| /* |
| * Aic94xx SAS/SATA driver hardware interface. |
| * |
| * Copyright (C) 2005 Adaptec, Inc. All rights reserved. |
| * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> |
| * |
| * This file is licensed under GPLv2. |
| * |
| * This file is part of the aic94xx driver. |
| * |
| * The aic94xx driver is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; version 2 of the |
| * License. |
| * |
| * The aic94xx driver is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with the aic94xx driver; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| |
| #include "aic94xx.h" |
| #include "aic94xx_reg.h" |
| #include "aic94xx_hwi.h" |
| #include "aic94xx_seq.h" |
| #include "aic94xx_dump.h" |
| |
| u32 MBAR0_SWB_SIZE; |
| |
| /* ---------- Initialization ---------- */ |
| |
| static void asd_get_user_sas_addr(struct asd_ha_struct *asd_ha) |
| { |
| extern char sas_addr_str[]; |
| /* If the user has specified a WWN it overrides other settings |
| */ |
| if (sas_addr_str[0] != '\0') |
| asd_destringify_sas_addr(asd_ha->hw_prof.sas_addr, |
| sas_addr_str); |
| else if (asd_ha->hw_prof.sas_addr[0] != 0) |
| asd_stringify_sas_addr(sas_addr_str, asd_ha->hw_prof.sas_addr); |
| } |
| |
| static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha) |
| { |
| int i; |
| |
| for (i = 0; i < ASD_MAX_PHYS; i++) { |
| if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0) |
| continue; |
| /* Set a phy's address only if it has none. |
| */ |
| ASD_DPRINTK("setting phy%d addr to %llx\n", i, |
| SAS_ADDR(asd_ha->hw_prof.sas_addr)); |
| memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, |
| asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE); |
| } |
| } |
| |
| /* ---------- PHY initialization ---------- */ |
| |
| static void asd_init_phy_identify(struct asd_phy *phy) |
| { |
| phy->identify_frame = phy->id_frm_tok->vaddr; |
| |
| memset(phy->identify_frame, 0, sizeof(*phy->identify_frame)); |
| |
| phy->identify_frame->dev_type = SAS_END_DEV; |
| if (phy->sas_phy.role & PHY_ROLE_INITIATOR) |
| phy->identify_frame->initiator_bits = phy->sas_phy.iproto; |
| if (phy->sas_phy.role & PHY_ROLE_TARGET) |
| phy->identify_frame->target_bits = phy->sas_phy.tproto; |
| memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr, |
| SAS_ADDR_SIZE); |
| phy->identify_frame->phy_id = phy->sas_phy.id; |
| } |
| |
| static int asd_init_phy(struct asd_phy *phy) |
| { |
| struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha; |
| struct asd_sas_phy *sas_phy = &phy->sas_phy; |
| |
| sas_phy->enabled = 1; |
| sas_phy->class = SAS; |
| sas_phy->iproto = SAS_PROTO_ALL; |
| sas_phy->tproto = 0; |
| sas_phy->type = PHY_TYPE_PHYSICAL; |
| sas_phy->role = PHY_ROLE_INITIATOR; |
| sas_phy->oob_mode = OOB_NOT_CONNECTED; |
| sas_phy->linkrate = PHY_LINKRATE_NONE; |
| |
| phy->id_frm_tok = asd_alloc_coherent(asd_ha, |
| sizeof(*phy->identify_frame), |
| GFP_KERNEL); |
| if (!phy->id_frm_tok) { |
| asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id); |
| return -ENOMEM; |
| } else |
| asd_init_phy_identify(phy); |
| |
| memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd)); |
| |
| return 0; |
| } |
| |
| static int asd_init_phys(struct asd_ha_struct *asd_ha) |
| { |
| u8 i; |
| u8 phy_mask = asd_ha->hw_prof.enabled_phys; |
| |
| for (i = 0; i < ASD_MAX_PHYS; i++) { |
| struct asd_phy *phy = &asd_ha->phys[i]; |
| |
| phy->phy_desc = &asd_ha->hw_prof.phy_desc[i]; |
| |
| phy->sas_phy.enabled = 0; |
| phy->sas_phy.id = i; |
| phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0]; |
| phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0]; |
| phy->sas_phy.ha = &asd_ha->sas_ha; |
| phy->sas_phy.lldd_phy = phy; |
| } |
| |
| /* Now enable and initialize only the enabled phys. */ |
| for_each_phy(phy_mask, phy_mask, i) { |
| int err = asd_init_phy(&asd_ha->phys[i]); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* ---------- Sliding windows ---------- */ |
| |
| static int asd_init_sw(struct asd_ha_struct *asd_ha) |
| { |
| struct pci_dev *pcidev = asd_ha->pcidev; |
| int err; |
| u32 v; |
| |
| /* Unlock MBARs */ |
| err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v); |
| if (err) { |
| asd_printk("couldn't access conf. space of %s\n", |
| pci_name(pcidev)); |
| goto Err; |
| } |
| if (v) |
| err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v); |
| if (err) { |
| asd_printk("couldn't write to MBAR_KEY of %s\n", |
| pci_name(pcidev)); |
| goto Err; |
| } |
| |
| /* Set sliding windows A, B and C to point to proper internal |
| * memory regions. |
| */ |
| pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR); |
| pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB, |
| REG_BASE_ADDR_CSEQCIO); |
| pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI); |
| asd_ha->io_handle[0].swa_base = REG_BASE_ADDR; |
| asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO; |
| asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI; |
| MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80; |
| if (!asd_ha->iospace) { |
| /* MBAR1 will point to OCM (On Chip Memory) */ |
| pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR); |
| asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR; |
| } |
| spin_lock_init(&asd_ha->iolock); |
| Err: |
| return err; |
| } |
| |
| /* ---------- SCB initialization ---------- */ |
| |
| /** |
| * asd_init_scbs - manually allocate the first SCB. |
| * @asd_ha: pointer to host adapter structure |
| * |
| * This allocates the very first SCB which would be sent to the |
| * sequencer for execution. Its bus address is written to |
| * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of |
| * the _next_ scb to be DMA-ed to the host adapter is read from the last |
| * SCB DMA-ed to the host adapter, we have to always stay one step |
| * ahead of the sequencer and keep one SCB already allocated. |
| */ |
| static int asd_init_scbs(struct asd_ha_struct *asd_ha) |
| { |
| struct asd_seq_data *seq = &asd_ha->seq; |
| int bitmap_bytes; |
| |
| /* allocate the index array and bitmap */ |
| asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs; |
| asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits* |
| sizeof(void *), GFP_KERNEL); |
| if (!asd_ha->seq.tc_index_array) |
| return -ENOMEM; |
| |
| bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8; |
| bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); |
| asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); |
| if (!asd_ha->seq.tc_index_bitmap) |
| return -ENOMEM; |
| |
| spin_lock_init(&seq->tc_index_lock); |
| |
| seq->next_scb.size = sizeof(struct scb); |
| seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL, |
| &seq->next_scb.dma_handle); |
| if (!seq->next_scb.vaddr) { |
| kfree(asd_ha->seq.tc_index_bitmap); |
| kfree(asd_ha->seq.tc_index_array); |
| asd_ha->seq.tc_index_bitmap = NULL; |
| asd_ha->seq.tc_index_array = NULL; |
| return -ENOMEM; |
| } |
| |
| seq->pending = 0; |
| spin_lock_init(&seq->pend_q_lock); |
| INIT_LIST_HEAD(&seq->pend_q); |
| |
| return 0; |
| } |
| |
| static inline void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha) |
| { |
| asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE; |
| asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE; |
| ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n", |
| asd_ha->hw_prof.max_scbs, |
| asd_ha->hw_prof.max_ddbs); |
| } |
| |
| /* ---------- Done List initialization ---------- */ |
| |
| static void asd_dl_tasklet_handler(unsigned long); |
| |
| static int asd_init_dl(struct asd_ha_struct *asd_ha) |
| { |
| asd_ha->seq.actual_dl |
| = asd_alloc_coherent(asd_ha, |
| ASD_DL_SIZE * sizeof(struct done_list_struct), |
| GFP_KERNEL); |
| if (!asd_ha->seq.actual_dl) |
| return -ENOMEM; |
| asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr; |
| asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE; |
| asd_ha->seq.dl_next = 0; |
| tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler, |
| (unsigned long) asd_ha); |
| |
| return 0; |
| } |
| |
| /* ---------- EDB and ESCB init ---------- */ |
| |
| static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, unsigned int gfp_flags) |
| { |
| struct asd_seq_data *seq = &asd_ha->seq; |
| int i; |
| |
| seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags); |
| if (!seq->edb_arr) |
| return -ENOMEM; |
| |
| for (i = 0; i < seq->num_edbs; i++) { |
| seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE, |
| gfp_flags); |
| if (!seq->edb_arr[i]) |
| goto Err_unroll; |
| memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE); |
| } |
| |
| ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs); |
| |
| return 0; |
| |
| Err_unroll: |
| for (i-- ; i >= 0; i--) |
| asd_free_coherent(asd_ha, seq->edb_arr[i]); |
| kfree(seq->edb_arr); |
| seq->edb_arr = NULL; |
| |
| return -ENOMEM; |
| } |
| |
| static int asd_alloc_escbs(struct asd_ha_struct *asd_ha, |
| unsigned int gfp_flags) |
| { |
| struct asd_seq_data *seq = &asd_ha->seq; |
| struct asd_ascb *escb; |
| int i, escbs; |
| |
| seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr), |
| gfp_flags); |
| if (!seq->escb_arr) |
| return -ENOMEM; |
| |
| escbs = seq->num_escbs; |
| escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags); |
| if (!escb) { |
| asd_printk("couldn't allocate list of escbs\n"); |
| goto Err; |
| } |
| seq->num_escbs -= escbs; /* subtract what was not allocated */ |
| ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs); |
| |
| for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next, |
| struct asd_ascb, |
| list)) { |
| seq->escb_arr[i] = escb; |
| escb->scb->header.opcode = EMPTY_SCB; |
| } |
| |
| return 0; |
| Err: |
| kfree(seq->escb_arr); |
| seq->escb_arr = NULL; |
| return -ENOMEM; |
| |
| } |
| |
| static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha) |
| { |
| struct asd_seq_data *seq = &asd_ha->seq; |
| int i, k, z = 0; |
| |
| for (i = 0; i < seq->num_escbs; i++) { |
| struct asd_ascb *ascb = seq->escb_arr[i]; |
| struct empty_scb *escb = &ascb->scb->escb; |
| |
| ascb->edb_index = z; |
| |
| escb->num_valid = ASD_EDBS_PER_SCB; |
| |
| for (k = 0; k < ASD_EDBS_PER_SCB; k++) { |
| struct sg_el *eb = &escb->eb[k]; |
| struct asd_dma_tok *edb = seq->edb_arr[z++]; |
| |
| memset(eb, 0, sizeof(*eb)); |
| eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle)); |
