| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| */ |
| |
| #include "i915_drv.h" |
| #include "intel_dram.h" |
| |
| struct dram_dimm_info { |
| u8 size, width, ranks; |
| }; |
| |
| struct dram_channel_info { |
| struct dram_dimm_info dimm_l, dimm_s; |
| u8 ranks; |
| bool is_16gb_dimm; |
| }; |
| |
| #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type |
| |
| static const char *intel_dram_type_str(enum intel_dram_type type) |
| { |
| static const char * const str[] = { |
| DRAM_TYPE_STR(UNKNOWN), |
| DRAM_TYPE_STR(DDR3), |
| DRAM_TYPE_STR(DDR4), |
| DRAM_TYPE_STR(LPDDR3), |
| DRAM_TYPE_STR(LPDDR4), |
| }; |
| |
| if (type >= ARRAY_SIZE(str)) |
| type = INTEL_DRAM_UNKNOWN; |
| |
| return str[type]; |
| } |
| |
| #undef DRAM_TYPE_STR |
| |
| static int intel_dimm_num_devices(const struct dram_dimm_info *dimm) |
| { |
| return dimm->ranks * 64 / (dimm->width ?: 1); |
| } |
| |
| /* Returns total GB for the whole DIMM */ |
| static int skl_get_dimm_size(u16 val) |
| { |
| return val & SKL_DRAM_SIZE_MASK; |
| } |
| |
| static int skl_get_dimm_width(u16 val) |
| { |
| if (skl_get_dimm_size(val) == 0) |
| return 0; |
| |
| switch (val & SKL_DRAM_WIDTH_MASK) { |
| case SKL_DRAM_WIDTH_X8: |
| case SKL_DRAM_WIDTH_X16: |
| case SKL_DRAM_WIDTH_X32: |
| val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT; |
| return 8 << val; |
| default: |
| MISSING_CASE(val); |
| return 0; |
| } |
| } |
| |
| static int skl_get_dimm_ranks(u16 val) |
| { |
| if (skl_get_dimm_size(val) == 0) |
| return 0; |
| |
| val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT; |
| |
| return val + 1; |
| } |
| |
| /* Returns total GB for the whole DIMM */ |
| static int cnl_get_dimm_size(u16 val) |
| { |
| return (val & CNL_DRAM_SIZE_MASK) / 2; |
| } |
| |
| static int cnl_get_dimm_width(u16 val) |
| { |
| if (cnl_get_dimm_size(val) == 0) |
| return 0; |
| |
| switch (val & CNL_DRAM_WIDTH_MASK) { |
| case CNL_DRAM_WIDTH_X8: |
| case CNL_DRAM_WIDTH_X16: |
| case CNL_DRAM_WIDTH_X32: |
| val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT; |
| return 8 << val; |
| default: |
| MISSING_CASE(val); |
| return 0; |
| } |
| } |
| |
| static int cnl_get_dimm_ranks(u16 val) |
| { |
| if (cnl_get_dimm_size(val) == 0) |
| return 0; |
| |
| val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT; |
| |
| return val + 1; |
| } |
| |
| static bool |
| skl_is_16gb_dimm(const struct dram_dimm_info *dimm) |
| { |
| /* Convert total GB to Gb per DRAM device */ |
| return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16; |
| } |
| |
| static void |
| skl_dram_get_dimm_info(struct drm_i915_private *i915, |
| struct dram_dimm_info *dimm, |
| int channel, char dimm_name, u16 val) |
| { |
| if (INTEL_GEN(i915) >= 10) { |
| dimm->size = cnl_get_dimm_size(val); |
| dimm->width = cnl_get_dimm_width(val); |
| dimm->ranks = cnl_get_dimm_ranks(val); |
| } else { |
| dimm->size = skl_get_dimm_size(val); |
| dimm->width = skl_get_dimm_width(val); |
| dimm->ranks = skl_get_dimm_ranks(val); |
| } |
| |
| drm_dbg_kms(&i915->drm, |
| "CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n", |
| channel, dimm_name, dimm->size, dimm->width, dimm->ranks, |
| yesno(skl_is_16gb_dimm(dimm))); |
| } |
| |
| static int |
| skl_dram_get_channel_info(struct drm_i915_private *i915, |
