| /* |
| * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org> |
| * Copyright (C) 2003 Red Hat <alan@redhat.com> |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/major.h> |
| #include <linux/errno.h> |
| #include <linux/genhd.h> |
| #include <linux/blkpg.h> |
| #include <linux/slab.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/hdreg.h> |
| #include <linux/ide.h> |
| #include <linux/bitops.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| |
| /* |
| * Conventional PIO operations for ATA devices |
| */ |
| |
| static u8 ide_inb (unsigned long port) |
| { |
| return (u8) inb(port); |
| } |
| |
| static void ide_outb (u8 val, unsigned long port) |
| { |
| outb(val, port); |
| } |
| |
| /* |
| * MMIO operations, typically used for SATA controllers |
| */ |
| |
| static u8 ide_mm_inb (unsigned long port) |
| { |
| return (u8) readb((void __iomem *) port); |
| } |
| |
| static void ide_mm_outb (u8 value, unsigned long port) |
| { |
| writeb(value, (void __iomem *) port); |
| } |
| |
| void SELECT_DRIVE (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| const struct ide_port_ops *port_ops = hwif->port_ops; |
| ide_task_t task; |
| |
| if (port_ops && port_ops->selectproc) |
| port_ops->selectproc(drive); |
| |
| memset(&task, 0, sizeof(task)); |
| task.tf_flags = IDE_TFLAG_OUT_DEVICE; |
| |
| drive->hwif->tp_ops->tf_load(drive, &task); |
| } |
| |
| void SELECT_MASK(ide_drive_t *drive, int mask) |
| { |
| const struct ide_port_ops *port_ops = drive->hwif->port_ops; |
| |
| if (port_ops && port_ops->maskproc) |
| port_ops->maskproc(drive, mask); |
| } |
| |
| void ide_exec_command(ide_hwif_t *hwif, u8 cmd) |
| { |
| if (hwif->host_flags & IDE_HFLAG_MMIO) |
| writeb(cmd, (void __iomem *)hwif->io_ports.command_addr); |
| else |
| outb(cmd, hwif->io_ports.command_addr); |
| } |
| EXPORT_SYMBOL_GPL(ide_exec_command); |
| |
| u8 ide_read_status(ide_hwif_t *hwif) |
| { |
| if (hwif->host_flags & IDE_HFLAG_MMIO) |
| return readb((void __iomem *)hwif->io_ports.status_addr); |
| else |
| return inb(hwif->io_ports.status_addr); |
| } |
| EXPORT_SYMBOL_GPL(ide_read_status); |
| |
| u8 ide_read_altstatus(ide_hwif_t *hwif) |
| { |
| if (hwif->host_flags & IDE_HFLAG_MMIO) |
| return readb((void __iomem *)hwif->io_ports.ctl_addr); |
| else |
| return inb(hwif->io_ports.ctl_addr); |
| } |
| EXPORT_SYMBOL_GPL(ide_read_altstatus); |
| |
| u8 ide_read_sff_dma_status(ide_hwif_t *hwif) |
| { |
| if (hwif->host_flags & IDE_HFLAG_MMIO) |
| return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS)); |
| else |
| return inb(hwif->dma_base + ATA_DMA_STATUS); |
| } |
| EXPORT_SYMBOL_GPL(ide_read_sff_dma_status); |
| |
| void ide_set_irq(ide_hwif_t *hwif, int on) |
| { |
| u8 ctl = ATA_DEVCTL_OBS; |
| |
| if (on == 4) { /* hack for SRST */ |
| ctl |= 4; |
| on &= ~4; |
| } |
| |
| ctl |= on ? 0 : 2; |
| |
| if (hwif->host_flags & IDE_HFLAG_MMIO) |
| writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr); |
| else |
| outb(ctl, hwif->io_ports.ctl_addr); |
| } |
| EXPORT_SYMBOL_GPL(ide_set_irq); |
| |
| void ide_tf_load(ide_drive_t *drive, ide_task_t *task) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct ide_io_ports *io_ports = &hwif->io_ports; |
| struct ide_taskfile *tf = &task->tf; |
| void (*tf_outb)(u8 addr, unsigned long port); |
| u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; |
| u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF; |
| |
| if (mmio) |
| tf_outb = ide_mm_outb; |
| else |
| tf_outb = ide_outb; |
| |
| if (task->tf_flags & IDE_TFLAG_FLAGGED) |
| HIHI = 0xFF; |
| |
| if (task->tf_flags & IDE_TFLAG_OUT_DATA) { |
| u16 data = (tf->hob_data << 8) | tf->data; |
