blob: 4c7f430b36eba81ab13d76932bcabec2b5e50ff7 [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "atom-types.h"
#include "atombios.h"
#include "processpptables.h"
#include "cgs_common.h"
#include "smumgr.h"
#include "hwmgr.h"
#include "hardwaremanager.h"
#include "rv_ppsmc.h"
#include "rv_hwmgr.h"
#include "power_state.h"
#include "rv_smumgr.h"
#include "pp_soc15.h"
#define RAVEN_MAX_DEEPSLEEP_DIVIDER_ID 5
#define RAVEN_MINIMUM_ENGINE_CLOCK 800 //8Mhz, the low boundary of engine clock allowed on this chip
#define SCLK_MIN_DIV_INTV_SHIFT 12
#define RAVEN_DISPCLK_BYPASS_THRESHOLD 10000 //100mhz
#define SMC_RAM_END 0x40000
static const unsigned long PhwRaven_Magic = (unsigned long) PHM_Rv_Magic;
int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req);
struct phm_vq_budgeting_record rv_vqtable[] = {
/* _TBD
* CUs, SSP low, SSP High, Min Sclk Low, Min Sclk, High, AWD/non-AWD, DCLK, ECLK, Sustainable Sclk, Sustainable CUs */
{ 8, 0, 45, 0, 0, VQ_DisplayConfig_NoneAWD, 80000, 120000, 4, 0 },
};
static struct rv_power_state *cast_rv_ps(struct pp_hw_power_state *hw_ps)
{
if (PhwRaven_Magic != hw_ps->magic)
return NULL;
return (struct rv_power_state *)hw_ps;
}
static const struct rv_power_state *cast_const_rv_ps(
const struct pp_hw_power_state *hw_ps)
{
if (PhwRaven_Magic != hw_ps->magic)
return NULL;
return (struct rv_power_state *)hw_ps;
}
static int rv_init_vq_budget_table(struct pp_hwmgr *hwmgr)
{
uint32_t table_size, i;
struct phm_vq_budgeting_table *ptable;
uint32_t num_entries = ARRAY_SIZE(rv_vqtable);
if (hwmgr->dyn_state.vq_budgeting_table != NULL)
return 0;
table_size = sizeof(struct phm_vq_budgeting_table) +
sizeof(struct phm_vq_budgeting_record) * (num_entries - 1);
ptable = kzalloc(table_size, GFP_KERNEL);
if (NULL == ptable)
return -ENOMEM;
ptable->numEntries = (uint8_t) num_entries;
for (i = 0; i < ptable->numEntries; i++) {
ptable->entries[i].ulCUs = rv_vqtable[i].ulCUs;
ptable->entries[i].ulSustainableSOCPowerLimitLow = rv_vqtable[i].ulSustainableSOCPowerLimitLow;
ptable->entries[i].ulSustainableSOCPowerLimitHigh = rv_vqtable[i].ulSustainableSOCPowerLimitHigh;
ptable->entries[i].ulMinSclkLow = rv_vqtable[i].ulMinSclkLow;
ptable->entries[i].ulMinSclkHigh = rv_vqtable[i].ulMinSclkHigh;
ptable->entries[i].ucDispConfig = rv_vqtable[i].ucDispConfig;
ptable->entries[i].ulDClk = rv_vqtable[i].ulDClk;
ptable->entries[i].ulEClk = rv_vqtable[i].ulEClk;
ptable->entries[i].ulSustainableSclk = rv_vqtable[i].ulSustainableSclk;
ptable->entries[i].ulSustainableCUs = rv_vqtable[i].ulSustainableCUs;
}
hwmgr->dyn_state.vq_budgeting_table = ptable;
return 0;
}
static int rv_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct rv_hwmgr *rv_hwmgr = (struct rv_hwmgr *)(hwmgr->backend);
struct cgs_system_info sys_info = {0};
int result;
rv_hwmgr->ddi_power_gating_disabled = 0;
rv_hwmgr->bapm_enabled = 1;
rv_hwmgr->dce_slow_sclk_threshold = 30000;
rv_hwmgr->disable_driver_thermal_policy = 1;
rv_hwmgr->thermal_auto_throttling_treshold = 0;
rv_hwmgr->is_nb_dpm_enabled = 1;
rv_hwmgr->dpm_flags = 1;
rv_hwmgr->disable_smu_acp_s3_handshake = 1;
rv_hwmgr->disable_notify_smu_vpu_recovery = 0;
rv_hwmgr->gfx_off_controled_by_driver = false;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicM3Arbiter);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDynamicPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SamuPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ACP);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GFXDynamicMGPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableVoltageIsland);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
