of it as soon as we drop the hugetlb_fault_mutex_table. | 
|  | */ | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | ret = -EFAULT; | 
|  | if (idx >= size) | 
|  | goto out_release_unlock; | 
|  |  | 
|  | ret = -EEXIST; | 
|  | if (!huge_pte_none(huge_ptep_get(dst_pte))) | 
|  | goto out_release_unlock; | 
|  |  | 
|  | if (vm_shared) { | 
|  | page_dup_rmap(page, true); | 
|  | } else { | 
|  | ClearPagePrivate(page); | 
|  | hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); | 
|  | } | 
|  |  | 
|  | _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); | 
|  | if (dst_vma->vm_flags & VM_WRITE) | 
|  | _dst_pte = huge_pte_mkdirty(_dst_pte); | 
|  | _dst_pte = pte_mkyoung(_dst_pte); | 
|  |  | 
|  | set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); | 
|  |  | 
|  | (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, | 
|  | dst_vma->vm_flags & VM_WRITE); | 
|  | hugetlb_count_add(pages_per_huge_page(h), dst_mm); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(dst_vma, dst_addr, dst_pte); | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | if (vm_shared) | 
|  | unlock_page(page); | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | out_release_unlock: | 
|  | spin_unlock(ptl); | 
|  | if (vm_shared) | 
|  | unlock_page(page); | 
|  | out_release_nounlock: | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct page **pages, struct vm_area_struct **vmas, | 
|  | unsigned long *position, unsigned long *nr_pages, | 
|  | long i, unsigned int flags, int *nonblocking) | 
|  | { | 
|  | unsigned long pfn_offset; | 
|  | unsigned long vaddr = *position; | 
|  | unsigned long remainder = *nr_pages; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | int err = -EFAULT; | 
|  |  | 
|  | while (vaddr < vma->vm_end && remainder) { | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl = NULL; | 
|  | int absent; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * If we have a pending SIGKILL, don't keep faulting pages and | 
|  | * potentially allocating memory. | 
|  | */ | 
|  | if (unlikely(fatal_signal_pending(current))) { | 
|  | remainder = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some archs (sparc64, sh*) have multiple pte_ts to | 
|  | * each hugepage.  We have to make sure we get the | 
|  | * first, for the page indexing below to work. | 
|  | * | 
|  | * Note that page table lock is not held when pte is null. | 
|  | */ | 
|  | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), | 
|  | huge_page_size(h)); | 
|  | if (pte) | 
|  | ptl = huge_pte_lock(h, mm, pte); | 
|  | absent = !pte || huge_pte_none(huge_ptep_get(pte)); | 
|  |  | 
|  | /* | 
|  | * When coredumping, it suits get_dump_page if we just return | 
|  | * an error where there's an empty slot with no huge pagecache | 
|  | * to back it.  This way, we avoid allocating a hugepage, and | 
|  | * the sparse dumpfile avoids allocating disk blocks, but its | 
|  | * huge holes still show up with zeroes where they need to be. | 
|  | */ | 
|  | if (absent && (flags & FOLL_DUMP) && | 
|  | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | 
|  | if (pte) | 
|  | spin_unlock(ptl); | 
|  | remainder = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need call hugetlb_fault for both hugepages under migration | 
|  | * (in which case hugetlb_fault waits for the migration,) and | 
|  | * hwpoisoned hugepages (in which case we need to prevent the | 
|  | * caller from accessing to them.) In order to do this, we use | 
|  | * here is_swap_pte instead of is_hugetlb_entry_migration and | 
|  | * is_hugetlb_entry_hwpoisoned. This is because it simply covers | 
|  | * both cases, and because we can't follow correct pages | 
|  | * directly from any kind of swap entries. | 
|  | */ | 
|  | if (absent || is_swap_pte(huge_ptep_get(pte)) || | 
|  | ((flags & FOLL_WRITE) && | 
|  | !huge_pte_write(huge_ptep_get(pte)))) { | 
|  | int ret; | 