| eb->size = cpu_to_le32(((u32) edb->size)); |
| } |
| } |
| } |
| |
| /** |
| * asd_init_escbs -- allocate and initialize empty scbs |
| * @asd_ha: pointer to host adapter structure |
| * |
| * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers. |
| * They transport sense data, etc. |
| */ |
| static int asd_init_escbs(struct asd_ha_struct *asd_ha) |
| { |
| struct asd_seq_data *seq = &asd_ha->seq; |
| int err = 0; |
| |
| /* Allocate two empty data buffers (edb) per sequencer. */ |
| int edbs = 2*(1+asd_ha->hw_prof.num_phys); |
| |
| seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB; |
| seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB; |
| |
| err = asd_alloc_edbs(asd_ha, GFP_KERNEL); |
| if (err) { |
| asd_printk("couldn't allocate edbs\n"); |
| return err; |
| } |
| |
| err = asd_alloc_escbs(asd_ha, GFP_KERNEL); |
| if (err) { |
| asd_printk("couldn't allocate escbs\n"); |
| return err; |
| } |
| |
| asd_assign_edbs2escbs(asd_ha); |
| /* In order to insure that normal SCBs do not overfill sequencer |
| * memory and leave no space for escbs (halting condition), |
| * we increment pending here by the number of escbs. However, |
| * escbs are never pending. |
| */ |
| seq->pending = seq->num_escbs; |
| seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2; |
| |
| return 0; |
| } |
| |
| /* ---------- HW initialization ---------- */ |
| |
| /** |
| * asd_chip_hardrst -- hard reset the chip |
| * @asd_ha: pointer to host adapter structure |
| * |
| * This takes 16 cycles and is synchronous to CFCLK, which runs |
| * at 200 MHz, so this should take at most 80 nanoseconds. |
| */ |
| int asd_chip_hardrst(struct asd_ha_struct *asd_ha) |
| { |
| int i; |
| int count = 100; |
| u32 reg; |
| |
| for (i = 0 ; i < 4 ; i++) { |
| asd_write_reg_dword(asd_ha, COMBIST, HARDRST); |
| } |
| |
| do { |
| udelay(1); |
| reg = asd_read_reg_dword(asd_ha, CHIMINT); |
| if (reg & HARDRSTDET) { |
| asd_write_reg_dword(asd_ha, CHIMINT, |
| HARDRSTDET|PORRSTDET); |
| return 0; |
| } |
| } while (--count > 0); |
| |
| return -ENODEV; |
| } |
| |
| /** |
| * asd_init_chip -- initialize the chip |
| * @asd_ha: pointer to host adapter structure |
| * |
| * Hard resets the chip, disables HA interrupts, downloads the sequnecer |
| * microcode and starts the sequencers. The caller has to explicitly |
| * enable HA interrupts with asd_enable_ints(asd_ha). |
| */ |
| static int asd_init_chip(struct asd_ha_struct *asd_ha) |
| { |
| int err; |
| |
| err = asd_chip_hardrst(asd_ha); |
| if (err) { |
| asd_printk("couldn't hard reset %s\n", |
| pci_name(asd_ha->pcidev)); |
| goto out; |
| } |
| |
| asd_disable_ints(asd_ha); |
| |
| err = asd_init_seqs(asd_ha); |
| if (err) { |
| asd_printk("couldn't init seqs for %s\n", |
| pci_name(asd_ha->pcidev)); |
| goto out; |
| } |
| |
| err = asd_start_seqs(asd_ha); |
| if (err) { |
| asd_printk("coudln't start seqs for %s\n", |
| pci_name(asd_ha->pcidev)); |
| goto out; |
| } |
| out: |
| return err; |
| } |
| |
| #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE)) |
| |
| static int max_devs = 0; |
| module_param_named(max_devs, max_devs, int, S_IRUGO); |
| MODULE_PARM_DESC(max_devs, "\n" |
| "\tMaximum number of SAS devices to support (not LUs).\n" |
| "\tDefault: 2176, Maximum: 65663.\n"); |
| |
| static int max_cmnds = 0; |
| module_param_named(max_cmnds, max_cmnds, int, S_IRUGO); |
| MODULE_PARM_DESC(max_cmnds, "\n" |
| "\tMaximum number of commands queuable.\n" |
| "\tDefault: 512, Maximum: 66047.\n"); |
| |
| static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha) |
| { |
| unsigned long dma_addr = OCM_BASE_ADDR; |
| u32 d; |
| |
| dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; |
| asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr); |
| d = asd_read_reg_dword(asd_ha, CTXDOMAIN); |
| d |= 4; |
| asd_write_reg_dword(asd_ha, CTXDOMAIN, d); |
| asd_ha->hw_prof.max_ddbs += MAX_DEVS; |
| } |
| |
| static int asd_extend_devctx(struct asd_ha_struct *asd_ha) |
| { |
| dma_addr_t dma_handle; |
| unsigned long dma_addr; |
| u32 d; |
| int size; |
| |
| asd_extend_devctx_ocm(asd_ha); |
| |
| asd_ha->hw_prof.ddb_ext = NULL; |
| if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) { |
| max_devs = asd_ha->hw_prof.max_ddbs; |
| return 0; |
| } |
| |
| size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE; |
| |
| asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); |
| if (!asd_ha->hw_prof.ddb_ext) { |
| asd_printk("couldn't allocate memory for %d devices\n", |
| max_devs); |
| max_devs = asd_ha->hw_prof.max_ddbs; |
| return -ENOMEM; |
| } |
| dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle; |
| dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE); |
| dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; |
| dma_handle = (dma_addr_t) dma_addr; |
| asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle); |
| d = asd_read_reg_dword(asd_ha, CTXDOMAIN); |
| d &= ~4; |
| asd_write_reg_dword(asd_ha, CTXDOMAIN, d); |
| |
| asd_ha->hw_prof.max_ddbs = max_devs; |
| |
| return 0; |
| } |
| |
| static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha) |
| { |
| dma_addr_t dma_handle; |
| unsigned long dma_addr; |
