| /****************************************************************************** |
| * |
| * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 - 2017 Intel Deutschland GmbH |
| * |
| * Portions of this file are derived from the ipw3945 project, as well |
| * as portions of the ieee80211 subsystem header files. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <linuxwifi@intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| *****************************************************************************/ |
| #include <linux/sched.h> |
| #include <linux/wait.h> |
| #include <linux/gfp.h> |
| |
| #include "iwl-prph.h" |
| #include "iwl-io.h" |
| #include "internal.h" |
| #include "iwl-op-mode.h" |
| |
| /****************************************************************************** |
| * |
| * RX path functions |
| * |
| ******************************************************************************/ |
| |
| /* |
| * Rx theory of operation |
| * |
| * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), |
| * each of which point to Receive Buffers to be filled by the NIC. These get |
| * used not only for Rx frames, but for any command response or notification |
| * from the NIC. The driver and NIC manage the Rx buffers by means |
| * of indexes into the circular buffer. |
| * |
| * Rx Queue Indexes |
| * The host/firmware share two index registers for managing the Rx buffers. |
| * |
| * The READ index maps to the first position that the firmware may be writing |
| * to -- the driver can read up to (but not including) this position and get |
| * good data. |
| * The READ index is managed by the firmware once the card is enabled. |
| * |
| * The WRITE index maps to the last position the driver has read from -- the |
| * position preceding WRITE is the last slot the firmware can place a packet. |
| * |
| * The queue is empty (no good data) if WRITE = READ - 1, and is full if |
| * WRITE = READ. |
| * |
| * During initialization, the host sets up the READ queue position to the first |
| * INDEX position, and WRITE to the last (READ - 1 wrapped) |
| * |
| * When the firmware places a packet in a buffer, it will advance the READ index |
| * and fire the RX interrupt. The driver can then query the READ index and |
| * process as many packets as possible, moving the WRITE index forward as it |
| * resets the Rx queue buffers with new memory. |
| * |
| * The management in the driver is as follows: |
| * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. |
| * When the interrupt handler is called, the request is processed. |
| * The page is either stolen - transferred to the upper layer |
| * or reused - added immediately to the iwl->rxq->rx_free list. |
| * + When the page is stolen - the driver updates the matching queue's used |
| * count, detaches the RBD and transfers it to the queue used list. |
| * When there are two used RBDs - they are transferred to the allocator empty |
| * list. Work is then scheduled for the allocator to start allocating |
| * eight buffers. |
| * When there are another 6 used RBDs - they are transferred to the allocator |
| * empty list and the driver tries to claim the pre-allocated buffers and |
| * add them to iwl->rxq->rx_free. If it fails - it continues to claim them |
| * until ready. |
| * When there are 8+ buffers in the free list - either from allocation or from |
| * 8 reused unstolen pages - restock is called to update the FW and indexes. |
| * + In order to make sure the allocator always has RBDs to use for allocation |
| * the allocator has initial pool in the size of num_queues*(8-2) - the |
| * maximum missing RBDs per allocation request (request posted with 2 |
| * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). |
| * The queues supplies the recycle of the rest of the RBDs. |
| * + A received packet is processed and handed to the kernel network stack, |
| * detached from the iwl->rxq. The driver 'processed' index is updated. |
| * + If there are no allocated buffers in iwl->rxq->rx_free, |
| * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. |
| * If there were enough free buffers and RX_STALLED is set it is cleared. |
| * |
| * |
| * Driver sequence: |
| * |
| * iwl_rxq_alloc() Allocates rx_free |
| * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls |
| * iwl_pcie_rxq_restock. |
| * Used only during initialization. |
| * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx |
| * queue, updates firmware pointers, and updates |
| * the WRITE index. |
| * iwl_pcie_rx_allocator() Background work for allocating pages. |
| * |
| * -- enable interrupts -- |
| * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the |
| * READ INDEX, detaching the SKB from the pool. |
| * Moves the packet buffer from queue to rx_used. |
| * Posts and claims requests to the allocator. |
| * Calls iwl_pcie_rxq_restock to refill any empty |
| * slots. |
| * |
| * RBD life-cycle: |
| * |
| * Init: |
| * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue |
| * |
| * Regular Receive interrupt: |
| * Page Stolen: |
| * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> |
| * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue |
| * Page not Stolen: |
| * rxq.queue -> rxq.rx_free -> rxq.queue |
| * ... |
| * |
| */ |
| |
| /* |
| * iwl_rxq_space - Return number of free slots available in queue. |
| */ |
| static int iwl_rxq_space(const struct iwl_rxq *rxq) |
| { |
| /* Make sure rx queue size is a power of 2 */ |
| WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); |
| |
| /* |
| * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity |
| * between empty and completely full queues. |
| * The following is equivalent to modulo by RX_QUEUE_SIZE and is well |
| * defined for negative dividends. |
| */ |
| return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); |
| } |
| |
| /* |
| * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr |
| */ |
| static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) |
| { |
| return cpu_to_le32((u32)(dma_addr >> 8)); |
| } |
| |
| /* |
| * iwl_pcie_rx_stop - stops the Rx DMA |
| */ |
| int iwl_pcie_rx_stop(struct iwl_trans *trans) |
| { |
| if (trans->cfg->mq_rx_supported) { |
| iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); |
| return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, |
| RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); |
| } else { |
| iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); |
| return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, |
| FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, |
| 1000); |
| } |
| } |
| |
| /* |
| * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue |
| */ |
| static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, |
| struct iwl_rxq *rxq) |
| { |
| u32 reg; |
| |
| lockdep_assert_held(&rxq->lock); |
| |
| /* |
| * explicitly wake up the NIC if: |
| * 1. shadow registers aren't enabled |
| * 2. there is a chance that the NIC is asleep |
| */ |
| if (!trans->cfg->base_params->shadow_reg_enable && |
| test_bit(STATUS_TPOWER_PMI, &trans->status)) { |
| reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); |
| |
| if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { |
| IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", |
| reg); |
| iwl_set_bit(trans, CSR_GP_CNTRL, |
| CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| rxq->need_update = true; |
| return; |
| } |
| } |
| |
| rxq->write_actual = round_down(rxq->write, 8); |
| if (trans->cfg->mq_rx_supported) |
| iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), |
| rxq->write_actual); |
| else |
| iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); |
| } |
| |
| static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i; |
| |
| for (i = 0; i < trans->num_rx_queues; i++) { |