| |
| if (mmio) |
| writew(data, (void __iomem *)io_ports->data_addr); |
| else |
| outw(data, io_ports->data_addr); |
| } |
| |
| if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE) |
| tf_outb(tf->hob_feature, io_ports->feature_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT) |
| tf_outb(tf->hob_nsect, io_ports->nsect_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL) |
| tf_outb(tf->hob_lbal, io_ports->lbal_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM) |
| tf_outb(tf->hob_lbam, io_ports->lbam_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH) |
| tf_outb(tf->hob_lbah, io_ports->lbah_addr); |
| |
| if (task->tf_flags & IDE_TFLAG_OUT_FEATURE) |
| tf_outb(tf->feature, io_ports->feature_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_NSECT) |
| tf_outb(tf->nsect, io_ports->nsect_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_LBAL) |
| tf_outb(tf->lbal, io_ports->lbal_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_LBAM) |
| tf_outb(tf->lbam, io_ports->lbam_addr); |
| if (task->tf_flags & IDE_TFLAG_OUT_LBAH) |
| tf_outb(tf->lbah, io_ports->lbah_addr); |
| |
| if (task->tf_flags & IDE_TFLAG_OUT_DEVICE) |
| tf_outb((tf->device & HIHI) | drive->select.all, |
| io_ports->device_addr); |
| } |
| EXPORT_SYMBOL_GPL(ide_tf_load); |
| |
| void ide_tf_read(ide_drive_t *drive, ide_task_t *task) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct ide_io_ports *io_ports = &hwif->io_ports; |
| struct ide_taskfile *tf = &task->tf; |
| void (*tf_outb)(u8 addr, unsigned long port); |
| u8 (*tf_inb)(unsigned long port); |
| u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; |
| |
| if (mmio) { |
| tf_outb = ide_mm_outb; |
| tf_inb = ide_mm_inb; |
| } else { |
| tf_outb = ide_outb; |
| tf_inb = ide_inb; |
| } |
| |
| if (task->tf_flags & IDE_TFLAG_IN_DATA) { |
| u16 data; |
| |
| if (mmio) |
| data = readw((void __iomem *)io_ports->data_addr); |
| else |
| data = inw(io_ports->data_addr); |
| |
| tf->data = data & 0xff; |
| tf->hob_data = (data >> 8) & 0xff; |
| } |
| |
| /* be sure we're looking at the low order bits */ |
| tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr); |
| |
| if (task->tf_flags & IDE_TFLAG_IN_FEATURE) |
| tf->feature = tf_inb(io_ports->feature_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_NSECT) |
| tf->nsect = tf_inb(io_ports->nsect_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_LBAL) |
| tf->lbal = tf_inb(io_ports->lbal_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_LBAM) |
| tf->lbam = tf_inb(io_ports->lbam_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_LBAH) |
| tf->lbah = tf_inb(io_ports->lbah_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_DEVICE) |
| tf->device = tf_inb(io_ports->device_addr); |
| |
| if (task->tf_flags & IDE_TFLAG_LBA48) { |
| tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr); |
| |
| if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE) |
| tf->hob_feature = tf_inb(io_ports->feature_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT) |
| tf->hob_nsect = tf_inb(io_ports->nsect_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL) |
| tf->hob_lbal = tf_inb(io_ports->lbal_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM) |
| tf->hob_lbam = tf_inb(io_ports->lbam_addr); |
| if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH) |
| tf->hob_lbah = tf_inb(io_ports->lbah_addr); |
| } |
| } |
| EXPORT_SYMBOL_GPL(ide_tf_read); |
| |
| /* |
| * Some localbus EIDE interfaces require a special access sequence |
| * when using 32-bit I/O instructions to transfer data. We call this |
| * the "vlb_sync" sequence, which consists of three successive reads |