| u32 d; |
| int size; |
| |
| asd_ha->hw_prof.scb_ext = NULL; |
| if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) { |
| max_cmnds = asd_ha->hw_prof.max_scbs; |
| return 0; |
| } |
| |
| size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE; |
| |
| asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); |
| if (!asd_ha->hw_prof.scb_ext) { |
| asd_printk("couldn't allocate memory for %d commands\n", |
| max_cmnds); |
| max_cmnds = asd_ha->hw_prof.max_scbs; |
| return -ENOMEM; |
| } |
| dma_handle = asd_ha->hw_prof.scb_ext->dma_handle; |
| dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE); |
| dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE; |
| dma_handle = (dma_addr_t) dma_addr; |
| asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle); |
| d = asd_read_reg_dword(asd_ha, CTXDOMAIN); |
| d &= ~1; |
| asd_write_reg_dword(asd_ha, CTXDOMAIN, d); |
| |
| asd_ha->hw_prof.max_scbs = max_cmnds; |
| |
| return 0; |
| } |
| |
| /** |
| * asd_init_ctxmem -- initialize context memory |
| * asd_ha: pointer to host adapter structure |
| * |
| * This function sets the maximum number of SCBs and |
| * DDBs which can be used by the sequencer. This is normally |
| * 512 and 128 respectively. If support for more SCBs or more DDBs |
| * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are |
| * initialized here to extend context memory to point to host memory, |
| * thus allowing unlimited support for SCBs and DDBs -- only limited |
| * by host memory. |
| */ |
| static int asd_init_ctxmem(struct asd_ha_struct *asd_ha) |
| { |
| int bitmap_bytes; |
| |
| asd_get_max_scb_ddb(asd_ha); |
| asd_extend_devctx(asd_ha); |
| asd_extend_cmdctx(asd_ha); |
| |
| /* The kernel wants bitmaps to be unsigned long sized. */ |
| bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8; |
| bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); |
| asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); |
| if (!asd_ha->hw_prof.ddb_bitmap) |
| return -ENOMEM; |
| spin_lock_init(&asd_ha->hw_prof.ddb_lock); |
| |
| return 0; |
| } |
| |
| int asd_init_hw(struct asd_ha_struct *asd_ha) |
| { |
| int err; |
| u32 v; |
| |
| err = asd_init_sw(asd_ha); |
| if (err) |
| return err; |
| |
| err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v); |
| if (err) { |
| asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n", |
| pci_name(asd_ha->pcidev)); |
| return err; |
| } |
| pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, |
| v | SC_TMR_DIS); |
| if (err) { |
| asd_printk("couldn't disable split completion timer of %s\n", |
| pci_name(asd_ha->pcidev)); |
| return err; |
| } |
| |
| err = asd_read_ocm(asd_ha); |
| if (err) { |
| asd_printk("couldn't read ocm(%d)\n", err); |
| /* While suspicios, it is not an error that we |
| * couldn't read the OCM. */ |
| } |
| |
| err = asd_read_flash(asd_ha); |
| if (err) { |
| asd_printk("couldn't read flash(%d)\n", err); |
| /* While suspicios, it is not an error that we |
| * couldn't read FLASH memory. |
| */ |
| } |
| |
| asd_init_ctxmem(asd_ha); |
| |
| asd_get_user_sas_addr(asd_ha); |
| if (!asd_ha->hw_prof.sas_addr[0]) { |
| asd_printk("No SAS Address provided for %s\n", |
| pci_name(asd_ha->pcidev)); |
| err = -ENODEV; |
| goto Out; |
| } |
| |
| asd_propagate_sas_addr(asd_ha); |
| |
| err = asd_init_phys(asd_ha); |
| if (err) { |
| asd_printk("couldn't initialize phys for %s\n", |
| pci_name(asd_ha->pcidev)); |
| goto Out; |
| } |
| |
| err = asd_init_scbs(asd_ha); |
| if (err) { |
| asd_printk("couldn't initialize scbs for %s\n", |
| pci_name(asd_ha->pcidev)); |
| goto Out; |
| } |
| |
| err = asd_init_dl(asd_ha); |
| if (err) { |
| asd_printk("couldn't initialize the done list:%d\n", |
| err); |
| goto Out; |
| } |
| |
| err = asd_init_escbs(asd_ha); |
| if (err) { |
| asd_printk("couldn't initialize escbs\n"); |
| goto Out; |
| } |
| |
| err = asd_init_chip(asd_ha); |
| if (err) { |
| asd_printk("couldn't init the chip\n"); |
| goto Out; |
| } |
| Out: |
| return err; |
| } |
| |
| /* ---------- Chip reset ---------- */ |
| |
| /** |
| * asd_chip_reset -- reset the host adapter, etc |
| * @asd_ha: pointer to host adapter structure of interest |
| * |
| * Called from the ISR. Hard reset the chip. Let everything |
| * timeout. This should be no different than hot-unplugging the |
| * host adapter. Once everything times out we'll init the chip with |
| * a call to asd_init_chip() and enable interrupts with asd_enable_ints(). |
| * XXX finish. |
| */ |
| static void asd_chip_reset(struct asd_ha_struct *asd_ha) |
| { |
| struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; |
| |
| ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev)); |
| asd_chip_hardrst(asd_ha); |
| sas_ha->notify_ha_event(sas_ha, HAE_RESET); |
| } |
| |
| /* ---------- Done List Routines ---------- */ |
| |
| static void asd_dl_tasklet_handler(unsigned long data) |
| { |
| struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data; |
| struct asd_seq_data *seq = &asd_ha->seq; |
| unsigned long flags; |
| |
| while (1) { |
| struct done_list_struct *dl = &seq->dl[seq->dl_next]; |
| struct asd_ascb *ascb; |
| |
| if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle) |