result = cgs_query_system_info(hwmgr->device, &sys_info);
if (!result) {
if (sys_info.value & AMD_PG_SUPPORT_GFX_DMG)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GFXDynamicMGPowerGating);
}
return 0;
}
static int rv_construct_max_power_limits_table(struct pp_hwmgr *hwmgr,
struct phm_clock_and_voltage_limits *table)
{
return 0;
}
static int rv_init_dynamic_state_adjustment_rule_settings(
struct pp_hwmgr *hwmgr)
{
uint32_t table_size =
sizeof(struct phm_clock_voltage_dependency_table) +
(7 * sizeof(struct phm_clock_voltage_dependency_record));
struct phm_clock_voltage_dependency_table *table_clk_vlt =
kzalloc(table_size, GFP_KERNEL);
if (NULL == table_clk_vlt) {
pr_err("Can not allocate memory!\n");
return -ENOMEM;
}
table_clk_vlt->count = 8;
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0;
table_clk_vlt->entries[0].v = 0;
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1;
table_clk_vlt->entries[1].v = 1;
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2;
table_clk_vlt->entries[2].v = 2;
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3;
table_clk_vlt->entries[3].v = 3;
table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4;
table_clk_vlt->entries[4].v = 4;
table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5;
table_clk_vlt->entries[5].v = 5;
table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6;
table_clk_vlt->entries[6].v = 6;
table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7;
table_clk_vlt->entries[7].v = 7;
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
return 0;
}
static int rv_get_system_info_data(struct pp_hwmgr *hwmgr)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)hwmgr->backend;
rv_data->sys_info.htc_hyst_lmt = 5;
rv_data->sys_info.htc_tmp_lmt = 203;
if (rv_data->thermal_auto_throttling_treshold == 0)
rv_data->thermal_auto_throttling_treshold = 203;
rv_construct_max_power_limits_table (hwmgr,
&hwmgr->dyn_state.max_clock_voltage_on_ac);
rv_init_dynamic_state_adjustment_rule_settings(hwmgr);
return 0;
}
static int rv_construct_boot_state(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int rv_tf_set_clock_limit(struct pp_hwmgr *hwmgr, void *input,
void *output, void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct PP_Clocks clocks = {0};
struct pp_display_clock_request clock_req;
clocks.dcefClock = hwmgr->display_config.min_dcef_set_clk;
clocks.dcefClockInSR = hwmgr->display_config.min_dcef_deep_sleep_set_clk;
clock_req.clock_type = amd_pp_dcf_clock;
clock_req.clock_freq_in_khz = clocks.dcefClock * 10;
if (clocks.dcefClock == 0 && clocks.dcefClockInSR == 0)
clock_req.clock_freq_in_khz = rv_data->dcf_actual_hard_min_freq;
PP_ASSERT_WITH_CODE(!rv_display_clock_voltage_request(hwmgr, &clock_req),
"Attempt to set DCF Clock Failed!", return -EINVAL);
if(rv_data->need_min_deep_sleep_dcefclk && 0 != clocks.dcefClockInSR)
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetMinDeepSleepDcefclk,
clocks.dcefClockInSR / 100);
/*
if(!rv_data->isp_tileA_power_gated || !rv_data->isp_tileB_power_gated) {
if ((hwmgr->ispArbiter.iclk != 0) && (rv_data->ISPActualHardMinFreq != (hwmgr->ispArbiter.iclk / 100) )) {
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetHardMinIspclkByFreq, hwmgr->ispArbiter.iclk / 100);
rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->ISPActualHardMinFreq),
}
} */
if((hwmgr->gfx_arbiter.sclk_hard_min != 0) &&
((hwmgr->gfx_arbiter.sclk_hard_min / 100) != rv_data->soc_actual_hard_min_freq)) {
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetHardMinSocclkByFreq,
hwmgr->gfx_arbiter.sclk_hard_min / 100);
rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->soc_actual_hard_min_freq);
}
if ((hwmgr->gfx_arbiter.gfxclk != 0) &&
(rv_data->gfx_actual_soft_min_freq != (hwmgr->gfx_arbiter.gfxclk))) {
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetMinVideoGfxclkFreq,
hwmgr->gfx_arbiter.gfxclk / 100);
rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->gfx_actual_soft_min_freq);
}
if ((hwmgr->gfx_arbiter.fclk != 0) &&
(rv_data->fabric_actual_soft_min_freq != (hwmgr->gfx_arbiter.fclk / 100))) {
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetMinVideoFclkFreq,
hwmgr->gfx_arbiter.fclk / 100);
rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->fabric_actual_soft_min_freq);
}
return 0;
}
static int rv_tf_set_num_active_display(struct pp_hwmgr *hwmgr, void *input,
void *output, void *storage, int result)
{
uint32_t num_of_active_displays = 0;
struct cgs_display_info info = {0};
cgs_get_active_displays_info(hwmgr->device, &info);
num_of_active_displays = info.display_count;
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetDisplayCount,
num_of_active_displays);
return 0;
}
static const struct phm_master_table_item rv_set_power_state_list[] = {
{ NULL, rv_tf_set_clock_limit },
{ NULL, rv_tf_set_num_active_display },
{ }
};
static const struct phm_master_table_header rv_set_power_state_master = {
0,
PHM_MasterTableFlag_None,
rv_set_power_state_list
};
static int rv_tf_init_power_gate_state(struct pp_hwmgr *hwmgr, void *input,
void *output, void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
rv_data->vcn_power_gated = true;
rv_data->isp_tileA_power_gated = true;
rv_data->isp_tileB_power_gated = true;
return 0;
}
static const struct phm_master_table_item rv_setup_asic_list[] = {
{ .tableFunction = rv_tf_init_power_gate_state },
{ }
};
static const struct phm_master_table_header rv_setup_asic_master = {
0,
PHM_MasterTableFlag_None,
rv_setup_asic_list
};
static int rv_tf_reset_cc6_data(struct pp_hwmgr *hwmgr,
void *input, void *output,
void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
rv_data->separation_time = 0;
rv_data->cc6_disable = false;
rv_data->pstate_disable = false;
rv_data->cc6_setting_changed = false;
return 0;
}
static const struct phm_master_table_item rv_power_down_asic_list[] = {
{ .tableFunction = rv_tf_reset_cc6_data },
{ }
};
static const struct phm_master_table_header rv_power_down_asic_master = {
0,
PHM_MasterTableFlag_None,
rv_power_down_asic_list
};
static int rv_tf_disable_gfx_off(struct pp_hwmgr *hwmgr,
void *input, void *output,
void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
if (rv_data->gfx_off_controled_by_driver)
smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_DisableGfxOff);
return 0;
}
static const struct phm_master_table_item rv_disable_dpm_list[] = {
{NULL, rv_tf_disable_gfx_off},
{ },
};
static const struct phm_master_table_header rv_disable_dpm_master = {
0,
PHM_MasterTableFlag_None,
rv_disable_dpm_list
};
static int rv_tf_enable_gfx_off(struct pp_hwmgr *hwmgr,
void *input, void *output,
void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
if (rv_data->gfx_off_controled_by_driver)
smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_EnableGfxOff);
return 0;
}
static const struct phm_master_table_item rv_enable_dpm_list[] = {
{NULL, rv_tf_enable_gfx_off},
{ },
};
static const struct phm_master_table_header rv_enable_dpm_master = {
0,
PHM_MasterTableFlag_None,
rv_enable_dpm_list
};
static int rv_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *prequest_ps,
const struct pp_power_state *pcurrent_ps)
{
return 0;
}