| * of the sector count register location, with interrupts disabled |
| * to ensure that the reads all happen together. |
| */ |
| static void ata_vlb_sync(unsigned long port) |
| { |
| (void)inb(port); |
| (void)inb(port); |
| (void)inb(port); |
| } |
| |
| /* |
| * This is used for most PIO data transfers *from* the IDE interface |
| * |
| * These routines will round up any request for an odd number of bytes, |
| * so if an odd len is specified, be sure that there's at least one |
| * extra byte allocated for the buffer. |
| */ |
| void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf, |
| unsigned int len) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct ide_io_ports *io_ports = &hwif->io_ports; |
| unsigned long data_addr = io_ports->data_addr; |
| u8 io_32bit = drive->io_32bit; |
| u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; |
| |
| len++; |
| |
| if (io_32bit) { |
| unsigned long uninitialized_var(flags); |
| |
| if ((io_32bit & 2) && !mmio) { |
| local_irq_save(flags); |
| ata_vlb_sync(io_ports->nsect_addr); |
| } |
| |
| if (mmio) |
| __ide_mm_insl((void __iomem *)data_addr, buf, len / 4); |
| else |
| insl(data_addr, buf, len / 4); |
| |
| if ((io_32bit & 2) && !mmio) |
| local_irq_restore(flags); |
| |
| if ((len & 3) >= 2) { |
| if (mmio) |
| __ide_mm_insw((void __iomem *)data_addr, |
| (u8 *)buf + (len & ~3), 1); |
| else |
| insw(data_addr, (u8 *)buf + (len & ~3), 1); |
| } |
| } else { |
| if (mmio) |
| __ide_mm_insw((void __iomem *)data_addr, buf, len / 2); |
| else |
| insw(data_addr, buf, len / 2); |
| } |
| } |
| EXPORT_SYMBOL_GPL(ide_input_data); |
| |
| /* |
| * This is used for most PIO data transfers *to* the IDE interface |
| */ |
| void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf, |
| unsigned int len) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct ide_io_ports *io_ports = &hwif->io_ports; |
| unsigned long data_addr = io_ports->data_addr; |
| u8 io_32bit = drive->io_32bit; |
| u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; |
| |
| if (io_32bit) { |
| unsigned long uninitialized_var(flags); |
| |
| if ((io_32bit & 2) && !mmio) { |
| local_irq_save(flags); |
| ata_vlb_sync(io_ports->nsect_addr); |
| } |
| |
| if (mmio) |
| __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4); |
| else |
| outsl(data_addr, buf, len / 4); |
| |
| if ((io_32bit & 2) && !mmio) |
| local_irq_restore(flags); |
| |
| if ((len & 3) >= 2) { |
| if (mmio) |
| __ide_mm_outsw((void __iomem *)data_addr, |
| (u8 *)buf + (len & ~3), 1); |
| else |
| outsw(data_addr, (u8 *)buf + (len & ~3), 1); |
| } |
| } else { |
| if (mmio) |
| __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2); |
| else |
| outsw(data_addr, buf, len / 2); |
| } |
| } |
| EXPORT_SYMBOL_GPL(ide_output_data); |
| |
| u8 ide_read_error(ide_drive_t *drive) |
| { |
| ide_task_t task; |
| |
| memset(&task, 0, sizeof(task)); |
| task.tf_flags = IDE_TFLAG_IN_FEATURE; |
| |
| drive->hwif->tp_ops->tf_read(drive, &task); |
| |
| return task.tf.error; |
| } |
| EXPORT_SYMBOL_GPL(ide_read_error); |
| |
| void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason) |
| { |
| ide_task_t task; |
| |
| memset(&task, 0, sizeof(task)); |
| task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM | |
| IDE_TFLAG_IN_NSECT; |
| |
| drive->hwif->tp_ops->tf_read(drive, &task); |
| |
| *bcount = (task.tf.lbah << 8) | task.tf.lbam; |
| *ireason = task.tf.nsect & 3; |
| } |
| EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason); |
| |
| const struct ide_tp_ops default_tp_ops = { |
| .exec_command = ide_exec_command, |
| .read_status = ide_read_status, |