|  | unsigned int fault_flags = 0; | 
|  |  | 
|  | if (pte) | 
|  | spin_unlock(ptl); | 
|  | if (flags & FOLL_WRITE) | 
|  | fault_flags |= FAULT_FLAG_WRITE; | 
|  | if (nonblocking) | 
|  | fault_flags |= FAULT_FLAG_ALLOW_RETRY; | 
|  | if (flags & FOLL_NOWAIT) | 
|  | fault_flags |= FAULT_FLAG_ALLOW_RETRY | | 
|  | FAULT_FLAG_RETRY_NOWAIT; | 
|  | if (flags & FOLL_TRIED) { | 
|  | VM_WARN_ON_ONCE(fault_flags & | 
|  | FAULT_FLAG_ALLOW_RETRY); | 
|  | fault_flags |= FAULT_FLAG_TRIED; | 
|  | } | 
|  | ret = hugetlb_fault(mm, vma, vaddr, fault_flags); | 
|  | if (ret & VM_FAULT_ERROR) { | 
|  | err = vm_fault_to_errno(ret, flags); | 
|  | remainder = 0; | 
|  | break; | 
|  | } | 
|  | if (ret & VM_FAULT_RETRY) { | 
|  | if (nonblocking) | 
|  | *nonblocking = 0; | 
|  | *nr_pages = 0; | 
|  | /* | 
|  | * VM_FAULT_RETRY must not return an | 
|  | * error, it will return zero | 
|  | * instead. | 
|  | * | 
|  | * No need to update "position" as the | 
|  | * caller will not check it after | 
|  | * *nr_pages is set to 0. | 
|  | */ | 
|  | return i; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; | 
|  | page = pte_page(huge_ptep_get(pte)); | 
|  | same_page: | 
|  | if (pages) { | 
|  | pages[i] = mem_map_offset(page, pfn_offset); | 
|  | get_page(pages[i]); | 
|  | } | 
|  |  | 
|  | if (vmas) | 
|  | vmas[i] = vma; | 
|  |  | 
|  | vaddr += PAGE_SIZE; | 
|  | ++pfn_offset; | 
|  | --remainder; | 
|  | ++i; | 
|  | if (vaddr < vma->vm_end && remainder && | 
|  | pfn_offset < pages_per_huge_page(h)) { | 
|  | /* | 
|  | * We use pfn_offset to avoid touching the pageframes | 
|  | * of this compound page. | 
|  | */ | 
|  | goto same_page; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | *nr_pages = remainder; | 
|  | /* | 
|  | * setting position is actually required only if remainder is | 
|  | * not zero but it's faster not to add a "if (remainder)" | 
|  | * branch. | 
|  | */ | 
|  | *position = vaddr; | 
|  |  | 
|  | return i ? i : err; | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE | 
|  | /* | 
|  | * ARCHes with special requirements for evicting HUGETLB backing TLB entries can | 
|  | * implement this. | 
|  | */ | 
|  | #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end) | 
|  | #endif | 
|  |  | 
|  | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned long end, pgprot_t newprot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long start = address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long pages = 0; | 
|  |  | 
|  | BUG_ON(address >= end); | 
|  | flush_cache_range(vma, address, end); | 
|  |  | 
|  | mmu_notifier_invalidate_range_start(mm, start, end); | 
|  | i_mmap_lock_write(vma->vm_file->f_mapping); | 
|  | for (; address < end; address += huge_page_size(h)) { | 
|  | spinlock_t *ptl; | 
|  | ptep = huge_pte_offset(mm, address, huge_page_size(h)); | 
|  | if (!ptep) | 
|  | continue; | 
|  | ptl = huge_pte_lock(h, mm, ptep); | 
|  | if (huge_pmd_unshare(mm, &address, ptep)) { | 
|  | pages++; | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  | pte = huge_ptep_get(ptep); | 
|  | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  | if (unlikely(is_hugetlb_entry_migration(pte))) { | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | if (is_write_migration_entry(entry)) { | 
|  | pte_t newpte; | 
|  |  | 
|  | make_migration_entry_read(&entry); | 
|  | newpte = swp_entry_to_pte(entry); | 
|  | set_huge_swap_pte_at(mm, address, ptep, | 
|  | newpte, huge_page_size(h)); | 
|  | pages++; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | continue; | 
|  | } | 
|  | if (!huge_pte_none(pte)) { | 
|  | pte = huge_ptep_get_and_clear(mm, address, ptep); | 
|  | pte = pte_mkhuge(huge_pte_modify(pte, newprot)); | 
|  | pte = arch_make_huge_pte(pte, vma, NULL, 0); | 
|  | set_huge_pte_at(mm, address, ptep, pte); | 
|  | pages++; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | /* | 