/* temporary hardcoded clock voltage breakdown tables */
DpmClock_t VddDcfClk[]= {
{ 300, 2600},
{ 600, 3200},
{ 600, 3600},
};
DpmClock_t VddSocClk[]= {
{ 478, 2600},
{ 722, 3200},
{ 722, 3600},
};
DpmClock_t VddFClk[]= {
{ 400, 2600},
{1200, 3200},
{1200, 3600},
};
DpmClock_t VddDispClk[]= {
{ 435, 2600},
{ 661, 3200},
{1086, 3600},
};
DpmClock_t VddDppClk[]= {
{ 435, 2600},
{ 661, 3200},
{ 661, 3600},
};
DpmClock_t VddPhyClk[]= {
{ 540, 2600},
{ 810, 3200},
{ 810, 3600},
};
static int rv_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
struct rv_voltage_dependency_table **pptable,
uint32_t num_entry, DpmClock_t *pclk_dependency_table)
{
uint32_t table_size, i;
struct rv_voltage_dependency_table *ptable;
table_size = sizeof(uint32_t) + sizeof(struct rv_voltage_dependency_table) * num_entry;
ptable = kzalloc(table_size, GFP_KERNEL);
if (NULL == ptable)
return -ENOMEM;
ptable->count = num_entry;
for (i = 0; i < ptable->count; i++) {
ptable->entries[i].clk = pclk_dependency_table->Freq * 100;
ptable->entries[i].vol = pclk_dependency_table->Vol;
pclk_dependency_table++;
}
*pptable = ptable;
return 0;
}
static int rv_populate_clock_table(struct pp_hwmgr *hwmgr)
{
int result;
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
DpmClocks_t *table = &(rv_data->clock_table);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
result = rv_copy_table_from_smc(hwmgr->smumgr, (uint8_t *)table, CLOCKTABLE);
PP_ASSERT_WITH_CODE((0 == result),
"Attempt to copy clock table from smc failed",
return result);
if (0 == result && table->DcefClocks[0].Freq != 0) {
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
NUM_DCEFCLK_DPM_LEVELS,
&rv_data->clock_table.DcefClocks[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
NUM_SOCCLK_DPM_LEVELS,
&rv_data->clock_table.SocClocks[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
NUM_FCLK_DPM_LEVELS,
&rv_data->clock_table.FClocks[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk,
NUM_MEMCLK_DPM_LEVELS,
&rv_data->clock_table.MemClocks[0]);
} else {
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
ARRAY_SIZE(VddDcfClk),
&VddDcfClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
ARRAY_SIZE(VddSocClk),
&VddSocClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
ARRAY_SIZE(VddFClk),
&VddFClk[0]);
}
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk,
ARRAY_SIZE(VddDispClk),
&VddDispClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk,
ARRAY_SIZE(VddDppClk), &VddDppClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk,
ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]);
return 0;
}
static int rv_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct rv_hwmgr *data;
data = kzalloc(sizeof(struct rv_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
result = rv_initialize_dpm_defaults(hwmgr);
if (result != 0) {
pr_err("rv_initialize_dpm_defaults failed\n");
return result;
}
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerPlaySupport);
rv_populate_clock_table(hwmgr);
result = rv_get_system_info_data(hwmgr);
if (result != 0) {
pr_err("rv_get_system_info_data failed\n");
return result;
}
rv_construct_boot_state(hwmgr);
result = phm_construct_table(hwmgr, &rv_setup_asic_master,
&(hwmgr->setup_asic));
if (result != 0) {
pr_err("Fail to construct setup ASIC\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_power_down_asic_master,
&(hwmgr->power_down_asic));
if (result != 0) {
pr_err("Fail to construct power down ASIC\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_set_power_state_master,
&(hwmgr->set_power_state));
if (result != 0) {