| struct iwl_rxq *rxq = &trans_pcie->rxq[i]; |
| |
| if (!rxq->need_update) |
| continue; |
| spin_lock(&rxq->lock); |
| iwl_pcie_rxq_inc_wr_ptr(trans, rxq); |
| rxq->need_update = false; |
| spin_unlock(&rxq->lock); |
| } |
| } |
| |
| /* |
| * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx |
| */ |
| static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, |
| struct iwl_rxq *rxq) |
| { |
| struct iwl_rx_mem_buffer *rxb; |
| |
| /* |
| * If the device isn't enabled - no need to try to add buffers... |
| * This can happen when we stop the device and still have an interrupt |
| * pending. We stop the APM before we sync the interrupts because we |
| * have to (see comment there). On the other hand, since the APM is |
| * stopped, we cannot access the HW (in particular not prph). |
| * So don't try to restock if the APM has been already stopped. |
| */ |
| if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) |
| return; |
| |
| spin_lock(&rxq->lock); |
| while (rxq->free_count) { |
| __le64 *bd = (__le64 *)rxq->bd; |
| |
| /* Get next free Rx buffer, remove from free list */ |
| rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, |
| list); |
| list_del(&rxb->list); |
| rxb->invalid = false; |
| /* 12 first bits are expected to be empty */ |
| WARN_ON(rxb->page_dma & DMA_BIT_MASK(12)); |
| /* Point to Rx buffer via next RBD in circular buffer */ |
| bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); |
| rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK; |
| rxq->free_count--; |
| } |
| spin_unlock(&rxq->lock); |
| |
| /* |
| * If we've added more space for the firmware to place data, tell it. |
| * Increment device's write pointer in multiples of 8. |
| */ |
| if (rxq->write_actual != (rxq->write & ~0x7)) { |
| spin_lock(&rxq->lock); |
| iwl_pcie_rxq_inc_wr_ptr(trans, rxq); |
| spin_unlock(&rxq->lock); |
| } |
| } |
| |
| /* |
| * iwl_pcie_rxsq_restock - restock implementation for single queue rx |
| */ |
| static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, |
| struct iwl_rxq *rxq) |
| { |
| struct iwl_rx_mem_buffer *rxb; |
| |
| /* |
| * If the device isn't enabled - not need to try to add buffers... |
| * This can happen when we stop the device and still have an interrupt |
| * pending. We stop the APM before we sync the interrupts because we |
| * have to (see comment there). On the other hand, since the APM is |
| * stopped, we cannot access the HW (in particular not prph). |
| * So don't try to restock if the APM has been already stopped. |
| */ |
| if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) |
| return; |
| |
| spin_lock(&rxq->lock); |
| while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { |
| __le32 *bd = (__le32 *)rxq->bd; |
| /* The overwritten rxb must be a used one */ |
| rxb = rxq->queue[rxq->write]; |
| BUG_ON(rxb && rxb->page); |
| |
| /* Get next free Rx buffer, remove from free list */ |
| rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, |
| list); |
| list_del(&rxb->list); |
| rxb->invalid = false; |
| |
| /* Point to Rx buffer via next RBD in circular buffer */ |
| bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); |
| rxq->queue[rxq->write] = rxb; |
| rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; |
| rxq->free_count--; |
| } |
| spin_unlock(&rxq->lock); |
| |
| /* If we've added more space for the firmware to place data, tell it. |
| * Increment device's write pointer in multiples of 8. */ |
| if (rxq->write_actual != (rxq->write & ~0x7)) { |
| spin_lock(&rxq->lock); |
| iwl_pcie_rxq_inc_wr_ptr(trans, rxq); |
| spin_unlock(&rxq->lock); |
| } |
| } |
| |
| /* |
| * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool |
| * |
| * If there are slots in the RX queue that need to be restocked, |
| * and we have free pre-allocated buffers, fill the ranks as much |
| * as we can, pulling from rx_free. |
| * |
| * This moves the 'write' index forward to catch up with 'processed', and |
| * also updates the memory address in the firmware to reference the new |
| * target buffer. |
| */ |
| static |
| void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) |
| { |
| if (trans->cfg->mq_rx_supported) |
| iwl_pcie_rxmq_restock(trans, rxq); |
| else |
| iwl_pcie_rxsq_restock(trans, rxq); |
| } |
| |
| /* |
| * iwl_pcie_rx_alloc_page - allocates and returns a page. |
| * |
| */ |
| static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, |
| gfp_t priority) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct page *page; |
| gfp_t gfp_mask = priority; |
| |
| if (trans_pcie->rx_page_order > 0) |
| gfp_mask |= __GFP_COMP; |
| |
| /* Alloc a new receive buffer */ |
| page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); |
| if (!page) { |
| if (net_ratelimit()) |
| IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", |
| trans_pcie->rx_page_order); |
| /* |
| * Issue an error if we don't have enough pre-allocated |
| * buffers. |
| ` */ |
| if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) |
| IWL_CRIT(trans, |
| "Failed to alloc_pages\n"); |
| return NULL; |
| } |
| return page; |
| } |
| |
| /* |
| * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD |
| * |
| * A used RBD is an Rx buffer that has been given to the stack. To use it again |
| * a page must be allocated and the RBD must point to the page. This function |
| * doesn't change the HW pointer but handles the list of pages that is used by |
| * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly |
| * allocated buffers. |
| */ |
| static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, |
| struct iwl_rxq *rxq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rx_mem_buffer *rxb; |
| struct page *page; |
| |
| while (1) { |
| spin_lock(&rxq->lock); |
| if (list_empty(&rxq->rx_used)) { |
| spin_unlock(&rxq->lock); |
| return; |
| } |
| spin_unlock(&rxq->lock); |
| |
| /* Alloc a new receive buffer */ |
| page = iwl_pcie_rx_alloc_page(trans, priority); |
| if (!page) |
| return; |
| |
| spin_lock(&rxq->lock); |
| |
| if (list_empty(&rxq->rx_used)) { |
| spin_unlock(&rxq->lock); |
| __free_pages(page, trans_pcie->rx_page_order); |
| return; |
| } |
| rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, |
| list); |
| list_del(&rxb->list); |
| spin_unlock(&rxq->lock); |
| |
| BUG_ON(rxb->page); |
| rxb->page = page; |
| /* Get physical address of the RB */ |
| rxb->page_dma = |
| dma_map_page(trans->dev, page, 0, |
| PAGE_SIZE << trans_pcie->rx_page_order, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(trans->dev, rxb->page_dma)) { |
| rxb->page = NULL; |
| spin_lock(&rxq->lock); |
| list_add(&rxb->list, &rxq->rx_used); |
| spin_unlock(&rxq->lock); |
| __free_pages(page, trans_pcie->rx_page_order); |
| return; |
| } |
| |
| spin_lock(&rxq->lock); |
| |
| list_add_tail(&rxb->list, &rxq->rx_free); |
| rxq->free_count++; |
| |
| spin_unlock(&rxq->lock); |
| } |
| } |
| |
| static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i; |
| |
| for (i = 0; i < RX_POOL_SIZE; i++) { |
| if (!trans_pcie->rx_pool[i].page) |
| continue; |
| dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, |
| PAGE_SIZE << trans_pcie->rx_page_order, |
| DMA_FROM_DEVICE); |
| __free_pages(trans_pcie->rx_pool[i].page, |
| trans_pcie->rx_page_order); |
| trans_pcie->rx_pool[i].page = NULL; |
| } |
| } |
| |
| /* |
| * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues |
| * |
| * Allocates for each received request 8 pages |
| * Called as a scheduled work item. |
| */ |
| static void iwl_pcie_rx_allocator(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rb_allocator *rba = &trans_pcie->rba; |
| struct list_head local_empty; |
| int pending = atomic_xchg(&rba->req_pending, 0); |
| |
| IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending); |
| |