| .read_altstatus = ide_read_altstatus, |
| .read_sff_dma_status = ide_read_sff_dma_status, |
| |
| .set_irq = ide_set_irq, |
| |
| .tf_load = ide_tf_load, |
| .tf_read = ide_tf_read, |
| |
| .input_data = ide_input_data, |
| .output_data = ide_output_data, |
| }; |
| |
| void ide_fix_driveid(u16 *id) |
| { |
| #ifndef __LITTLE_ENDIAN |
| # ifdef __BIG_ENDIAN |
| int i; |
| |
| for (i = 0; i < 256; i++) |
| id[i] = __le16_to_cpu(id[i]); |
| # else |
| # error "Please fix <asm/byteorder.h>" |
| # endif |
| #endif |
| } |
| |
| /* |
| * ide_fixstring() cleans up and (optionally) byte-swaps a text string, |
| * removing leading/trailing blanks and compressing internal blanks. |
| * It is primarily used to tidy up the model name/number fields as |
| * returned by the ATA_CMD_ID_ATA[PI] commands. |
| */ |
| |
| void ide_fixstring (u8 *s, const int bytecount, const int byteswap) |
| { |
| u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */ |
| |
| if (byteswap) { |
| /* convert from big-endian to host byte order */ |
| for (p = s ; p != end ; p += 2) |
| be16_to_cpus((u16 *) p); |
| } |
| |
| /* strip leading blanks */ |
| p = s; |
| while (s != end && *s == ' ') |
| ++s; |
| /* compress internal blanks and strip trailing blanks */ |
| while (s != end && *s) { |
| if (*s++ != ' ' || (s != end && *s && *s != ' ')) |
| *p++ = *(s-1); |
| } |
| /* wipe out trailing garbage */ |
| while (p != end) |
| *p++ = '\0'; |
| } |
| |
| EXPORT_SYMBOL(ide_fixstring); |
| |
| /* |
| * Needed for PCI irq sharing |
| */ |
| int drive_is_ready (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 stat = 0; |
| |
| if (drive->waiting_for_dma) |
| return hwif->dma_ops->dma_test_irq(drive); |
| |
| #if 0 |
| /* need to guarantee 400ns since last command was issued */ |
| udelay(1); |
| #endif |
| |
| /* |
| * We do a passive status test under shared PCI interrupts on |
| * cards that truly share the ATA side interrupt, but may also share |
| * an interrupt with another pci card/device. We make no assumptions |
| * about possible isa-pnp and pci-pnp issues yet. |
| */ |
| if (hwif->io_ports.ctl_addr) |
| stat = hwif->tp_ops->read_altstatus(hwif); |
| else |
| /* Note: this may clear a pending IRQ!! */ |
| stat = hwif->tp_ops->read_status(hwif); |
| |
| if (stat & ATA_BUSY) |
| /* drive busy: definitely not interrupting */ |
| return 0; |
| |
| /* drive ready: *might* be interrupting */ |
| return 1; |
| } |
| |
| EXPORT_SYMBOL(drive_is_ready); |
| |
| /* |
| * This routine busy-waits for the drive status to be not "busy". |
| * It then checks the status for all of the "good" bits and none |
| * of the "bad" bits, and if all is okay it returns 0. All other |
| * cases return error -- caller may then invoke ide_error(). |
| * |
| * This routine should get fixed to not hog the cpu during extra long waits.. |
| * That could be done by busy-waiting for the first jiffy or two, and then |
| * setting a timer to wake up at half second intervals thereafter, |
| * until timeout is achieved, before timing out. |
| */ |
| static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| const struct ide_tp_ops *tp_ops = hwif->tp_ops; |
| unsigned long flags; |
| int i; |
| u8 stat; |
| |
| udelay(1); /* spec allows drive 400ns to assert "BUSY" */ |
| stat = tp_ops->read_status(hwif); |
| |
| if (stat & ATA_BUSY) { |
| local_irq_set(flags); |
| timeout += jiffies; |
| while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) { |
| if (time_after(jiffies, timeout)) { |
| /* |
| * One last read after the timeout in case |
| * heavy interrupt load made us not make any |
| * progress during the timeout.. |
| */ |