pr_err("Fail to construct set_power_state\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_disable_dpm_master,
&(hwmgr->disable_dynamic_state_management));
if (result != 0) {
pr_err("Fail to disable_dynamic_state\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_enable_dpm_master,
&(hwmgr->enable_dynamic_state_management));
if (result != 0) {
pr_err("Fail to enable_dynamic_state\n");
return result;
}
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
RAVEN_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels =
RAVEN_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.vbiosInterruptId = 0;
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
rv_init_vq_budget_table(hwmgr);
return result;
}
static int rv_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
phm_destroy_table(hwmgr, &(hwmgr->set_power_state));
phm_destroy_table(hwmgr, &(hwmgr->enable_dynamic_state_management));
phm_destroy_table(hwmgr, &(hwmgr->disable_dynamic_state_management));
phm_destroy_table(hwmgr, &(hwmgr->power_down_asic));
phm_destroy_table(hwmgr, &(hwmgr->setup_asic));
if (pinfo->vdd_dep_on_dcefclk) {
kfree(pinfo->vdd_dep_on_dcefclk);
pinfo->vdd_dep_on_dcefclk = NULL;
}
if (pinfo->vdd_dep_on_socclk) {
kfree(pinfo->vdd_dep_on_socclk);
pinfo->vdd_dep_on_socclk = NULL;
}
if (pinfo->vdd_dep_on_fclk) {
kfree(pinfo->vdd_dep_on_fclk);
pinfo->vdd_dep_on_fclk = NULL;
}
if (pinfo->vdd_dep_on_dispclk) {
kfree(pinfo->vdd_dep_on_dispclk);
pinfo->vdd_dep_on_dispclk = NULL;
}
if (pinfo->vdd_dep_on_dppclk) {
kfree(pinfo->vdd_dep_on_dppclk);
pinfo->vdd_dep_on_dppclk = NULL;
}
if (pinfo->vdd_dep_on_phyclk) {
kfree(pinfo->vdd_dep_on_phyclk);
pinfo->vdd_dep_on_phyclk = NULL;
}
if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
}
if (NULL != hwmgr->dyn_state.vq_budgeting_table) {
kfree(hwmgr->dyn_state.vq_budgeting_table);
hwmgr->dyn_state.vq_budgeting_table = NULL;
}
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int rv_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
return 0;
}
static int rv_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
return 0;
}
static int rv_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
return 0;
}
static int rv_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
return 0;
}
static int rv_dpm_get_pp_table_entry_callback(
struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps,
unsigned int index,
const void *clock_info)
{
struct rv_power_state *rv_ps = cast_rv_ps(hw_ps);
const ATOM_PPLIB_CZ_CLOCK_INFO *rv_clock_info = clock_info;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
uint8_t clock_info_index = rv_clock_info->index;
if (clock_info_index > (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1))
clock_info_index = (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1);
rv_ps->levels[index].engine_clock = table->entries[clock_info_index].clk;
rv_ps->levels[index].vddc_index = (uint8_t)table->entries[clock_info_index].v;
rv_ps->level = index + 1;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
rv_ps->levels[index].ds_divider_index = 5;
rv_ps->levels[index].ss_divider_index = 5;
}
return 0;
}
static int rv_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr)
{
int result;
unsigned long ret = 0;
result = pp_tables_get_num_of_entries(hwmgr, &ret);
return result ? 0 : ret;
}
static int rv_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry, struct pp_power_state *ps)
{
int result;
struct rv_power_state *rv_ps;
ps->hardware.magic = PhwRaven_Magic;
rv_ps = cast_rv_ps(&(ps->hardware));
result = pp_tables_get_entry(hwmgr, entry, ps,
rv_dpm_get_pp_table_entry_callback);