|  | * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare | 
|  | * may have cleared our pud entry and done put_page on the page table: | 
|  | * once we release i_mmap_rwsem, another task can do the final put_page | 
|  | * and that page table be reused and filled with junk. | 
|  | */ | 
|  | flush_hugetlb_tlb_range(vma, start, end); | 
|  | /* | 
|  | * No need to call mmu_notifier_invalidate_range() we are downgrading | 
|  | * page table protection not changing it to point to a new page. | 
|  | * | 
|  | * See Documentation/vm/mmu_notifier.txt | 
|  | */ | 
|  | i_mmap_unlock_write(vma->vm_file->f_mapping); | 
|  | mmu_notifier_invalidate_range_end(mm, start, end); | 
|  |  | 
|  | return pages << h->order; | 
|  | } | 
|  |  | 
|  | int hugetlb_reserve_pages(struct inode *inode, | 
|  | long from, long to, | 
|  | struct vm_area_struct *vma, | 
|  | vm_flags_t vm_flags) | 
|  | { | 
|  | long ret, chg; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct hugepage_subpool *spool = subpool_inode(inode); | 
|  | struct resv_map *resv_map; | 
|  | long gbl_reserve; | 
|  |  | 
|  | /* | 
|  | * Only apply hugepage reservation if asked. At fault time, an | 
|  | * attempt will be made for VM_NORESERVE to allocate a page | 
|  | * without using reserves | 
|  | */ | 
|  | if (vm_flags & VM_NORESERVE) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Shared mappings base their reservation on the number of pages that | 
|  | * are already allocated on behalf of the file. Private mappings need | 
|  | * to reserve the full area even if read-only as mprotect() may be | 
|  | * called to make the mapping read-write. Assume !vma is a shm mapping | 
|  | */ | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
|  | resv_map = inode_resv_map(inode); | 
|  |  | 
|  | chg = region_chg(resv_map, from, to); | 
|  |  | 
|  | } else { | 
|  | resv_map = resv_map_alloc(); | 
|  | if (!resv_map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | chg = to - from; | 
|  |  | 
|  | set_vma_resv_map(vma, resv_map); | 
|  | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | 
|  | } | 
|  |  | 
|  | if (chg < 0) { | 
|  | ret = chg; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There must be enough pages in the subpool for the mapping. If | 
|  | * the subpool has a minimum size, there may be some global | 
|  | * reservations already in place (gbl_reserve). | 
|  | */ | 
|  | gbl_reserve = hugepage_subpool_get_pages(spool, chg); | 
|  | if (gbl_reserve < 0) { | 
|  | ret = -ENOSPC; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check enough hugepages are available for the reservation. | 
|  | * Hand the pages back to the subpool if there are not | 
|  | */ | 
|  | ret = hugetlb_acct_memory(h, gbl_reserve); | 
|  | if (ret < 0) { | 
|  | /* put back original number of pages, chg */ | 
|  | (void)hugepage_subpool_put_pages(spool, chg); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for the reservations made. Shared mappings record regions | 
|  | * that have reservations as they are shared by multiple VMAs. | 
|  | * When the last VMA disappears, the region map says how much | 
|  | * the reservation was and the page cache tells how much of | 
|  | * the reservation was consumed. Private mappings are per-VMA and | 
|  | * only the consumed reservations are tracked. When the VMA | 
|  | * disappears, the original reservation is the VMA size and the | 
|  | * consumed reservations are stored in the map. Hence, nothing | 
|  | * else has to be done for private mappings here | 
|  | */ | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
|  | long add = region_add(resv_map, from, to); | 
|  |  | 
|  | if (unlikely(chg > add)) { | 
|  | /* | 
|  | * pages in this range were added to the reserve | 
|  | * map between region_chg and region_add.  This | 
|  | * indicates a race with alloc_huge_page.  Adjust | 
|  | * the subpool and reserve counts modified above | 
|  | * based on the difference. | 