| break; |
| |
| /* find the aSCB */ |
| spin_lock_irqsave(&seq->tc_index_lock, flags); |
| ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index)); |
| spin_unlock_irqrestore(&seq->tc_index_lock, flags); |
| if (unlikely(!ascb)) { |
| ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n"); |
| goto next_1; |
| } else if (ascb->scb->header.opcode == EMPTY_SCB) { |
| goto out; |
| } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) { |
| goto next_1; |
| } |
| spin_lock_irqsave(&seq->pend_q_lock, flags); |
| list_del_init(&ascb->list); |
| seq->pending--; |
| spin_unlock_irqrestore(&seq->pend_q_lock, flags); |
| out: |
| ascb->tasklet_complete(ascb, dl); |
| |
| next_1: |
| seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1); |
| if (!seq->dl_next) |
| seq->dl_toggle ^= DL_TOGGLE_MASK; |
| } |
| } |
| |
| /* ---------- Interrupt Service Routines ---------- */ |
| |
| /** |
| * asd_process_donelist_isr -- schedule processing of done list entries |
| * @asd_ha: pointer to host adapter structure |
| */ |
| static inline void asd_process_donelist_isr(struct asd_ha_struct *asd_ha) |
| { |
| tasklet_schedule(&asd_ha->seq.dl_tasklet); |
| } |
| |
| /** |
| * asd_com_sas_isr -- process device communication interrupt (COMINT) |
| * @asd_ha: pointer to host adapter structure |
| */ |
| static inline void asd_com_sas_isr(struct asd_ha_struct *asd_ha) |
| { |
| u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT); |
| |
| /* clear COMSTAT int */ |
| asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF); |
| |
| if (comstat & CSBUFPERR) { |
| asd_printk("%s: command/status buffer dma parity error\n", |
| pci_name(asd_ha->pcidev)); |
| } else if (comstat & CSERR) { |
| int i; |
| u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); |
| dmaerr &= 0xFF; |
| asd_printk("%s: command/status dma error, DMAERR: 0x%02x, " |
| "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n", |
| pci_name(asd_ha->pcidev), |
| dmaerr, |
| asd_read_reg_dword(asd_ha, CSDMAADR), |
| asd_read_reg_dword(asd_ha, CSDMAADR+4)); |
| asd_printk("CSBUFFER:\n"); |
| for (i = 0; i < 8; i++) { |
| asd_printk("%08x %08x %08x %08x\n", |
| asd_read_reg_dword(asd_ha, CSBUFFER), |
| asd_read_reg_dword(asd_ha, CSBUFFER+4), |
| asd_read_reg_dword(asd_ha, CSBUFFER+8), |
| asd_read_reg_dword(asd_ha, CSBUFFER+12)); |
| } |
| asd_dump_seq_state(asd_ha, 0); |
| } else if (comstat & OVLYERR) { |
| u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); |
| dmaerr = (dmaerr >> 8) & 0xFF; |
| asd_printk("%s: overlay dma error:0x%x\n", |
| pci_name(asd_ha->pcidev), |
| dmaerr); |
| } |
| asd_chip_reset(asd_ha); |
| } |
| |
| static inline void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus) |
| { |
| static const char *halt_code[256] = { |
| "UNEXPECTED_INTERRUPT0", |
| "UNEXPECTED_INTERRUPT1", |
| "UNEXPECTED_INTERRUPT2", |
| "UNEXPECTED_INTERRUPT3", |
| "UNEXPECTED_INTERRUPT4", |
| "UNEXPECTED_INTERRUPT5", |
| "UNEXPECTED_INTERRUPT6", |
| "UNEXPECTED_INTERRUPT7", |
| "UNEXPECTED_INTERRUPT8", |
| "UNEXPECTED_INTERRUPT9", |
| "UNEXPECTED_INTERRUPT10", |
| [11 ... 19] = "unknown[11,19]", |
| "NO_FREE_SCB_AVAILABLE", |
| "INVALID_SCB_OPCODE", |
| "INVALID_MBX_OPCODE", |
| "INVALID_ATA_STATE", |
| "ATA_QUEUE_FULL", |
| "ATA_TAG_TABLE_FAULT", |
| "ATA_TAG_MASK_FAULT", |
| "BAD_LINK_QUEUE_STATE", |
| "DMA2CHIM_QUEUE_ERROR", |
| "EMPTY_SCB_LIST_FULL", |
| "unknown[30]", |
| "IN_USE_SCB_ON_FREE_LIST", |
| "BAD_OPEN_WAIT_STATE", |
| "INVALID_STP_AFFILIATION", |
| "unknown[34]", |
| "EXEC_QUEUE_ERROR", |
| "TOO_MANY_EMPTIES_NEEDED", |
| "EMPTY_REQ_QUEUE_ERROR", |
| "Q_MONIRTT_MGMT_ERROR", |
| "TARGET_MODE_FLOW_ERROR", |
| "DEVICE_QUEUE_NOT_FOUND", |
| "START_IRTT_TIMER_ERROR", |
| "ABORT_TASK_ILLEGAL_REQ", |
| [43 ... 255] = "unknown[43,255]" |
| }; |
| |
| if (dchstatus & CSEQINT) { |
| u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT); |
| |
| if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) { |
| asd_printk("%s: CSEQ arp2int:0x%x\n", |
| pci_name(asd_ha->pcidev), |
| arp2int); |
| } else if (arp2int & ARP2HALTC) |
| asd_printk("%s: CSEQ halted: %s\n", |
| pci_name(asd_ha->pcidev), |
| halt_code[(arp2int>>16)&0xFF]); |
| else |
| asd_printk("%s: CARP2INT:0x%x\n", |
| pci_name(asd_ha->pcidev), |
| arp2int); |
| } |
| if (dchstatus & LSEQINT_MASK) { |
| int lseq; |
| u8 lseq_mask = dchstatus & LSEQINT_MASK; |
| |
| for_each_sequencer(lseq_mask, lseq_mask, lseq) { |
| u32 arp2int = asd_read_reg_dword(asd_ha, |
| LmARP2INT(lseq)); |
| if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR |
| | ARP2CIOPERR)) { |
| asd_printk("%s: LSEQ%d arp2int:0x%x\n", |
| pci_name(asd_ha->pcidev), |
| lseq, arp2int); |
| /* XXX we should only do lseq reset */ |
| } else if (arp2int & ARP2HALTC) |
| asd_printk("%s: LSEQ%d halted: %s\n", |
| pci_name(asd_ha->pcidev), |
| lseq,halt_code[(arp2int>>16)&0xFF]); |
| else |
| asd_printk("%s: LSEQ%d ARP2INT:0x%x\n", |
| pci_name(asd_ha->pcidev), lseq, |
| arp2int); |
| } |
| } |
| asd_chip_reset(asd_ha); |
| } |
| |
| /** |
| * asd_dch_sas_isr -- process device channel interrupt (DEVINT) |
| * @asd_ha: pointer to host adapter structure |
| */ |