rv_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK;
rv_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK;
return result;
}
static int rv_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct rv_power_state);
}
static int rv_set_cpu_power_state(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int rv_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time,
bool cc6_disable, bool pstate_disable, bool pstate_switch_disable)
{
return 0;
}
static int rv_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
return -EINVAL;
}
static int rv_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
return 0;
}
static int rv_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
return 0;
}
static int rv_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
PHM_PerformanceLevelDesignation designation, uint32_t index,
PHM_PerformanceLevel *level)
{
const struct rv_power_state *ps;
struct rv_hwmgr *data;
uint32_t level_index;
uint32_t i;
uint32_t vol_dep_record_index = 0;
if (level == NULL || hwmgr == NULL || state == NULL)
return -EINVAL;
data = (struct rv_hwmgr *)(hwmgr->backend);
ps = cast_const_rv_ps(state);
level_index = index > ps->level - 1 ? ps->level - 1 : index;
level->coreClock = ps->levels[level_index].engine_clock;
if (designation == PHM_PerformanceLevelDesignation_PowerContainment) {
for (i = 1; i < ps->level; i++) {
if (ps->levels[i].engine_clock > data->dce_slow_sclk_threshold) {
level->coreClock = ps->levels[i].engine_clock;
break;
}
}
}
if (level_index == 0) {
vol_dep_record_index = data->clock_vol_info.vdd_dep_on_fclk->count - 1;
level->memory_clock =
data->clock_vol_info.vdd_dep_on_fclk->entries[vol_dep_record_index].clk;
} else
level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk;
level->nonLocalMemoryFreq = 0;
level->nonLocalMemoryWidth = 0;
return 0;
}
static int rv_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr,
const struct pp_hw_power_state *state, struct pp_clock_info *clock_info)
{
const struct rv_power_state *ps = cast_const_rv_ps(state);
clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index));
clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index));
return 0;
}
#define MEM_FREQ_LOW_LATENCY 25000
#define MEM_FREQ_HIGH_LATENCY 80000
#define MEM_LATENCY_HIGH 245
#define MEM_LATENCY_LOW 35
#define MEM_LATENCY_ERR 0xFFFF
static uint32_t rv_get_mem_latency(struct pp_hwmgr *hwmgr,
uint32_t clock)
{
if (clock >= MEM_FREQ_LOW_LATENCY &&
clock < MEM_FREQ_HIGH_LATENCY)
return MEM_LATENCY_HIGH;
else if (clock >= MEM_FREQ_HIGH_LATENCY)
return MEM_LATENCY_LOW;
else
return MEM_LATENCY_ERR;
}
static int rv_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
uint32_t i;
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
struct rv_voltage_dependency_table *pclk_vol_table;
bool latency_required = false;
if (pinfo == NULL)
return -EINVAL;
switch (type) {
case amd_pp_mem_clock:
pclk_vol_table = pinfo->vdd_dep_on_mclk;
latency_required = true;
break;
case amd_pp_f_clock:
pclk_vol_table = pinfo->vdd_dep_on_fclk;
latency_required = true;
break;
case amd_pp_dcf_clock:
pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
break;
case amd_pp_disp_clock:
pclk_vol_table = pinfo->vdd_dep_on_dispclk;
break;
case amd_pp_phy_clock:
pclk_vol_table = pinfo->vdd_dep_on_phyclk;
break;
case amd_pp_dpp_clock:
pclk_vol_table = pinfo->vdd_dep_on_dppclk;
default:
return -EINVAL;
}
if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
return -EINVAL;
clocks->num_levels = 0;
for (i = 0; i < pclk_vol_table->count; i++) {
clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
clocks->data[i].latency_in_us = latency_required ?