| /* If we were scheduled - there is at least one request */ |
| spin_lock(&rba->lock); |
| /* swap out the rba->rbd_empty to a local list */ |
| list_replace_init(&rba->rbd_empty, &local_empty); |
| spin_unlock(&rba->lock); |
| |
| while (pending) { |
| int i; |
| LIST_HEAD(local_allocated); |
| gfp_t gfp_mask = GFP_KERNEL; |
| |
| /* Do not post a warning if there are only a few requests */ |
| if (pending < RX_PENDING_WATERMARK) |
| gfp_mask |= __GFP_NOWARN; |
| |
| for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { |
| struct iwl_rx_mem_buffer *rxb; |
| struct page *page; |
| |
| /* List should never be empty - each reused RBD is |
| * returned to the list, and initial pool covers any |
| * possible gap between the time the page is allocated |
| * to the time the RBD is added. |
| */ |
| BUG_ON(list_empty(&local_empty)); |
| /* Get the first rxb from the rbd list */ |
| rxb = list_first_entry(&local_empty, |
| struct iwl_rx_mem_buffer, list); |
| BUG_ON(rxb->page); |
| |
| /* Alloc a new receive buffer */ |
| page = iwl_pcie_rx_alloc_page(trans, gfp_mask); |
| if (!page) |
| continue; |
| rxb->page = page; |
| |
| /* Get physical address of the RB */ |
| rxb->page_dma = dma_map_page(trans->dev, page, 0, |
| PAGE_SIZE << trans_pcie->rx_page_order, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(trans->dev, rxb->page_dma)) { |
| rxb->page = NULL; |
| __free_pages(page, trans_pcie->rx_page_order); |
| continue; |
| } |
| |
| /* move the allocated entry to the out list */ |
| list_move(&rxb->list, &local_allocated); |
| i++; |
| } |
| |
| pending--; |
| if (!pending) { |
| pending = atomic_xchg(&rba->req_pending, 0); |
| IWL_DEBUG_RX(trans, |
| "Pending allocation requests = %d\n", |
| pending); |
| } |
| |
| spin_lock(&rba->lock); |
| /* add the allocated rbds to the allocator allocated list */ |
| list_splice_tail(&local_allocated, &rba->rbd_allocated); |
| /* get more empty RBDs for current pending requests */ |
| list_splice_tail_init(&rba->rbd_empty, &local_empty); |
| spin_unlock(&rba->lock); |
| |
| atomic_inc(&rba->req_ready); |
| } |
| |
| spin_lock(&rba->lock); |
| /* return unused rbds to the allocator empty list */ |
| list_splice_tail(&local_empty, &rba->rbd_empty); |
| spin_unlock(&rba->lock); |
| } |
| |
| /* |
| * iwl_pcie_rx_allocator_get - returns the pre-allocated pages |
| .* |
| .* Called by queue when the queue posted allocation request and |
| * has freed 8 RBDs in order to restock itself. |
| * This function directly moves the allocated RBs to the queue's ownership |
| * and updates the relevant counters. |
| */ |
| static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, |
| struct iwl_rxq *rxq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rb_allocator *rba = &trans_pcie->rba; |
| int i; |
| |
| lockdep_assert_held(&rxq->lock); |
| |
| /* |
| * atomic_dec_if_positive returns req_ready - 1 for any scenario. |
| * If req_ready is 0 atomic_dec_if_positive will return -1 and this |
| * function will return early, as there are no ready requests. |
| * atomic_dec_if_positive will perofrm the *actual* decrement only if |
| * req_ready > 0, i.e. - there are ready requests and the function |
| * hands one request to the caller. |
| */ |
| if (atomic_dec_if_positive(&rba->req_ready) < 0) |
| return; |
| |
| spin_lock(&rba->lock); |
| for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { |
| /* Get next free Rx buffer, remove it from free list */ |
| struct iwl_rx_mem_buffer *rxb = |
| list_first_entry(&rba->rbd_allocated, |
| struct iwl_rx_mem_buffer, list); |
| |
| list_move(&rxb->list, &rxq->rx_free); |
| } |
| spin_unlock(&rba->lock); |
| |
| rxq->used_count -= RX_CLAIM_REQ_ALLOC; |
| rxq->free_count += RX_CLAIM_REQ_ALLOC; |
| } |
| |
| void iwl_pcie_rx_allocator_work(struct work_struct *data) |
| { |
| struct iwl_rb_allocator *rba_p = |
| container_of(data, struct iwl_rb_allocator, rx_alloc); |
| struct iwl_trans_pcie *trans_pcie = |
| container_of(rba_p, struct iwl_trans_pcie, rba); |
| |
| iwl_pcie_rx_allocator(trans_pcie->trans); |
| } |
| |
| static int iwl_pcie_rx_alloc(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rb_allocator *rba = &trans_pcie->rba; |
| struct device *dev = trans->dev; |
| int i; |
| int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) : |
| sizeof(__le32); |
| |
| if (WARN_ON(trans_pcie->rxq)) |
| return -EINVAL; |
| |
| trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), |
| GFP_KERNEL); |
| if (!trans_pcie->rxq) |
| return -EINVAL; |
| |
| spin_lock_init(&rba->lock); |
| |
| for (i = 0; i < trans->num_rx_queues; i++) { |
| struct iwl_rxq *rxq = &trans_pcie->rxq[i]; |
| |
| spin_lock_init(&rxq->lock); |
| if (trans->cfg->mq_rx_supported) |
| rxq->queue_size = MQ_RX_TABLE_SIZE; |
| else |
| rxq->queue_size = RX_QUEUE_SIZE; |
| |
| /* |
| * Allocate the circular buffer of Read Buffer Descriptors |
| * (RBDs) |
| */ |
| rxq->bd = dma_zalloc_coherent(dev, |
| free_size * rxq->queue_size, |
| &rxq->bd_dma, GFP_KERNEL); |
| if (!rxq->bd) |
| goto err; |
| |
| if (trans->cfg->mq_rx_supported) { |
| rxq->used_bd = dma_zalloc_coherent(dev, |
| sizeof(__le32) * |
| rxq->queue_size, |
| &rxq->used_bd_dma, |
| GFP_KERNEL); |
| if (!rxq->used_bd) |
| goto err; |
| } |
| |
| /*Allocate the driver's pointer to receive buffer status */ |
| rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts), |
| &rxq->rb_stts_dma, |
| GFP_KERNEL); |
| if (!rxq->rb_stts) |
| goto err; |
| } |
| return 0; |
| |
| err: |
| for (i = 0; i < trans->num_rx_queues; i++) { |
| struct iwl_rxq *rxq = &trans_pcie->rxq[i]; |
| |
| if (rxq->bd) |
| dma_free_coherent(dev, free_size * rxq->queue_size, |
| rxq->bd, rxq->bd_dma); |
| rxq->bd_dma = 0; |
| rxq->bd = NULL; |
| |
| if (rxq->rb_stts) |
| dma_free_coherent(trans->dev, |
| sizeof(struct iwl_rb_status), |
| rxq->rb_stts, rxq->rb_stts_dma); |
| |
| if (rxq->used_bd) |
| dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size, |
| rxq->used_bd, rxq->used_bd_dma); |
| rxq->used_bd_dma = 0; |
| rxq->used_bd = NULL; |
| } |
| kfree(trans_pcie->rxq); |
| |
| return -ENOMEM; |
| } |
| |
| static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 rb_size; |
| unsigned long flags; |
| const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ |
| |
| switch (trans_pcie->rx_buf_size) { |
| case IWL_AMSDU_4K: |
| rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; |
| break; |
| case IWL_AMSDU_8K: |
| rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; |
| break; |
| case IWL_AMSDU_12K: |
| rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; |
| break; |
| default: |
| WARN_ON(1); |
| rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; |
| } |
| |
| if (!iwl_trans_grab_nic_access(trans, &flags)) |
| return; |
| |
| /* Stop Rx DMA */ |
| iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); |
| /* reset and flush pointers */ |
| iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); |
| iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); |
| iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); |
| |
| /* Reset driver's Rx queue write index */ |
| iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); |
| |
| /* Tell device where to find RBD circular buffer in DRAM */ |
| iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, |
| (u32)(rxq->bd_dma >> 8)); |
| |
| /* Tell device where in DRAM to update its Rx status */ |
| iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, |
| rxq->rb_stts_dma >> 4); |
| |
| /* Enable Rx DMA |
| * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in |
| * the credit mechanism in 5000 HW RX FIFO |
| * Direct rx interrupts to hosts |
| * Rx buffer size 4 or 8k or 12k |
| * RB timeout 0x10 |
| * 256 RBDs |
| */ |
| iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, |
| FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | |
| FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | |
| FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | |
| rb_size | |
| (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | |
| (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| /* Set interrupt coalescing timer to default (2048 usecs) */ |
| iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); |
| |
| /* W/A for interrupt coalescing bug in 7260 and 3160 */ |
| if (trans->cfg->host_interrupt_operation_mode) |
| iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); |
| } |
| |
| void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable) |
| { |
| if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000) |
| return; |
| |
| if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP) |
| return; |
| |
| if (!trans->cfg->integrated) |
| return; |
| |
| /* |
| * Turn on the chicken-bits that cause MAC wakeup for RX-related |
| * values. |
| * This costs some power, but needed for W/A 9000 integrated A-step |
| * bug where shadow registers are not in the retention list and their |
| * value is lost when NIC powers down |
| */ |
| iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, |
| CSR_MAC_SHADOW_REG_CTRL_RX_WAKE); |
| iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2, |
| CSR_MAC_SHADOW_REG_CTL2_RX_WAKE); |
| } |
| |
| static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 rb_size, enabled = 0; |
| unsigned long flags; |
| int i; |
| |
| switch (trans_pcie->rx_buf_size) { |
| case IWL_AMSDU_4K: |
| rb_size = RFH_RXF_DMA_RB_SIZE_4K; |
| break; |
| case IWL_AMSDU_8K: |
| rb_size = RFH_RXF_DMA_RB_SIZE_8K; |
| break; |
| case IWL_AMSDU_12K: |
| rb_size = RFH_RXF_DMA_RB_SIZE_12K; |
| break; |
| default: |
| WARN_ON(1); |
| rb_size = RFH_RXF_DMA_RB_SIZE_4K; |
| } |
| |
| if (!iwl_trans_grab_nic_access(trans, &flags)) |
| return; |
| |
| /* Stop Rx DMA */ |
| iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); |
| /* disable free amd used rx queue operation */ |
| iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); |
| |
| for (i = 0; i < trans->num_rx_queues; i++) { |
| /* Tell device where to find RBD free table in DRAM */ |
| iwl_write_prph64_no_grab(trans, |
| RFH_Q_FRBDCB_BA_LSB(i), |
| trans_pcie->rxq[i].bd_dma); |
| /* Tell device where to find RBD used table in DRAM */ |
| iwl_write_prph64_no_grab(trans, |
| RFH_Q_URBDCB_BA_LSB(i), |
| trans_pcie->rxq[i].used_bd_dma); |
| /* Tell device where in DRAM to update its Rx status */ |
| iwl_write_prph64_no_grab(trans, |
| RFH_Q_URBD_STTS_WPTR_LSB(i), |
| trans_pcie->rxq[i].rb_stts_dma); |
| /* Reset device indice tables */ |
| iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); |
| iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); |
| iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); |
| |
| enabled |= BIT(i) | BIT(i + 16); |
| } |
| |
| /* |
| * Enable Rx DMA |
| * Rx buffer size 4 or 8k or 12k |
| * Min RB size 4 or 8 |
| * Drop frames that exceed RB size |
| * 512 RBDs |
| */ |
| iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, |
| RFH_DMA_EN_ENABLE_VAL | rb_size | |
| RFH_RXF_DMA_MIN_RB_4_8 | |
| RFH_RXF_DMA_DROP_TOO_LARGE_MASK | |
| RFH_RXF_DMA_RBDCB_SIZE_512); |
| |
| /* |
| * Activate DMA snooping. |
| * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe |
| * Default queue is 0 |
| */ |
| iwl_write_prph_no_grab(trans, RFH_GEN_CFG, |
| RFH_GEN_CFG_RFH_DMA_SNOOP | |
| RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | |
| RFH_GEN_CFG_SERVICE_DMA_SNOOP | |
| RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, |
| trans->cfg->integrated ? |
| RFH_GEN_CFG_RB_CHUNK_SIZE_64 : |
| RFH_GEN_CFG_RB_CHUNK_SIZE_128)); |
| /* Enable the relevant rx queues */ |
| iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); |
| |
| iwl_trans_release_nic_access(trans, &flags); |
| |
| /* Set interrupt coalescing timer to default (2048 usecs) */ |
| iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); |
| |
| iwl_pcie_enable_rx_wake(trans, true); |
| } |
| |
| static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) |
| { |
| lockdep_assert_held(&rxq->lock); |
| |
| INIT_LIST_HEAD(&rxq->rx_free); |
| INIT_LIST_HEAD(&rxq->rx_used); |
| rxq->free_count = 0; |
| rxq->used_count = 0; |
| } |
| |
| static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) |
| { |
| WARN_ON(1); |
| return 0; |
| } |
| |
| static int _iwl_pcie_rx_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *def_rxq; |
| struct iwl_rb_allocator *rba = &trans_pcie->rba; |
| int i, err, queue_size, allocator_pool_size, num_alloc; |
| |
| if (!trans_pcie->rxq) { |
| err = iwl_pcie_rx_alloc(trans); |
| if (err) |
| return err; |
| } |
| def_rxq = trans_pcie->rxq; |
| |
| spin_lock(&rba->lock); |
| atomic_set(&rba->req_pending, 0); |
| atomic_set(&rba->req_ready, 0); |
| INIT_LIST_HEAD(&rba->rbd_allocated); |
| INIT_LIST_HEAD(&rba->rbd_empty); |
| spin_unlock(&rba->lock); |
| |
| /* free all first - we might be reconfigured for a different size */ |
| iwl_pcie_free_rbs_pool(trans); |
| |
| for (i = 0; i < RX_QUEUE_SIZE; i++) |
| def_rxq->queue[i] = NULL; |
| |
| for (i = 0; i < trans->num_rx_queues; i++) { |
| struct iwl_rxq *rxq = &trans_pcie->rxq[i]; |
| |
| rxq->id = i; |
| |
| spin_lock(&rxq->lock); |
| /* |
| * Set read write pointer to reflect that we have processed |
| * and used all buffers, but have not restocked the Rx queue |
| * with fresh buffers |
| */ |
| rxq->read = 0; |
| rxq->write = 0; |
| rxq->write_actual = 0; |
| memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts)); |
| |
| iwl_pcie_rx_init_rxb_lists(rxq); |
| |
| if (!rxq->napi.poll) |
| netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, |
| iwl_pcie_dummy_napi_poll, 64); |
| |
| spin_unlock(&rxq->lock); |
| } |
| |
| /* move the pool to the default queue and allocator ownerships */ |
| queue_size = trans->cfg->mq_rx_supported ? |
| MQ_RX_NUM_RBDS : RX_QUEUE_SIZE; |
| allocator_pool_size = trans->num_rx_queues * |
| (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); |
| num_alloc = queue_size + allocator_pool_size; |
| BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) != |
| ARRAY_SIZE(trans_pcie->rx_pool)); |
| for (i = 0; i < num_alloc; i++) { |
| struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; |
| |
| if (i < allocator_pool_size) |
| list_add(&rxb->list, &rba->rbd_empty); |
| else |
| list_add(&rxb->list, &def_rxq->rx_used); |
| trans_pcie->global_table[i] = rxb; |
| rxb->vid = (u16)(i + 1); |
| rxb->invalid = true; |
| } |
| |
| iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); |
| |
| return 0; |
| } |
| |
| int iwl_pcie_rx_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int ret = _iwl_pcie_rx_init(trans); |
| |
| if (ret) |
| return ret; |
| |
| if (trans->cfg->mq_rx_supported) |
| iwl_pcie_rx_mq_hw_init(trans); |
| else |
| iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); |
| |
| iwl_pcie_rxq_restock(trans, trans_pcie->rxq); |
| |
| spin_lock(&trans_pcie->rxq->lock); |
| iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); |
| spin_unlock(&trans_pcie->rxq->lock); |
| |
| return 0; |
| } |
| |
| int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) |
| { |
| /* |
| * We don't configure the RFH. |
| * Restock will be done at alive, after firmware configured the RFH. |
| */ |
| return _iwl_pcie_rx_init(trans); |
| } |
| |
| void iwl_pcie_rx_free(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rb_allocator *rba = &trans_pcie->rba; |
| int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) : |
| sizeof(__le32); |
| int i; |
| |
| /* |
| * if rxq is NULL, it means that nothing has been allocated, |
| * exit now |
| */ |
| if (!trans_pcie->rxq) { |
| IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); |
| return; |
| } |
| |