| static inline void asd_dch_sas_isr(struct asd_ha_struct *asd_ha) |
| { |
| u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS); |
| |
| if (dchstatus & CFIFTOERR) { |
| asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev)); |
| asd_chip_reset(asd_ha); |
| } else |
| asd_arp2_err(asd_ha, dchstatus); |
| } |
| |
| /** |
| * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR) |
| * @asd_ha: pointer to host adapter structure |
| */ |
| static inline void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha) |
| { |
| u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R); |
| |
| if (!(stat0r & ASIERR)) { |
| asd_printk("hmm, EXSI interrupted but no error?\n"); |
| return; |
| } |
| |
| if (stat0r & ASIFMTERR) { |
| asd_printk("ASI SEEPROM format error for %s\n", |
| pci_name(asd_ha->pcidev)); |
| } else if (stat0r & ASISEECHKERR) { |
| u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R); |
| asd_printk("ASI SEEPROM checksum 0x%x error for %s\n", |
| stat1r & CHECKSUM_MASK, |
| pci_name(asd_ha->pcidev)); |
| } else { |
| u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR); |
| |
| if (!(statr & CPI2ASIMSTERR_MASK)) { |
| ASD_DPRINTK("hmm, ASIERR?\n"); |
| return; |
| } else { |
| u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR); |
| u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR); |
| |
| asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, " |
| "count: 0x%x, byteen: 0x%x, targerr: 0x%x " |
| "master id: 0x%x, master err: 0x%x\n", |
| pci_name(asd_ha->pcidev), |
| addr, data, |
| (statr & CPI2ASIBYTECNT_MASK) >> 16, |
| (statr & CPI2ASIBYTEEN_MASK) >> 12, |
| (statr & CPI2ASITARGERR_MASK) >> 8, |
| (statr & CPI2ASITARGMID_MASK) >> 4, |
| (statr & CPI2ASIMSTERR_MASK)); |
| } |
| } |
| asd_chip_reset(asd_ha); |
| } |
| |
| /** |
| * asd_hst_pcix_isr -- process host interface interrupts |
| * @asd_ha: pointer to host adapter structure |
| * |
| * Asserted on PCIX errors: target abort, etc. |
| */ |
| static inline void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha) |
| { |
| u16 status; |
| u32 pcix_status; |
| u32 ecc_status; |
| |
| pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status); |
| pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status); |
| pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status); |
| |
| if (status & PCI_STATUS_DETECTED_PARITY) |
| asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev)); |
| else if (status & PCI_STATUS_REC_MASTER_ABORT) |
| asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev)); |
| else if (status & PCI_STATUS_REC_TARGET_ABORT) |
| asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev)); |
| else if (status & PCI_STATUS_PARITY) |
| asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev)); |
| else if (pcix_status & RCV_SCE) { |
| asd_printk("received split completion error for %s\n", |
| pci_name(asd_ha->pcidev)); |
| pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); |
| /* XXX: Abort task? */ |
| return; |
| } else if (pcix_status & UNEXP_SC) { |
| asd_printk("unexpected split completion for %s\n", |
| pci_name(asd_ha->pcidev)); |
| pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); |
| /* ignore */ |
| return; |
| } else if (pcix_status & SC_DISCARD) |
| asd_printk("split completion discarded for %s\n", |
| pci_name(asd_ha->pcidev)); |
| else if (ecc_status & UNCOR_ECCERR) |
| asd_printk("uncorrectable ECC error for %s\n", |
| pci_name(asd_ha->pcidev)); |
| asd_chip_reset(asd_ha); |
| } |
| |
| /** |
| * asd_hw_isr -- host adapter interrupt service routine |
| * @irq: ignored |
| * @dev_id: pointer to host adapter structure |
| * @regs: ignored |
| * |
| * The ISR processes done list entries and level 3 error handling. |
| */ |
| irqreturn_t asd_hw_isr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct asd_ha_struct *asd_ha = dev_id; |
| u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT); |
| |
| if (!chimint) |
| return IRQ_NONE; |
| |
| asd_write_reg_dword(asd_ha, CHIMINT, chimint); |
| (void) asd_read_reg_dword(asd_ha, CHIMINT); |
| |
| if (chimint & DLAVAIL) |
| asd_process_donelist_isr(asd_ha); |
| if (chimint & COMINT) |
| asd_com_sas_isr(asd_ha); |
| if (chimint & DEVINT) |
| asd_dch_sas_isr(asd_ha); |
| if (chimint & INITERR) |
| asd_rbi_exsi_isr(asd_ha); |
| if (chimint & HOSTERR) |
| asd_hst_pcix_isr(asd_ha); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* ---------- SCB handling ---------- */ |
| |
| static inline struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha, |
| unsigned int gfp_flags) |
| { |
| extern kmem_cache_t *asd_ascb_cache; |
| struct asd_seq_data *seq = &asd_ha->seq; |
| struct asd_ascb *ascb; |
| unsigned long flags; |
| |
| ascb = kmem_cache_alloc(asd_ascb_cache, gfp_flags); |
| |
| if (ascb) { |
| memset(ascb, 0, sizeof(*ascb)); |
| ascb->dma_scb.size = sizeof(struct scb); |
| ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, |
| gfp_flags, |
| &ascb->dma_scb.dma_handle); |
| if (!ascb->dma_scb.vaddr) { |
| kmem_cache_free(asd_ascb_cache, ascb); |
| return NULL; |
| } |
| memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb)); |
| asd_init_ascb(asd_ha, ascb); |
| |