|  | */ | 
|  | long rsv_adjust; | 
|  |  | 
|  | rsv_adjust = hugepage_subpool_put_pages(spool, | 
|  | chg - add); | 
|  | hugetlb_acct_memory(h, -rsv_adjust); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | out_err: | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) | 
|  | /* Don't call region_abort if region_chg failed */ | 
|  | if (chg >= 0) | 
|  | region_abort(resv_map, from, to); | 
|  | if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
|  | kref_put(&resv_map->refs, resv_map_release); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | long hugetlb_unreserve_pages(struct inode *inode, long start, long end, | 
|  | long freed) | 
|  | { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | struct resv_map *resv_map = inode_resv_map(inode); | 
|  | long chg = 0; | 
|  | struct hugepage_subpool *spool = subpool_inode(inode); | 
|  | long gbl_reserve; | 
|  |  | 
|  | if (resv_map) { | 
|  | chg = region_del(resv_map, start, end); | 
|  | /* | 
|  | * region_del() can fail in the rare case where a region | 
|  | * must be split and another region descriptor can not be | 
|  | * allocated.  If end == LONG_MAX, it will not fail. | 
|  | */ | 
|  | if (chg < 0) | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_blocks -= (blocks_per_huge_page(h) * freed); | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | /* | 
|  | * If the subpool has a minimum size, the number of global | 
|  | * reservations to be released may be adjusted. | 
|  | */ | 
|  | gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); | 
|  | hugetlb_acct_memory(h, -gbl_reserve); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE | 
|  | static unsigned long page_table_shareable(struct vm_area_struct *svma, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr, pgoff_t idx) | 
|  | { | 
|  | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | 
|  | svma->vm_start; | 
|  | unsigned long sbase = saddr & PUD_MASK; | 
|  | unsigned long s_end = sbase + PUD_SIZE; | 
|  |  | 
|  | /* Allow segments to share if only one is marked locked */ | 
|  | unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
|  | unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
|  |  | 
|  | /* | 
|  | * match the virtual addresses, permission and the alignment of the | 
|  | * page table page. | 
|  | */ | 
|  | if (pmd_index(addr) != pmd_index(saddr) || | 
|  | vm_flags != svm_flags || | 
|  | sbase < svma->vm_start || svma->vm_end < s_end) | 
|  | return 0; | 
|  |  | 
|  | return saddr; | 
|  | } | 
|  |  | 
|  | static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | unsigned long base = addr & PUD_MASK; | 
|  | unsigned long end = base + PUD_SIZE; | 
|  |  | 
|  | /* | 
|  | * check on proper vm_flags and page table alignment | 
|  | */ | 
|  | if (vma->vm_flags & VM_MAYSHARE && | 
|  | vma->vm_start <= base && end <= vma->vm_end) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | 
|  | * and returns the corresponding pte. While this is not necessary for the | 
|  | * !shared pmd case because we can allocate the pmd later as well, it makes the | 
|  | * code much cleaner. pmd allocation is essential for the shared case because | 
|  | * pud has to be populated inside the same i_mmap_rwsem section - otherwise | 
|  | * racing tasks could either miss the sharing (see huge_pte_offset) or select a | 
|  | * bad pmd for sharing. | 
|  | */ | 
|  | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | 
|  | { | 
|  | struct vm_area_struct *vma = find_vma(mm, addr); | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | 
|  | vma->vm_pgoff; | 
|  | struct vm_area_struct *svma; | 
|  | unsigned long saddr; | 
|  | pte_t *spte = NULL; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (!vma_shareable(vma, addr)) | 
|  | return (pte_t *)pmd_alloc(mm, pud, addr); | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { | 
|  | if (svma == vma) | 
|  | continue; | 
|  |  | 