| stat = tp_ops->read_status(hwif); |
| if ((stat & ATA_BUSY) == 0) |
| break; |
| |
| local_irq_restore(flags); |
| *rstat = stat; |
| return -EBUSY; |
| } |
| } |
| local_irq_restore(flags); |
| } |
| /* |
| * Allow status to settle, then read it again. |
| * A few rare drives vastly violate the 400ns spec here, |
| * so we'll wait up to 10usec for a "good" status |
| * rather than expensively fail things immediately. |
| * This fix courtesy of Matthew Faupel & Niccolo Rigacci. |
| */ |
| for (i = 0; i < 10; i++) { |
| udelay(1); |
| stat = tp_ops->read_status(hwif); |
| |
| if (OK_STAT(stat, good, bad)) { |
| *rstat = stat; |
| return 0; |
| } |
| } |
| *rstat = stat; |
| return -EFAULT; |
| } |
| |
| /* |
| * In case of error returns error value after doing "*startstop = ide_error()". |
| * The caller should return the updated value of "startstop" in this case, |
| * "startstop" is unchanged when the function returns 0. |
| */ |
| int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) |
| { |
| int err; |
| u8 stat; |
| |
| /* bail early if we've exceeded max_failures */ |
| if (drive->max_failures && (drive->failures > drive->max_failures)) { |
| *startstop = ide_stopped; |
| return 1; |
| } |
| |
| err = __ide_wait_stat(drive, good, bad, timeout, &stat); |
| |
| if (err) { |
| char *s = (err == -EBUSY) ? "status timeout" : "status error"; |
| *startstop = ide_error(drive, s, stat); |
| } |
| |
| return err; |
| } |
| |
| EXPORT_SYMBOL(ide_wait_stat); |
| |
| /** |
| * ide_in_drive_list - look for drive in black/white list |
| * @id: drive identifier |
| * @table: list to inspect |
| * |
| * Look for a drive in the blacklist and the whitelist tables |
| * Returns 1 if the drive is found in the table. |
| */ |
| |
| int ide_in_drive_list(u16 *id, const struct drive_list_entry *table) |
| { |
| for ( ; table->id_model; table++) |
| if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) && |
| (!table->id_firmware || |
| strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware))) |
| return 1; |
| return 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_in_drive_list); |
| |
| /* |
| * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid. |
| * We list them here and depend on the device side cable detection for them. |
| * |
| * Some optical devices with the buggy firmwares have the same problem. |
| */ |
| static const struct drive_list_entry ivb_list[] = { |
| { "QUANTUM FIREBALLlct10 05" , "A03.0900" }, |
| { "TSSTcorp CDDVDW SH-S202J" , "SB00" }, |
| { "TSSTcorp CDDVDW SH-S202J" , "SB01" }, |
| { "TSSTcorp CDDVDW SH-S202N" , "SB00" }, |
| { "TSSTcorp CDDVDW SH-S202N" , "SB01" }, |
| { "TSSTcorp CDDVDW SH-S202H" , "SB00" }, |
| { "TSSTcorp CDDVDW SH-S202H" , "SB01" }, |
| { NULL , NULL } |
| }; |
| |
| /* |
| * All hosts that use the 80c ribbon must use! |
| * The name is derived from upper byte of word 93 and the 80c ribbon. |
| */ |
| u8 eighty_ninty_three (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| u16 *id = drive->id; |
| int ivb = ide_in_drive_list(id, ivb_list); |
| |
| if (hwif->cbl == ATA_CBL_PATA40_SHORT) |
| return 1; |
| |
| if (ivb) |
| printk(KERN_DEBUG "%s: skipping word 93 validity check\n", |
| drive->name); |
| |
| if (ide_dev_is_sata(id) && !ivb) |
| return 1; |
| |
| if (hwif->cbl != ATA_CBL_PATA80 && !ivb) |
| goto no_80w; |
| |
| /* |
| * FIXME: |
| * - change master/slave IDENTIFY order |
| * - force bit13 (80c cable present) check also for !ivb devices |
| * (unless the slave device is pre-ATA3) |
| */ |
| if ((id[ATA_ID_HW_CONFIG] & 0x4000) || |
| (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000))) |
| return 1; |
| |
| no_80w: |