| spin_lock_irqsave(&seq->tc_index_lock, flags); |
| ascb->tc_index = asd_tc_index_get(seq, ascb); |
| spin_unlock_irqrestore(&seq->tc_index_lock, flags); |
| if (ascb->tc_index == -1) |
| goto undo; |
| |
| ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index); |
| } |
| |
| return ascb; |
| undo: |
| dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr, |
| ascb->dma_scb.dma_handle); |
| kmem_cache_free(asd_ascb_cache, ascb); |
| ASD_DPRINTK("no index for ascb\n"); |
| return NULL; |
| } |
| |
| /** |
| * asd_ascb_alloc_list -- allocate a list of aSCBs |
| * @asd_ha: pointer to host adapter structure |
| * @num: pointer to integer number of aSCBs |
| * @gfp_flags: GFP_ flags. |
| * |
| * This is the only function which is used to allocate aSCBs. |
| * It can allocate one or many. If more than one, then they form |
| * a linked list in two ways: by their list field of the ascb struct |
| * and by the next_scb field of the scb_header. |
| * |
| * Returns NULL if no memory was available, else pointer to a list |
| * of ascbs. When this function returns, @num would be the number |
| * of SCBs which were not able to be allocated, 0 if all requested |
| * were able to be allocated. |
| */ |
| struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct |
| *asd_ha, int *num, |
| unsigned int gfp_flags) |
| { |
| struct asd_ascb *first = NULL; |
| |
| for ( ; *num > 0; --*num) { |
| struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags); |
| |
| if (!ascb) |
| break; |
| else if (!first) |
| first = ascb; |
| else { |
| struct asd_ascb *last = list_entry(first->list.prev, |
| struct asd_ascb, |
| list); |
| list_add_tail(&ascb->list, &first->list); |
| last->scb->header.next_scb = |
| cpu_to_le64(((u64)ascb->dma_scb.dma_handle)); |
| } |
| } |
| |
| return first; |
| } |
| |
| /** |
| * asd_swap_head_scb -- swap the head scb |
| * @asd_ha: pointer to host adapter structure |
| * @ascb: pointer to the head of an ascb list |
| * |
| * The sequencer knows the DMA address of the next SCB to be DMAed to |
| * the host adapter, from initialization or from the last list DMAed. |
| * seq->next_scb keeps the address of this SCB. The sequencer will |
| * DMA to the host adapter this list of SCBs. But the head (first |
| * element) of this list is not known to the sequencer. Here we swap |
| * the head of the list with the known SCB (memcpy()). |
| * Only one memcpy() is required per list so it is in our interest |
| * to keep the list of SCB as long as possible so that the ratio |
| * of number of memcpy calls to the number of SCB DMA-ed is as small |
| * as possible. |
| * |
| * LOCKING: called with the pending list lock held. |
| */ |
| static inline void asd_swap_head_scb(struct asd_ha_struct *asd_ha, |
| struct asd_ascb *ascb) |
| { |
| struct asd_seq_data *seq = &asd_ha->seq; |
| struct asd_ascb *last = list_entry(ascb->list.prev, |
| struct asd_ascb, |
| list); |
| struct asd_dma_tok t = ascb->dma_scb; |
| |
| memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb)); |
| ascb->dma_scb = seq->next_scb; |
| ascb->scb = ascb->dma_scb.vaddr; |
| seq->next_scb = t; |
| last->scb->header.next_scb = |
| cpu_to_le64(((u64)seq->next_scb.dma_handle)); |
| } |
| |
| /** |
| * asd_start_timers -- (add and) start timers of SCBs |
| * @list: pointer to struct list_head of the scbs |
| * @to: timeout in jiffies |
| * |
| * If an SCB in the @list has no timer function, assign the default |
| * one, then start the timer of the SCB. This function is |
| * intended to be called from asd_post_ascb_list(), just prior to |
| * posting the SCBs to the sequencer. |
| */ |
| static inline void asd_start_scb_timers(struct list_head *list) |
| { |
| struct asd_ascb *ascb; |
| list_for_each_entry(ascb, list, list) { |
| if (!ascb->uldd_timer) { |
| ascb->timer.data = (unsigned long) ascb; |
| ascb->timer.function = asd_ascb_timedout; |
| ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT; |
| add_timer(&ascb->timer); |
| } |
| } |
| } |
| |
| /** |
| * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter |
| * @asd_ha: pointer to a host adapter structure |
| * @ascb: pointer to the first aSCB in the list |
| * @num: number of aSCBs in the list (to be posted) |
| * |
| * See queueing comment in asd_post_escb_list(). |
| * |
| * Additional note on queuing: In order to minimize the ratio of memcpy() |
| * to the number of ascbs sent, we try to batch-send as many ascbs as possible |
| * in one go. |
| * Two cases are possible: |
| * A) can_queue >= num, |
| * B) can_queue < num. |
| * Case A: we can send the whole batch at once. Increment "pending" |
| * in the beginning of this function, when it is checked, in order to |
| * eliminate races when this function is called by multiple processes. |
| * Case B: should never happen if the managing layer considers |
| * lldd_queue_size. |
| */ |
| int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, |
| int num) |
| { |
| unsigned long flags; |
| LIST_HEAD(list); |
| int can_queue; |
| |
| spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); |
| can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending; |
| if (can_queue >= num) |