| cancel_work_sync(&rba->rx_alloc); |
| |
| iwl_pcie_free_rbs_pool(trans); |
| |
| for (i = 0; i < trans->num_rx_queues; i++) { |
| struct iwl_rxq *rxq = &trans_pcie->rxq[i]; |
| |
| if (rxq->bd) |
| dma_free_coherent(trans->dev, |
| free_size * rxq->queue_size, |
| rxq->bd, rxq->bd_dma); |
| rxq->bd_dma = 0; |
| rxq->bd = NULL; |
| |
| if (rxq->rb_stts) |
| dma_free_coherent(trans->dev, |
| sizeof(struct iwl_rb_status), |
| rxq->rb_stts, rxq->rb_stts_dma); |
| else |
| IWL_DEBUG_INFO(trans, |
| "Free rxq->rb_stts which is NULL\n"); |
| |
| if (rxq->used_bd) |
| dma_free_coherent(trans->dev, |
| sizeof(__le32) * rxq->queue_size, |
| rxq->used_bd, rxq->used_bd_dma); |
| rxq->used_bd_dma = 0; |
| rxq->used_bd = NULL; |
| |
| if (rxq->napi.poll) |
| netif_napi_del(&rxq->napi); |
| } |
| kfree(trans_pcie->rxq); |
| } |
| |
| /* |
| * iwl_pcie_rx_reuse_rbd - Recycle used RBDs |
| * |
| * Called when a RBD can be reused. The RBD is transferred to the allocator. |
| * When there are 2 empty RBDs - a request for allocation is posted |
| */ |
| static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, |
| struct iwl_rx_mem_buffer *rxb, |
| struct iwl_rxq *rxq, bool emergency) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rb_allocator *rba = &trans_pcie->rba; |
| |
| /* Move the RBD to the used list, will be moved to allocator in batches |
| * before claiming or posting a request*/ |
| list_add_tail(&rxb->list, &rxq->rx_used); |
| |
| if (unlikely(emergency)) |
| return; |
| |
| /* Count the allocator owned RBDs */ |
| rxq->used_count++; |
| |
| /* If we have RX_POST_REQ_ALLOC new released rx buffers - |
| * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is |
| * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, |
| * after but we still need to post another request. |
| */ |
| if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { |
| /* Move the 2 RBDs to the allocator ownership. |
| Allocator has another 6 from pool for the request completion*/ |
| spin_lock(&rba->lock); |
| list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); |
| spin_unlock(&rba->lock); |
| |
| atomic_inc(&rba->req_pending); |
| queue_work(rba->alloc_wq, &rba->rx_alloc); |
| } |
| } |
| |
| static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, |
| struct iwl_rxq *rxq, |
| struct iwl_rx_mem_buffer *rxb, |
| bool emergency) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; |
| bool page_stolen = false; |
| int max_len = PAGE_SIZE << trans_pcie->rx_page_order; |
| u32 offset = 0; |
| |
| if (WARN_ON(!rxb)) |
| return; |
| |
| dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); |
| |
| while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { |
| struct iwl_rx_packet *pkt; |
| u16 sequence; |
| bool reclaim; |
| int index, cmd_index, len; |
| struct iwl_rx_cmd_buffer rxcb = { |
| ._offset = offset, |
| ._rx_page_order = trans_pcie->rx_page_order, |
| ._page = rxb->page, |
| ._page_stolen = false, |
| .truesize = max_len, |
| }; |
| |
| pkt = rxb_addr(&rxcb); |
| |
| if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { |
| IWL_DEBUG_RX(trans, |
| "Q %d: RB end marker at offset %d\n", |
| rxq->id, offset); |
| break; |
| } |
| |
| WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> |
| FH_RSCSR_RXQ_POS != rxq->id, |
| "frame on invalid queue - is on %d and indicates %d\n", |
| rxq->id, |
| (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> |
| FH_RSCSR_RXQ_POS); |
| |
| IWL_DEBUG_RX(trans, |
| "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", |
| rxq->id, offset, |
| iwl_get_cmd_string(trans, |
| iwl_cmd_id(pkt->hdr.cmd, |
| pkt->hdr.group_id, |
| 0)), |
| pkt->hdr.group_id, pkt->hdr.cmd, |
| le16_to_cpu(pkt->hdr.sequence)); |
| |
| len = iwl_rx_packet_len(pkt); |
| len += sizeof(u32); /* account for status word */ |
| trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); |
| trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); |
| |
| /* Reclaim a command buffer only if this packet is a response |
| * to a (driver-originated) command. |
| * If the packet (e.g. Rx frame) originated from uCode, |
| * there is no command buffer to reclaim. |
| * Ucode should set SEQ_RX_FRAME bit if ucode-originated, |
| * but apparently a few don't get set; catch them here. */ |
| reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); |
| if (reclaim && !pkt->hdr.group_id) { |
| int i; |
| |
| for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { |
| if (trans_pcie->no_reclaim_cmds[i] == |
| pkt->hdr.cmd) { |
| reclaim = false; |
| break; |
| } |
| } |
| } |
| |
| sequence = le16_to_cpu(pkt->hdr.sequence); |
| index = SEQ_TO_INDEX(sequence); |
| cmd_index = get_cmd_index(txq, index); |
| |
| if (rxq->id == 0) |
| iwl_op_mode_rx(trans->op_mode, &rxq->napi, |
| &rxcb); |
| else |
| iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, |
| &rxcb, rxq->id); |
| |
| if (reclaim) { |
| kzfree(txq->entries[cmd_index].free_buf); |
| txq->entries[cmd_index].free_buf = NULL; |
| } |
| |
| /* |
| * After here, we should always check rxcb._page_stolen, |
| * if it is true then one of the handlers took the page. |
| */ |
| |
| if (reclaim) { |
| /* Invoke any callbacks, transfer the buffer to caller, |
| * and fire off the (possibly) blocking |
| * iwl_trans_send_cmd() |
| * as we reclaim the driver command queue */ |
| if (!rxcb._page_stolen) |
| iwl_pcie_hcmd_complete(trans, &rxcb); |
| else |
| IWL_WARN(trans, "Claim null rxb?\n"); |
| } |
| |
| page_stolen |= rxcb._page_stolen; |
| offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); |
| } |
| |
| /* page was stolen from us -- free our reference */ |
| if (page_stolen) { |
| __free_pages(rxb->page, trans_pcie->rx_page_order); |
| rxb->page = NULL; |
| } |
| |
| /* Reuse the page if possible. For notification packets and |
| * SKBs that fail to Rx correctly, add them back into the |
| * rx_free list for reuse later. */ |
| if (rxb->page != NULL) { |
| rxb->page_dma = |
| dma_map_page(trans->dev, rxb->page, 0, |
| PAGE_SIZE << trans_pcie->rx_page_order, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(trans->dev, rxb->page_dma)) { |
| /* |
| * free the page(s) as well to not break |
| * the invariant that the items on the used |
| * list have no page(s) |
| */ |
| __free_pages(rxb->page, trans_pcie->rx_page_order); |
| rxb->page = NULL; |
| iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); |
| } else { |
| list_add_tail(&rxb->list, &rxq->rx_free); |
| rxq->free_count++; |
| } |
| } else |
| iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); |
| } |
| |
| /* |
| * iwl_pcie_rx_handle - Main entry function for receiving responses from fw |
| */ |
| static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_rxq *rxq = &trans_pcie->rxq[queue]; |
| u32 r, i, count = 0; |
| bool emergency = false; |
| |
| restart: |
| spin_lock(&rxq->lock); |
| /* uCode's read index (stored in shared DRAM) indicates the last Rx |
| * buffer that the driver may process (last buffer filled by ucode). */ |
| r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF; |
| i = rxq->read; |
| |
| /* W/A 9000 device step A0 wrap-around bug */ |
| r &= (rxq->queue_size - 1); |
| |
| /* Rx interrupt, but nothing sent from uCode */ |
| if (i == r) |
| IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); |
| |
| while (i != r) { |
| struct iwl_rx_mem_buffer *rxb; |
| |
| if (unlikely(rxq->used_count == rxq->queue_size / 2)) |
| emergency = true; |
| |
| if (trans->cfg->mq_rx_supported) { |
| /* |
| * used_bd is a 32 bit but only 12 are used to retrieve |
| * the vid |
| */ |
| u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF; |
| |
| if (WARN(!vid || |
| vid > ARRAY_SIZE(trans_pcie->global_table), |
| "Invalid rxb index from HW %u\n", (u32)vid)) { |
| iwl_force_nmi(trans); |
| goto out; |
| } |