| struct dram_channel_info *ch, |
| int channel, u32 val) |
| { |
| skl_dram_get_dimm_info(i915, &ch->dimm_l, |
| channel, 'L', val & 0xffff); |
| skl_dram_get_dimm_info(i915, &ch->dimm_s, |
| channel, 'S', val >> 16); |
| |
| if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) { |
| drm_dbg_kms(&i915->drm, "CH%u not populated\n", channel); |
| return -EINVAL; |
| } |
| |
| if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2) |
| ch->ranks = 2; |
| else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1) |
| ch->ranks = 2; |
| else |
| ch->ranks = 1; |
| |
| ch->is_16gb_dimm = skl_is_16gb_dimm(&ch->dimm_l) || |
| skl_is_16gb_dimm(&ch->dimm_s); |
| |
| drm_dbg_kms(&i915->drm, "CH%u ranks: %u, 16Gb DIMMs: %s\n", |
| channel, ch->ranks, yesno(ch->is_16gb_dimm)); |
| |
| return 0; |
| } |
| |
| static bool |
| intel_is_dram_symmetric(const struct dram_channel_info *ch0, |
| const struct dram_channel_info *ch1) |
| { |
| return !memcmp(ch0, ch1, sizeof(*ch0)) && |
| (ch0->dimm_s.size == 0 || |
| !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l))); |
| } |
| |
| static int |
| skl_dram_get_channels_info(struct drm_i915_private *i915) |
| { |
| struct dram_info *dram_info = &i915->dram_info; |
| struct dram_channel_info ch0 = {}, ch1 = {}; |
| u32 val; |
| int ret; |
| |
| val = intel_uncore_read(&i915->uncore, |
| SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN); |
| ret = skl_dram_get_channel_info(i915, &ch0, 0, val); |
| if (ret == 0) |
| dram_info->num_channels++; |
| |
| val = intel_uncore_read(&i915->uncore, |
| SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN); |
| ret = skl_dram_get_channel_info(i915, &ch1, 1, val); |
| if (ret == 0) |
| dram_info->num_channels++; |
| |
| if (dram_info->num_channels == 0) { |
| drm_info(&i915->drm, "Number of memory channels is zero\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * If any of the channel is single rank channel, worst case output |
| * will be same as if single rank memory, so consider single rank |
| * memory. |
| */ |
| if (ch0.ranks == 1 || ch1.ranks == 1) |
| dram_info->ranks = 1; |
| else |
| dram_info->ranks = max(ch0.ranks, ch1.ranks); |
| |
| if (dram_info->ranks == 0) { |
| drm_info(&i915->drm, "couldn't get memory rank information\n"); |
| return -EINVAL; |
| } |
| |
| dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm; |
| |
| dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1); |
| |
| drm_dbg_kms(&i915->drm, "Memory configuration is symmetric? %s\n", |
| yesno(dram_info->symmetric_memory)); |
| |
| return 0; |
| } |
| |
| static enum intel_dram_type |
| skl_get_dram_type(struct drm_i915_private *i915) |
| { |
| u32 val; |
| |
| val = intel_uncore_read(&i915->uncore, |
| SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN); |
| |
| switch (val & SKL_DRAM_DDR_TYPE_MASK) { |
| case SKL_DRAM_DDR_TYPE_DDR3: |
| return INTEL_DRAM_DDR3; |
| case SKL_DRAM_DDR_TYPE_DDR4: |
| return INTEL_DRAM_DDR4; |
| case SKL_DRAM_DDR_TYPE_LPDDR3: |
| return INTEL_DRAM_LPDDR3; |
| case SKL_DRAM_DDR_TYPE_LPDDR4: |
| return INTEL_DRAM_LPDDR4; |
| default: |
| MISSING_CASE(val); |
| return INTEL_DRAM_UNKNOWN; |
| } |
| } |
| |
| static int |
| skl_get_dram_info(struct drm_i915_private *i915) |
| { |
| struct dram_info *dram_info = &i915->dram_info; |