|  | saddr = page_table_shareable(svma, vma, addr, idx); | 
|  | if (saddr) { | 
|  | spte = huge_pte_offset(svma->vm_mm, saddr, | 
|  | vma_mmu_pagesize(svma)); | 
|  | if (spte) { | 
|  | get_page(virt_to_page(spte)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!spte) | 
|  | goto out; | 
|  |  | 
|  | ptl = huge_pte_lock(hstate_vma(vma), mm, spte); | 
|  | if (pud_none(*pud)) { | 
|  | pud_populate(mm, pud, | 
|  | (pmd_t *)((unsigned long)spte & PAGE_MASK)); | 
|  | mm_inc_nr_pmds(mm); | 
|  | } else { | 
|  | put_page(virt_to_page(spte)); | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | out: | 
|  | pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
|  | i_mmap_unlock_write(mapping); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unmap huge page backed by shared pte. | 
|  | * | 
|  | * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared | 
|  | * indicated by page_count > 1, unmap is achieved by clearing pud and | 
|  | * decrementing the ref count. If count == 1, the pte page is not shared. | 
|  | * | 
|  | * called with page table lock held. | 
|  | * | 
|  | * returns: 1 successfully unmapped a shared pte page | 
|  | *	    0 the underlying pte page is not shared, or it is the last user | 
|  | */ | 
|  | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset(mm, *addr); | 
|  | p4d_t *p4d = p4d_offset(pgd, *addr); | 
|  | pud_t *pud = pud_offset(p4d, *addr); | 
|  |  | 
|  | BUG_ON(page_count(virt_to_page(ptep)) == 0); | 
|  | if (page_count(virt_to_page(ptep)) == 1) | 
|  | return 0; | 
|  |  | 
|  | pud_clear(pud); | 
|  | put_page(virt_to_page(ptep)); | 
|  | mm_dec_nr_pmds(mm); | 
|  | *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; | 
|  | return 1; | 
|  | } | 
|  | #define want_pmd_share()	(1) | 
|  | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | 
|  | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #define want_pmd_share()	(0) | 
|  | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB | 
|  | pte_t *huge_pte_alloc(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long sz) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pte_t *pte = NULL; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | p4d = p4d_alloc(mm, pgd, addr); | 
|  | if (!p4d) | 
|  | return NULL; | 
|  | pud = pud_alloc(mm, p4d, addr); | 
|  | if (pud) { | 
|  | if (sz == PUD_SIZE) { | 
|  | pte = (pte_t *)pud; | 
|  | } else { | 
|  | BUG_ON(sz != PMD_SIZE); | 
|  | if (want_pmd_share() && pud_none(*pud)) | 
|  | pte = huge_pmd_share(mm, addr, pud); | 
|  | else | 
|  | pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
|  | } | 
|  | } | 
|  | BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * huge_pte_offset() - Walk the page table to resolve the hugepage | 
|  | * entry at address @addr | 
|  | * | 
|  | * Return: Pointer to page table or swap entry (PUD or PMD) for | 
|  | * address @addr, or NULL if a p*d_none() entry is encountered and the | 
|  | * size @sz doesn't match the hugepage size at this level of the page | 
|  | * table. | 
|  | */ | 
|  | pte_t *huge_pte_offset(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long sz) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | if (!pgd_present(*pgd)) | 
|  | return NULL; | 
|  | p4d = p4d_offset(pgd, addr); | 
|  | if (!p4d_present(*p4d)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(p4d, addr); | 
|  | if (sz != PUD_SIZE && pud_none(*pud)) | 
|  | return NULL; | 
|  | /* hugepage or swap? */ | 
|  | if (pud_huge(*pud) || !pud_present(*pud)) | 
|  | return (pte_t *)pud; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (sz != PMD_SIZE && pmd_none(*pmd)) | 
|  | return NULL; | 
|  | /* hugepage or swap? */ | 
|  | if (pmd_huge(*pmd) || !pmd_present(*pmd)) | 
|  | return (pte_t *)pmd; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ | 
|  |  | 
|  | /* | 
|  | * These functions are overwritable if your architecture needs its own | 
|  | * behavior. | 