| rxb = trans_pcie->global_table[vid - 1]; |
| if (WARN(rxb->invalid, |
| "Invalid rxb from HW %u\n", (u32)vid)) { |
| iwl_force_nmi(trans); |
| goto out; |
| } |
| rxb->invalid = true; |
| } else { |
| rxb = rxq->queue[i]; |
| rxq->queue[i] = NULL; |
| } |
| |
| IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); |
| iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency); |
| |
| i = (i + 1) & (rxq->queue_size - 1); |
| |
| /* |
| * If we have RX_CLAIM_REQ_ALLOC released rx buffers - |
| * try to claim the pre-allocated buffers from the allocator. |
| * If not ready - will try to reclaim next time. |
| * There is no need to reschedule work - allocator exits only |
| * on success |
| */ |
| if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) |
| iwl_pcie_rx_allocator_get(trans, rxq); |
| |
| if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { |
| struct iwl_rb_allocator *rba = &trans_pcie->rba; |
| |
| /* Add the remaining empty RBDs for allocator use */ |
| spin_lock(&rba->lock); |
| list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); |
| spin_unlock(&rba->lock); |
| } else if (emergency) { |
| count++; |
| if (count == 8) { |
| count = 0; |
| if (rxq->used_count < rxq->queue_size / 3) |
| emergency = false; |
| |
| rxq->read = i; |
| spin_unlock(&rxq->lock); |
| iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); |
| iwl_pcie_rxq_restock(trans, rxq); |
| goto restart; |
| } |
| } |
| } |
| out: |
| /* Backtrack one entry */ |
| rxq->read = i; |
| spin_unlock(&rxq->lock); |
| |
| /* |
| * handle a case where in emergency there are some unallocated RBDs. |
| * those RBDs are in the used list, but are not tracked by the queue's |
| * used_count which counts allocator owned RBDs. |
| * unallocated emergency RBDs must be allocated on exit, otherwise |
| * when called again the function may not be in emergency mode and |
| * they will be handed to the allocator with no tracking in the RBD |
| * allocator counters, which will lead to them never being claimed back |
| * by the queue. |
| * by allocating them here, they are now in the queue free list, and |
| * will be restocked by the next call of iwl_pcie_rxq_restock. |
| */ |
| if (unlikely(emergency && count)) |
| iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); |
| |
| if (rxq->napi.poll) |
| napi_gro_flush(&rxq->napi, false); |
| |
| iwl_pcie_rxq_restock(trans, rxq); |
| } |
| |
| static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) |
| { |
| u8 queue = entry->entry; |
| struct msix_entry *entries = entry - queue; |
| |
| return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); |
| } |
| |
| static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, |
| struct msix_entry *entry) |
| { |
| /* |
| * Before sending the interrupt the HW disables it to prevent |
| * a nested interrupt. This is done by writing 1 to the corresponding |
| * bit in the mask register. After handling the interrupt, it should be |
| * re-enabled by clearing this bit. This register is defined as |
| * write 1 clear (W1C) register, meaning that it's being clear |
| * by writing 1 to the bit. |
| */ |
| iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry)); |
| } |
| |
| /* |
| * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw |
| * This interrupt handler should be used with RSS queue only. |
| */ |
| irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) |
| { |
| struct msix_entry *entry = dev_id; |
| struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); |
| struct iwl_trans *trans = trans_pcie->trans; |
| |
| trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); |
| |
| if (WARN_ON(entry->entry >= trans->num_rx_queues)) |
| return IRQ_NONE; |
| |
| lock_map_acquire(&trans->sync_cmd_lockdep_map); |
| |
| local_bh_disable(); |
| iwl_pcie_rx_handle(trans, entry->entry); |
| local_bh_enable(); |
| |
| iwl_pcie_clear_irq(trans, entry); |
| |
| lock_map_release(&trans->sync_cmd_lockdep_map); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card |
| */ |
| static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i; |
| |
| /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ |
| if (trans->cfg->internal_wimax_coex && |
| !trans->cfg->apmg_not_supported && |
| (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & |
| APMS_CLK_VAL_MRB_FUNC_MODE) || |
| (iwl_read_prph(trans, APMG_PS_CTRL_REG) & |
| APMG_PS_CTRL_VAL_RESET_REQ))) { |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| iwl_op_mode_wimax_active(trans->op_mode); |
| wake_up(&trans_pcie->wait_command_queue); |
| return; |
| } |
| |
| for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { |
| if (!trans_pcie->txq[i]) |
| continue; |
| del_timer(&trans_pcie->txq[i]->stuck_timer); |
| } |
| |
| /* The STATUS_FW_ERROR bit is set in this function. This must happen |
| * before we wake up the command caller, to ensure a proper cleanup. */ |
| iwl_trans_fw_error(trans); |
| |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| wake_up(&trans_pcie->wait_command_queue); |
| } |
| |
| static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) |
| { |
| u32 inta; |
| |
| lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); |
| |
| trace_iwlwifi_dev_irq(trans->dev); |
| |
| /* Discover which interrupts are active/pending */ |
| inta = iwl_read32(trans, CSR_INT); |
| |
| /* the thread will service interrupts and re-enable them */ |
| return inta; |
| } |
| |
| /* a device (PCI-E) page is 4096 bytes long */ |
| #define ICT_SHIFT 12 |
| #define ICT_SIZE (1 << ICT_SHIFT) |
| #define ICT_COUNT (ICT_SIZE / sizeof(u32)) |
| |
| /* interrupt handler using ict table, with this interrupt driver will |
| * stop using INTA register to get device's interrupt, reading this register |
| * is expensive, device will write interrupts in ICT dram table, increment |
| * index then will fire interrupt to driver, driver will OR all ICT table |
| * entries from current index up to table entry with 0 value. the result is |
| * the interrupt we need to service, driver will set the entries back to 0 and |
| * set index. |
| */ |
| static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 inta; |
| u32 val = 0; |
| u32 read; |
| |
| trace_iwlwifi_dev_irq(trans->dev); |
| |
| /* Ignore interrupt if there's nothing in NIC to service. |
| * This may be due to IRQ shared with another device, |
| * or due to sporadic interrupts thrown from our NIC. */ |
| read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); |
| trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); |
| if (!read) |
| return 0; |
| |
| /* |
| * Collect all entries up to the first 0, starting from ict_index; |
| * note we already read at ict_index. |
| */ |
| do { |
| val |= read; |
| IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", |
| trans_pcie->ict_index, read); |
| trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; |
| trans_pcie->ict_index = |
| ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); |
| |
| read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); |
| trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, |
| read); |
| } while (read); |
| |
| /* We should not get this value, just ignore it. */ |
| if (val == 0xffffffff) |
| val = 0; |
| |
| /* |
| * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit |
| * (bit 15 before shifting it to 31) to clear when using interrupt |
| * coalescing. fortunately, bits 18 and 19 stay set when this happens |
| * so we use them to decide on the real state of the Rx bit. |
| * In order words, bit 15 is set if bit 18 or bit 19 are set. |
| */ |
| if (val & 0xC0000) |
| val |= 0x8000; |
| |
| inta = (0xff & val) | ((0xff00 & val) << 16); |
| return inta; |
| } |
| |
| void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| bool hw_rfkill, prev, report; |
| |
| mutex_lock(&trans_pcie->mutex); |
| prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| hw_rfkill = iwl_is_rfkill_set(trans); |
| if (hw_rfkill) { |
| set_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| set_bit(STATUS_RFKILL_HW, &trans->status); |
| } |
| if (trans_pcie->opmode_down) |
| report = hw_rfkill; |
| else |
| report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| |
| IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", |
| hw_rfkill ? "disable radio" : "enable radio"); |
| |
| isr_stats->rfkill++; |
| |
| if (prev != report) |
| iwl_trans_pcie_rf_kill(trans, report); |
| mutex_unlock(&trans_pcie->mutex); |
| |
| if (hw_rfkill) { |
| if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status)) |
| IWL_DEBUG_RF_KILL(trans, |
| "Rfkill while SYNC HCMD in flight\n"); |
| wake_up(&trans_pcie->wait_command_queue); |
| } else { |
| clear_bit(STATUS_RFKILL_HW, &trans->status); |
| if (trans_pcie->opmode_down) |
| clear_bit(STATUS_RFKILL_OPMODE, &trans->status); |
| } |
| } |
| |
| irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) |
| { |
| struct iwl_trans *trans = dev_id; |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| u32 inta = 0; |
| u32 handled = 0; |
| |
| lock_map_acquire(&trans->sync_cmd_lockdep_map); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| |
| /* dram interrupt table not set yet, |
| * use legacy interrupt. |
| */ |
| if (likely(trans_pcie->use_ict)) |
| inta = iwl_pcie_int_cause_ict(trans); |
| else |
| inta = iwl_pcie_int_cause_non_ict(trans); |
| |
| if (iwl_have_debug_level(IWL_DL_ISR)) { |
| IWL_DEBUG_ISR(trans, |
| "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", |
| inta, trans_pcie->inta_mask, |
| iwl_read32(trans, CSR_INT_MASK), |
| iwl_read32(trans, CSR_FH_INT_STATUS)); |
| if (inta & (~trans_pcie->inta_mask)) |
| IWL_DEBUG_ISR(trans, |
| "We got a masked interrupt (0x%08x)\n", |
| inta & (~trans_pcie->inta_mask)); |
| } |
| |
| inta &= trans_pcie->inta_mask; |
| |
| /* |
| * Ignore interrupt if there's nothing in NIC to service. |
| * This may be due to IRQ shared with another device, |
| * or due to sporadic interrupts thrown from our NIC. |
| */ |
| if (unlikely(!inta)) { |
| IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); |
| /* |
| * Re-enable interrupts here since we don't |
| * have anything to service |
| */ |
| if (test_bit(STATUS_INT_ENABLED, &trans->status)) |
| _iwl_enable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| lock_map_release(&trans->sync_cmd_lockdep_map); |
| return IRQ_NONE; |
| } |
| |
| if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { |
| /* |
| * Hardware disappeared. It might have |
| * already raised an interrupt. |
| */ |
| IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); |
| spin_unlock(&trans_pcie->irq_lock); |
| goto out; |
| } |
| |
| /* Ack/clear/reset pending uCode interrupts. |
| * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, |
| */ |
| /* There is a hardware bug in the interrupt mask function that some |
| * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if |
| * they are disabled in the CSR_INT_MASK register. Furthermore the |
| * ICT interrupt handling mechanism has another bug that might cause |
| * these unmasked interrupts fail to be detected. We workaround the |
| * hardware bugs here by ACKing all the possible interrupts so that |
| * interrupt coalescing can still be achieved. |
| */ |
| iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); |
| |
| if (iwl_have_debug_level(IWL_DL_ISR)) |
| IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", |
| inta, iwl_read32(trans, CSR_INT_MASK)); |
| |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| /* Now service all interrupt bits discovered above. */ |
| if (inta & CSR_INT_BIT_HW_ERR) { |
| IWL_ERR(trans, "Hardware error detected. Restarting.\n"); |
| |
| /* Tell the device to stop sending interrupts */ |
| iwl_disable_interrupts(trans); |
| |
| isr_stats->hw++; |
| iwl_pcie_irq_handle_error(trans); |
| |
| handled |= CSR_INT_BIT_HW_ERR; |
| |
| goto out; |
| } |
| |
| if (iwl_have_debug_level(IWL_DL_ISR)) { |
| /* NIC fires this, but we don't use it, redundant with WAKEUP */ |
| if (inta & CSR_INT_BIT_SCD) { |
| IWL_DEBUG_ISR(trans, |
| "Scheduler finished to transmit the frame/frames.\n"); |
| isr_stats->sch++; |
| } |
| |
| /* Alive notification via Rx interrupt will do the real work */ |
| if (inta & CSR_INT_BIT_ALIVE) { |
| IWL_DEBUG_ISR(trans, "Alive interrupt\n"); |
| isr_stats->alive++; |
| if (trans->cfg->gen2) { |
| /* |
| * We can restock, since firmware configured |
| * the RFH |
| */ |
| iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); |
| } |
| } |
| } |
| |
| /* Safely ignore these bits for debug checks below */ |
| inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); |
| |
| /* HW RF KILL switch toggled */ |
| if (inta & CSR_INT_BIT_RF_KILL) { |
| iwl_pcie_handle_rfkill_irq(trans); |
| handled |= CSR_INT_BIT_RF_KILL; |
| } |
| |
| /* Chip got too hot and stopped itself */ |
| if (inta & CSR_INT_BIT_CT_KILL) { |
| IWL_ERR(trans, "Microcode CT kill error detected.\n"); |
| isr_stats->ctkill++; |
| handled |= CSR_INT_BIT_CT_KILL; |
| } |
| |
| /* Error detected by uCode */ |
| if (inta & CSR_INT_BIT_SW_ERR) { |
| IWL_ERR(trans, "Microcode SW error detected. " |
| " Restarting 0x%X.\n", inta); |
| isr_stats->sw++; |
| iwl_pcie_irq_handle_error(trans); |
| handled |= CSR_INT_BIT_SW_ERR; |
| } |
| |
| /* uCode wakes up after power-down sleep */ |
| if (inta & CSR_INT_BIT_WAKEUP) { |
| IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); |
| iwl_pcie_rxq_check_wrptr(trans); |
| iwl_pcie_txq_check_wrptrs(trans); |
| |
| isr_stats->wakeup++; |
| |
| handled |= CSR_INT_BIT_WAKEUP; |
| } |
| |
| /* All uCode command responses, including Tx command responses, |
| * Rx "responses" (frame-received notification), and other |
| * notifications from uCode come through here*/ |
| if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | |
| CSR_INT_BIT_RX_PERIODIC)) { |
| IWL_DEBUG_ISR(trans, "Rx interrupt\n"); |
| if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { |
| handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); |
| iwl_write32(trans, CSR_FH_INT_STATUS, |
| CSR_FH_INT_RX_MASK); |
| } |
| if (inta & CSR_INT_BIT_RX_PERIODIC) { |
| handled |= CSR_INT_BIT_RX_PERIODIC; |
| iwl_write32(trans, |
| CSR_INT, CSR_INT_BIT_RX_PERIODIC); |
| } |
| /* Sending RX interrupt require many steps to be done in the |
| * the device: |
| * 1- write interrupt to current index in ICT table. |
| * 2- dma RX frame. |
| * 3- update RX shared data to indicate last write index. |
| * 4- send interrupt. |
| * This could lead to RX race, driver could receive RX interrupt |
| * but the shared data changes does not reflect this; |
| * periodic interrupt will detect any dangling Rx activity. |
| */ |
| |
| /* Disable periodic interrupt; we use it as just a one-shot. */ |
| iwl_write8(trans, CSR_INT_PERIODIC_REG, |
| CSR_INT_PERIODIC_DIS); |
| |
| /* |
| * Enable periodic interrupt in 8 msec only if we received |
| * real RX interrupt (instead of just periodic int), to catch |
| * any dangling Rx interrupt. If it was just the periodic |
| * interrupt, there was no dangling Rx activity, and no need |
| * to extend the periodic interrupt; one-shot is enough. |
| */ |
| if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) |
| iwl_write8(trans, CSR_INT_PERIODIC_REG, |
| CSR_INT_PERIODIC_ENA); |
| |
| isr_stats->rx++; |
| |
| local_bh_disable(); |
| iwl_pcie_rx_handle(trans, 0); |
| local_bh_enable(); |
| } |
| |
| /* This "Tx" DMA channel is used only for loading uCode */ |
| if (inta & CSR_INT_BIT_FH_TX) { |
| iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); |
| IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); |
| isr_stats->tx++; |