rv_get_mem_latency(hwmgr,
pclk_vol_table->entries[i].clk) :
0;
clocks->num_levels++;
}
return 0;
}
static int rv_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
uint32_t i;
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
struct rv_voltage_dependency_table *pclk_vol_table = NULL;
if (pinfo == NULL)
return -EINVAL;
switch (type) {
case amd_pp_mem_clock:
pclk_vol_table = pinfo->vdd_dep_on_mclk;
break;
case amd_pp_f_clock:
pclk_vol_table = pinfo->vdd_dep_on_fclk;
break;
case amd_pp_dcf_clock:
pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
break;
case amd_pp_soc_clock:
pclk_vol_table = pinfo->vdd_dep_on_socclk;
break;
default:
return -EINVAL;
}
if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
return -EINVAL;
clocks->num_levels = 0;
for (i = 0; i < pclk_vol_table->count; i++) {
clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
clocks->data[i].voltage_in_mv = pclk_vol_table->entries[i].vol;
clocks->num_levels++;
}
return 0;
}
int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req)
{
int result = 0;
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
enum amd_pp_clock_type clk_type = clock_req->clock_type;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
PPSMC_Msg msg;
switch (clk_type) {
case amd_pp_dcf_clock:
if (clk_freq == rv_data->dcf_actual_hard_min_freq)
return 0;
msg = PPSMC_MSG_SetHardMinDcefclkByFreq;
rv_data->dcf_actual_hard_min_freq = clk_freq;
break;
case amd_pp_soc_clock:
msg = PPSMC_MSG_SetHardMinSocclkByFreq;
break;
case amd_pp_f_clock:
if (clk_freq == rv_data->f_actual_hard_min_freq)
return 0;
rv_data->f_actual_hard_min_freq = clk_freq;
msg = PPSMC_MSG_SetHardMinFclkByFreq;
break;
default:
pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
return -EINVAL;
}
result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, msg,
clk_freq);
return result;
}
static int rv_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks)
{
return -EINVAL;
}
static int rv_thermal_get_temperature(struct pp_hwmgr *hwmgr)
{
uint32_t reg_offset = soc15_get_register_offset(THM_HWID, 0,
mmTHM_TCON_CUR_TMP_BASE_IDX, mmTHM_TCON_CUR_TMP);
uint32_t reg_value = cgs_read_register(hwmgr->device, reg_offset);
int cur_temp =
(reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT;
if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK)
cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
else
cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return cur_temp;
}
static int rv_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
switch (idx) {
case AMDGPU_PP_SENSOR_GPU_TEMP:
*((uint32_t *)value) = rv_thermal_get_temperature(hwmgr);
return 0;
default:
return -EINVAL;
}
}
static const struct pp_hwmgr_func rv_hwmgr_funcs = {
.backend_init = rv_hwmgr_backend_init,
.backend_fini = rv_hwmgr_backend_fini,
.asic_setup = NULL,
.apply_state_adjust_rules = rv_apply_state_adjust_rules,
.force_dpm_level = rv_dpm_force_dpm_level,
.get_power_state_size = rv_get_power_state_size,
.powerdown_uvd = NULL,
.powergate_uvd = NULL,
.powergate_vce = NULL,
.get_mclk = rv_dpm_get_mclk,
.get_sclk = rv_dpm_get_sclk,
.patch_boot_state = rv_dpm_patch_boot_state,
.get_pp_table_entry = rv_dpm_get_pp_table_entry,
.get_num_of_pp_table_entries = rv_dpm_get_num_of_pp_table_entries,
.set_cpu_power_state = rv_set_cpu_power_state,
.store_cc6_data = rv_store_cc6_data,
.force_clock_level = rv_force_clock_level,
.print_clock_levels = rv_print_clock_levels,
.get_dal_power_level = rv_get_dal_power_level,
.get_performance_level = rv_get_performance_level,
.get_current_shallow_sleep_clocks = rv_get_current_shallow_sleep_clocks,
.get_clock_by_type_with_latency = rv_get_clock_by_type_with_latency,
.get_clock_by_type_with_voltage = rv_get_clock_by_type_with_voltage,
.get_max_high_clocks = rv_get_max_high_clocks,
.read_sensor = rv_read_sensor,
};
int rv_init_function_pointers(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &rv_hwmgr_funcs;
hwmgr->pptable_func = &pptable_funcs;
return 0;
}