| u32 mem_freq_khz, val; |
| int ret; |
| |
| dram_info->type = skl_get_dram_type(i915); |
| drm_dbg_kms(&i915->drm, "DRAM type: %s\n", |
| intel_dram_type_str(dram_info->type)); |
| |
| ret = skl_dram_get_channels_info(i915); |
| if (ret) |
| return ret; |
| |
| val = intel_uncore_read(&i915->uncore, |
| SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU); |
| mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) * |
| SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000); |
| |
| dram_info->bandwidth_kbps = dram_info->num_channels * |
| mem_freq_khz * 8; |
| |
| if (dram_info->bandwidth_kbps == 0) { |
| drm_info(&i915->drm, |
| "Couldn't get system memory bandwidth\n"); |
| return -EINVAL; |
| } |
| |
| dram_info->valid = true; |
| return 0; |
| } |
| |
| /* Returns Gb per DRAM device */ |
| static int bxt_get_dimm_size(u32 val) |
| { |
| switch (val & BXT_DRAM_SIZE_MASK) { |
| case BXT_DRAM_SIZE_4GBIT: |
| return 4; |
| case BXT_DRAM_SIZE_6GBIT: |
| return 6; |
| case BXT_DRAM_SIZE_8GBIT: |
| return 8; |
| case BXT_DRAM_SIZE_12GBIT: |
| return 12; |
| case BXT_DRAM_SIZE_16GBIT: |
| return 16; |
| default: |
| MISSING_CASE(val); |
| return 0; |
| } |
| } |
| |
| static int bxt_get_dimm_width(u32 val) |
| { |
| if (!bxt_get_dimm_size(val)) |
| return 0; |
| |
| val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT; |
| |
| return 8 << val; |
| } |
| |
| static int bxt_get_dimm_ranks(u32 val) |
| { |
| if (!bxt_get_dimm_size(val)) |
| return 0; |
| |
| switch (val & BXT_DRAM_RANK_MASK) { |
| case BXT_DRAM_RANK_SINGLE: |
| return 1; |
| case BXT_DRAM_RANK_DUAL: |
| return 2; |
| default: |
| MISSING_CASE(val); |
| return 0; |
| } |
| } |
| |
| static enum intel_dram_type bxt_get_dimm_type(u32 val) |
| { |
| if (!bxt_get_dimm_size(val)) |
| return INTEL_DRAM_UNKNOWN; |
| |
| switch (val & BXT_DRAM_TYPE_MASK) { |
| case BXT_DRAM_TYPE_DDR3: |
| return INTEL_DRAM_DDR3; |
| case BXT_DRAM_TYPE_LPDDR3: |
| return INTEL_DRAM_LPDDR3; |
| case BXT_DRAM_TYPE_DDR4: |
| return INTEL_DRAM_DDR4; |
| case BXT_DRAM_TYPE_LPDDR4: |
| return INTEL_DRAM_LPDDR4; |
| default: |
| MISSING_CASE(val); |
| return INTEL_DRAM_UNKNOWN; |
| } |
| } |
| |
| static void bxt_get_dimm_info(struct dram_dimm_info *dimm, u32 val) |
| { |
| dimm->width = bxt_get_dimm_width(val); |
| dimm->ranks = bxt_get_dimm_ranks(val); |
| |
| /* |
| * Size in register is Gb per DRAM device. Convert to total |
| * GB to match the way we report this for non-LP platforms. |
| */ |
| dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8; |
| } |
| |
| static int bxt_get_dram_info(struct drm_i915_private *i915) |
| { |
| struct dram_info *dram_info = &i915->dram_info; |
| u32 dram_channels; |
| u32 mem_freq_khz, val; |
| u8 num_active_channels; |
| int i; |
| |
| val = intel_uncore_read(&i915->uncore, BXT_P_CR_MC_BIOS_REQ_0_0_0); |
| mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) * |
| BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000); |
| |
| dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK; |
| num_active_channels = hweight32(dram_channels); |
| |
| /* Each active bit represents 4-byte channel */ |
| dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4); |
| |
| if (dram_info->bandwidth_kbps == 0) { |
| drm_info(&i915->drm, |