| handled |= CSR_INT_BIT_FH_TX; |
| /* Wake up uCode load routine, now that load is complete */ |
| trans_pcie->ucode_write_complete = true; |
| wake_up(&trans_pcie->ucode_write_waitq); |
| } |
| |
| if (inta & ~handled) { |
| IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); |
| isr_stats->unhandled++; |
| } |
| |
| if (inta & ~(trans_pcie->inta_mask)) { |
| IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", |
| inta & ~trans_pcie->inta_mask); |
| } |
| |
| spin_lock(&trans_pcie->irq_lock); |
| /* only Re-enable all interrupt if disabled by irq */ |
| if (test_bit(STATUS_INT_ENABLED, &trans->status)) |
| _iwl_enable_interrupts(trans); |
| /* we are loading the firmware, enable FH_TX interrupt only */ |
| else if (handled & CSR_INT_BIT_FH_TX) |
| iwl_enable_fw_load_int(trans); |
| /* Re-enable RF_KILL if it occurred */ |
| else if (handled & CSR_INT_BIT_RF_KILL) |
| iwl_enable_rfkill_int(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| out: |
| lock_map_release(&trans->sync_cmd_lockdep_map); |
| return IRQ_HANDLED; |
| } |
| |
| /****************************************************************************** |
| * |
| * ICT functions |
| * |
| ******************************************************************************/ |
| |
| /* Free dram table */ |
| void iwl_pcie_free_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| if (trans_pcie->ict_tbl) { |
| dma_free_coherent(trans->dev, ICT_SIZE, |
| trans_pcie->ict_tbl, |
| trans_pcie->ict_tbl_dma); |
| trans_pcie->ict_tbl = NULL; |
| trans_pcie->ict_tbl_dma = 0; |
| } |
| } |
| |
| /* |
| * allocate dram shared table, it is an aligned memory |
| * block of ICT_SIZE. |
| * also reset all data related to ICT table interrupt. |
| */ |
| int iwl_pcie_alloc_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| trans_pcie->ict_tbl = |
| dma_zalloc_coherent(trans->dev, ICT_SIZE, |
| &trans_pcie->ict_tbl_dma, |
| GFP_KERNEL); |
| if (!trans_pcie->ict_tbl) |
| return -ENOMEM; |
| |
| /* just an API sanity check ... it is guaranteed to be aligned */ |
| if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { |
| iwl_pcie_free_ict(trans); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Device is going up inform it about using ICT interrupt table, |
| * also we need to tell the driver to start using ICT interrupt. |
| */ |
| void iwl_pcie_reset_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| u32 val; |
| |
| if (!trans_pcie->ict_tbl) |
| return; |
| |
| spin_lock(&trans_pcie->irq_lock); |
| _iwl_disable_interrupts(trans); |
| |
| memset(trans_pcie->ict_tbl, 0, ICT_SIZE); |
| |
| val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; |
| |
| val |= CSR_DRAM_INT_TBL_ENABLE | |
| CSR_DRAM_INIT_TBL_WRAP_CHECK | |
| CSR_DRAM_INIT_TBL_WRITE_POINTER; |
| |
| IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); |
| |
| iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); |
| trans_pcie->use_ict = true; |
| trans_pcie->ict_index = 0; |
| iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); |
| _iwl_enable_interrupts(trans); |
| spin_unlock(&trans_pcie->irq_lock); |
| } |
| |
| /* Device is going down disable ict interrupt usage */ |
| void iwl_pcie_disable_ict(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| trans_pcie->use_ict = false; |
| spin_unlock(&trans_pcie->irq_lock); |
| } |
| |
| irqreturn_t iwl_pcie_isr(int irq, void *data) |
| { |
| struct iwl_trans *trans = data; |
| |
| if (!trans) |
| return IRQ_NONE; |
| |
| /* Disable (but don't clear!) interrupts here to avoid |
| * back-to-back ISRs and sporadic interrupts from our NIC. |
| * If we have something to service, the tasklet will re-enable ints. |
| * If we *don't* have something, we'll re-enable before leaving here. |
| */ |
| iwl_write32(trans, CSR_INT_MASK, 0x00000000); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| irqreturn_t iwl_pcie_msix_isr(int irq, void *data) |
| { |
| return IRQ_WAKE_THREAD; |
| } |
| |
| irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) |
| { |
| struct msix_entry *entry = dev_id; |
| struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); |
| struct iwl_trans *trans = trans_pcie->trans; |
| struct isr_statistics *isr_stats = &trans_pcie->isr_stats; |
| u32 inta_fh, inta_hw; |
| |
| lock_map_acquire(&trans->sync_cmd_lockdep_map); |
| |
| spin_lock(&trans_pcie->irq_lock); |
| inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); |
| inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); |
| /* |
| * Clear causes registers to avoid being handling the same cause. |
| */ |
| iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); |
| iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); |
| spin_unlock(&trans_pcie->irq_lock); |
| |
| trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); |
| |
| if (unlikely(!(inta_fh | inta_hw))) { |
| IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); |
| lock_map_release(&trans->sync_cmd_lockdep_map); |
| return IRQ_NONE; |
| } |
| |
| if (iwl_have_debug_level(IWL_DL_ISR)) |
| IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n", |
| inta_fh, |
| iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); |
| |
| if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && |
| inta_fh & MSIX_FH_INT_CAUSES_Q0) { |
| local_bh_disable(); |
| iwl_pcie_rx_handle(trans, 0); |
| local_bh_enable(); |
| } |
| |
| if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && |
| inta_fh & MSIX_FH_INT_CAUSES_Q1) { |
| local_bh_disable(); |
| iwl_pcie_rx_handle(trans, 1); |
| local_bh_enable(); |
| } |
| |
| /* This "Tx" DMA channel is used only for loading uCode */ |
| if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { |
| IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); |
| isr_stats->tx++; |
| /* |
| * Wake up uCode load routine, |
| * now that load is complete |
| */ |
| trans_pcie->ucode_write_complete = true; |
| wake_up(&trans_pcie->ucode_write_waitq); |
| } |
| |
| /* Error detected by uCode */ |
| if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || |
| (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) { |
| IWL_ERR(trans, |
| "Microcode SW error detected. Restarting 0x%X.\n", |
| inta_fh); |
| isr_stats->sw++; |
| iwl_pcie_irq_handle_error(trans); |
| } |
| |
| /* After checking FH register check HW register */ |
| if (iwl_have_debug_level(IWL_DL_ISR)) |
| IWL_DEBUG_ISR(trans, |
| "ISR inta_hw 0x%08x, enabled 0x%08x\n", |
| inta_hw, |
| iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); |
| |
| /* Alive notification via Rx interrupt will do the real work */ |
| if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { |
| IWL_DEBUG_ISR(trans, "Alive interrupt\n"); |
| isr_stats->alive++; |
| if (trans->cfg->gen2) { |
| /* We can restock, since firmware configured the RFH */ |
| iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); |
| } |
| } |
| |
| /* uCode wakes up after power-down sleep */ |
| if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) { |
| IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); |
| iwl_pcie_rxq_check_wrptr(trans); |
| iwl_pcie_txq_check_wrptrs(trans); |
| |
| isr_stats->wakeup++; |
| } |
| |
| /* Chip got too hot and stopped itself */ |
| if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { |
| IWL_ERR(trans, "Microcode CT kill error detected.\n"); |
| isr_stats->ctkill++; |
| } |
| |
| /* HW RF KILL switch toggled */ |
| if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) |
| iwl_pcie_handle_rfkill_irq(trans); |
| |
| if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { |
| IWL_ERR(trans, |
| "Hardware error detected. Restarting.\n"); |
| |
| isr_stats->hw++; |
| iwl_pcie_irq_handle_error(trans); |
| } |
| |
| iwl_pcie_clear_irq(trans, entry); |
| |
| lock_map_release(&trans->sync_cmd_lockdep_map); |
| |
| return IRQ_HANDLED; |
| } |