|  | */ | 
|  | struct page * __weak | 
|  | follow_huge_addr(struct mm_struct *mm, unsigned long address, | 
|  | int write) | 
|  | { | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | struct page * __weak | 
|  | follow_huge_pd(struct vm_area_struct *vma, | 
|  | unsigned long address, hugepd_t hpd, int flags, int pdshift) | 
|  | { | 
|  | WARN(1, "hugepd follow called with no support for hugepage directory format\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct page * __weak | 
|  | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
|  | pmd_t *pmd, int flags) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | spinlock_t *ptl; | 
|  | pte_t pte; | 
|  | retry: | 
|  | ptl = pmd_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | /* | 
|  | * make sure that the address range covered by this pmd is not | 
|  | * unmapped from other threads. | 
|  | */ | 
|  | if (!pmd_huge(*pmd)) | 
|  | goto out; | 
|  | pte = huge_ptep_get((pte_t *)pmd); | 
|  | if (pte_present(pte)) { | 
|  | page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); | 
|  | if (flags & FOLL_GET) | 
|  | get_page(page); | 
|  | } else { | 
|  | if (is_hugetlb_entry_migration(pte)) { | 
|  | spin_unlock(ptl); | 
|  | __migration_entry_wait(mm, (pte_t *)pmd, ptl); | 
|  | goto retry; | 
|  | } | 
|  | /* | 
|  | * hwpoisoned entry is treated as no_page_table in | 
|  | * follow_page_mask(). | 
|  | */ | 
|  | } | 
|  | out: | 
|  | spin_unlock(ptl); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | struct page * __weak | 
|  | follow_huge_pud(struct mm_struct *mm, unsigned long address, | 
|  | pud_t *pud, int flags) | 
|  | { | 
|  | if (flags & FOLL_GET) | 
|  | return NULL; | 
|  |  | 
|  | return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | struct page * __weak | 
|  | follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) | 
|  | { | 
|  | if (flags & FOLL_GET) | 
|  | return NULL; | 
|  |  | 
|  | return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | bool isolate_huge_page(struct page *page, struct list_head *list) | 
|  | { | 
|  | bool ret = true; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageHead(page), page); | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (!page_huge_active(page) || !get_page_unless_zero(page)) { | 
|  | ret = false; | 
|  | goto unlock; | 
|  | } | 
|  | clear_page_huge_active(page); | 
|  | list_move_tail(&page->lru, list); | 
|  | unlock: | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void putback_active_hugepage(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!PageHead(page), page); | 
|  | spin_lock(&hugetlb_lock); | 
|  | set_page_huge_active(page); | 
|  | list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); | 
|  | spin_unlock(&hugetlb_lock); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) | 
|  | { | 
|  | struct hstate *h = page_hstate(oldpage); | 
|  |  | 
|  | hugetlb_cgroup_migrate(oldpage, newpage); | 
|  | set_page_owner_migrate_reason(newpage, reason); | 
|  |  | 
|  | /* | 
|  | * transfer temporary state of the new huge page. This is | 
|  | * reverse to other transitions because the newpage is going to | 
|  | * be final while the old one will be freed so it takes over | 
|  | * the temporary status. | 
|  | * | 
|  | * Also note that we have to transfer the per-node surplus state | 
|  | * here as well otherwise the global surplus count will not match | 
|  | * the per-node's. | 
|  | */ | 
|  | if (PageHugeTemporary(newpage)) { | 
|  | int old_nid = page_to_nid(oldpage); | 
|  | int new_nid = page_to_nid(newpage); | 
|  |  | 
|  | SetPageHugeTemporary(oldpage); | 
|  | ClearPageHugeTemporary(newpage); | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (h->surplus_huge_pages_node[old_nid]) { | 
|  | h->surplus_huge_pages_node[old_nid]--; | 
|  | h->surplus_huge_pages_node[new_nid]++; | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  | } | 
|  | } |