| "Couldn't get system memory bandwidth\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Now read each DUNIT8/9/10/11 to check the rank of each dimms. |
| */ |
| for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) { |
| struct dram_dimm_info dimm; |
| enum intel_dram_type type; |
| |
| val = intel_uncore_read(&i915->uncore, BXT_D_CR_DRP0_DUNIT(i)); |
| if (val == 0xFFFFFFFF) |
| continue; |
| |
| dram_info->num_channels++; |
| |
| bxt_get_dimm_info(&dimm, val); |
| type = bxt_get_dimm_type(val); |
| |
| drm_WARN_ON(&i915->drm, type != INTEL_DRAM_UNKNOWN && |
| dram_info->type != INTEL_DRAM_UNKNOWN && |
| dram_info->type != type); |
| |
| drm_dbg_kms(&i915->drm, |
| "CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n", |
| i - BXT_D_CR_DRP0_DUNIT_START, |
| dimm.size, dimm.width, dimm.ranks, |
| intel_dram_type_str(type)); |
| |
| /* |
| * If any of the channel is single rank channel, |
| * worst case output will be same as if single rank |
| * memory, so consider single rank memory. |
| */ |
| if (dram_info->ranks == 0) |
| dram_info->ranks = dimm.ranks; |
| else if (dimm.ranks == 1) |
| dram_info->ranks = 1; |
| |
| if (type != INTEL_DRAM_UNKNOWN) |
| dram_info->type = type; |
| } |
| |
| if (dram_info->type == INTEL_DRAM_UNKNOWN || dram_info->ranks == 0) { |
| drm_info(&i915->drm, "couldn't get memory information\n"); |
| return -EINVAL; |
| } |
| |
| dram_info->valid = true; |
| |
| return 0; |
| } |
| |
| void intel_dram_detect(struct drm_i915_private *i915) |
| { |
| struct dram_info *dram_info = &i915->dram_info; |
| int ret; |
| |
| /* |
| * Assume 16Gb DIMMs are present until proven otherwise. |
| * This is only used for the level 0 watermark latency |
| * w/a which does not apply to bxt/glk. |
| */ |
| dram_info->is_16gb_dimm = !IS_GEN9_LP(i915); |
| |
| if (INTEL_GEN(i915) < 9 || !HAS_DISPLAY(i915)) |
| return; |
| |
| if (IS_GEN9_LP(i915)) |
| ret = bxt_get_dram_info(i915); |
| else |
| ret = skl_get_dram_info(i915); |
| if (ret) |
| return; |
| |
| drm_dbg_kms(&i915->drm, "DRAM bandwidth: %u kBps, channels: %u\n", |
| dram_info->bandwidth_kbps, dram_info->num_channels); |
| |
| drm_dbg_kms(&i915->drm, "DRAM ranks: %u, 16Gb DIMMs: %s\n", |
| dram_info->ranks, yesno(dram_info->is_16gb_dimm)); |
| } |
| |
| static u32 gen9_edram_size_mb(struct drm_i915_private *i915, u32 cap) |
| { |
| static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 }; |
| static const u8 sets[4] = { 1, 1, 2, 2 }; |
| |
| return EDRAM_NUM_BANKS(cap) * |
| ways[EDRAM_WAYS_IDX(cap)] * |
| sets[EDRAM_SETS_IDX(cap)]; |
| } |
| |
| void intel_dram_edram_detect(struct drm_i915_private *i915) |
| { |
| u32 edram_cap = 0; |
| |
| if (!(IS_HASWELL(i915) || IS_BROADWELL(i915) || INTEL_GEN(i915) >= 9)) |
| return; |
| |
| edram_cap = __raw_uncore_read32(&i915->uncore, HSW_EDRAM_CAP); |
| |
| /* NB: We can't write IDICR yet because we don't have gt funcs set up */ |
| |
| if (!(edram_cap & EDRAM_ENABLED)) |
| return; |
| |
| /* |
| * The needed capability bits for size calculation are not there with |
| * pre gen9 so return 128MB always. |
| */ |
| if (INTEL_GEN(i915) < 9) |
| i915->edram_size_mb = 128; |
| else |
| i915->edram_size_mb = gen9_edram_size_mb(i915, edram_cap); |
| |
| drm_info(&i915->drm, "Found %uMB of eDRAM\n", i915->edram_size_mb); |
| } |