| asd_ha->seq.pending += num; |
| else |
| can_queue = 0; |
| |
| if (!can_queue) { |
| spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); |
| asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev)); |
| return -SAS_QUEUE_FULL; |
| } |
| |
| asd_swap_head_scb(asd_ha, ascb); |
| |
| __list_add(&list, ascb->list.prev, &ascb->list); |
| |
| asd_start_scb_timers(&list); |
| |
| asd_ha->seq.scbpro += num; |
| list_splice_init(&list, asd_ha->seq.pend_q.prev); |
| asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); |
| spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * asd_post_escb_list -- post a list of 1 or more empty scb |
| * @asd_ha: pointer to a host adapter structure |
| * @ascb: pointer to the first empty SCB in the list |
| * @num: number of aSCBs in the list (to be posted) |
| * |
| * This is essentially the same as asd_post_ascb_list, but we do not |
| * increment pending, add those to the pending list or get indexes. |
| * See asd_init_escbs() and asd_init_post_escbs(). |
| * |
| * Since sending a list of ascbs is a superset of sending a single |
| * ascb, this function exists to generalize this. More specifically, |
| * when sending a list of those, we want to do only a _single_ |
| * memcpy() at swap head, as opposed to for each ascb sent (in the |
| * case of sending them one by one). That is, we want to minimize the |
| * ratio of memcpy() operations to the number of ascbs sent. The same |
| * logic applies to asd_post_ascb_list(). |
| */ |
| int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, |
| int num) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); |
| asd_swap_head_scb(asd_ha, ascb); |
| asd_ha->seq.scbpro += num; |
| asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); |
| spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); |
| |
| return 0; |
| } |
| |
| /* ---------- LED ---------- */ |
| |
| /** |
| * asd_turn_led -- turn on/off an LED |
| * @asd_ha: pointer to host adapter structure |
| * @phy_id: the PHY id whose LED we want to manupulate |
| * @op: 1 to turn on, 0 to turn off |
| */ |
| void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op) |
| { |
| if (phy_id < ASD_MAX_PHYS) { |
| u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id)); |
| if (op) |
| v |= LEDPOL; |
| else |
| v &= ~LEDPOL; |
| asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v); |
| } |
| } |
| |
| /** |
| * asd_control_led -- enable/disable an LED on the board |
| * @asd_ha: pointer to host adapter structure |
| * @phy_id: integer, the phy id |
| * @op: integer, 1 to enable, 0 to disable the LED |
| * |
| * First we output enable the LED, then we set the source |
| * to be an external module. |
| */ |
| void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op) |
| { |
| if (phy_id < ASD_MAX_PHYS) { |
| u32 v; |
| |
| v = asd_read_reg_dword(asd_ha, GPIOOER); |
| if (op) |
| v |= (1 << phy_id); |
| else |
| v &= ~(1 << phy_id); |
| asd_write_reg_dword(asd_ha, GPIOOER, v); |
| |
| v = asd_read_reg_dword(asd_ha, GPIOCNFGR); |
| if (op) |
| v |= (1 << phy_id); |
| else |
| v &= ~(1 << phy_id); |
| asd_write_reg_dword(asd_ha, GPIOCNFGR, v); |
| } |
| } |
| |
| /* ---------- PHY enable ---------- */ |
| |
| static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id) |
| { |
| struct asd_phy *phy = &asd_ha->phys[phy_id]; |
| |
| asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0); |
| asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY), |
| HOTPLUG_DELAY_TIMEOUT); |
| |
| /* Get defaults from manuf. sector */ |
| /* XXX we need defaults for those in case MS is broken. */ |
| asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0), |
| phy->phy_desc->phy_control_0); |
| asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1), |
| phy->phy_desc->phy_control_1); |
| asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2), |
| phy->phy_desc->phy_control_2); |
| asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3), |
| phy->phy_desc->phy_control_3); |
| |
| asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id), |
| ASD_COMINIT_TIMEOUT); |
| |
| asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id), |
| phy->id_frm_tok->dma_handle); |
| |
| asd_control_led(asd_ha, phy_id, 1); |
| |
| return 0; |
| } |
| |
| int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask) |
| { |
| u8 phy_m; |
| u8 i; |
| int num = 0, k; |
| struct asd_ascb *ascb; |
| struct asd_ascb *ascb_list; |
| |
| if (!phy_mask) { |
| asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__); |
| return 0; |
| } |
| |
| for_each_phy(phy_mask, phy_m, i) { |
| num++; |
| asd_enable_phy(asd_ha, i); |
| } |
| |
| k = num; |
| ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL); |
| if (!ascb_list) { |
| asd_printk("no memory for control phy ascb list\n"); |
| return -ENOMEM; |
| } |
| num -= k; |
| |
| ascb = ascb_list; |
| for_each_phy(phy_mask, phy_m, i) { |
| asd_build_control_phy(ascb, i, ENABLE_PHY); |
| ascb = list_entry(ascb->list.next, struct asd_ascb, list); |
| } |
| ASD_DPRINTK("posting %d control phy scbs\n", num); |
| k = asd_post_ascb_list(asd_ha, ascb_list, num); |
| if (k) |
| asd_ascb_free_list(ascb_list); |
| |
| return k; |
| } |