| if (drive->udma33_warned == 1) |
| return 0; |
| |
| printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, " |
| "limiting max speed to UDMA33\n", |
| drive->name, |
| hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host"); |
| |
| drive->udma33_warned = 1; |
| |
| return 0; |
| } |
| |
| int ide_driveid_update(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| const struct ide_tp_ops *tp_ops = hwif->tp_ops; |
| u16 *id; |
| unsigned long flags; |
| u8 stat; |
| |
| /* |
| * Re-read drive->id for possible DMA mode |
| * change (copied from ide-probe.c) |
| */ |
| |
| SELECT_MASK(drive, 1); |
| tp_ops->set_irq(hwif, 0); |
| msleep(50); |
| tp_ops->exec_command(hwif, ATA_CMD_ID_ATA); |
| |
| if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) { |
| SELECT_MASK(drive, 0); |
| return 0; |
| } |
| |
| msleep(50); /* wait for IRQ and ATA_DRQ */ |
| stat = tp_ops->read_status(hwif); |
| |
| if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) { |
| SELECT_MASK(drive, 0); |
| printk("%s: CHECK for good STATUS\n", drive->name); |
| return 0; |
| } |
| local_irq_save(flags); |
| SELECT_MASK(drive, 0); |
| id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); |
| if (!id) { |
| local_irq_restore(flags); |
| return 0; |
| } |
| tp_ops->input_data(drive, NULL, id, SECTOR_SIZE); |
| (void)tp_ops->read_status(hwif); /* clear drive IRQ */ |
| local_irq_enable(); |
| local_irq_restore(flags); |
| ide_fix_driveid(id); |
| |
| drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES]; |
| drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES]; |
| drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES]; |
| /* anything more ? */ |
| |
| kfree(id); |
| |
| if (drive->using_dma && ide_id_dma_bug(drive)) |
| ide_dma_off(drive); |
| |
| return 1; |
| } |
| |
| int ide_config_drive_speed(ide_drive_t *drive, u8 speed) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| const struct ide_tp_ops *tp_ops = hwif->tp_ops; |
| u16 *id = drive->id, i; |
| int error = 0; |
| u8 stat; |
| ide_task_t task; |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA |
| if (hwif->dma_ops) /* check if host supports DMA */ |
| hwif->dma_ops->dma_host_set(drive, 0); |
| #endif |
| |
| /* Skip setting PIO flow-control modes on pre-EIDE drives */ |
| if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0) |
| goto skip; |
| |
| /* |
| * Don't use ide_wait_cmd here - it will |
| * attempt to set_geometry and recalibrate, |
| * but for some reason these don't work at |
| * this point (lost interrupt). |
| */ |
| /* |
| * Select the drive, and issue the SETFEATURES command |
| */ |
| disable_irq_nosync(hwif->irq); |
| |
| /* |
| * FIXME: we race against the running IRQ here if |
| * this is called from non IRQ context. If we use |
| * disable_irq() we hang on the error path. Work |
| * is needed. |
| */ |
| |
| udelay(1); |
| SELECT_DRIVE(drive); |
| SELECT_MASK(drive, 0); |
| udelay(1); |
| tp_ops->set_irq(hwif, 0); |
| |
| memset(&task, 0, sizeof(task)); |
| task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT; |
| task.tf.feature = SETFEATURES_XFER; |
| task.tf.nsect = speed; |
| |
| tp_ops->tf_load(drive, &task); |
| |
| tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES); |
| |
| if (drive->quirk_list == 2) |
| tp_ops->set_irq(hwif, 1); |
| |
| error = __ide_wait_stat(drive, drive->ready_stat, |
| ATA_BUSY | ATA_DRQ | ATA_ERR, |
| WAIT_CMD, &stat); |
| |
| SELECT_MASK(drive, 0); |
| |
| enable_irq(hwif->irq); |
| |
| if (error) { |
| (void) ide_dump_status(drive, "set_drive_speed_status", stat); |
| return error; |
| } |
| |
| id[ATA_ID_UDMA_MODES] &= ~0xFF00; |
| id[ATA_ID_MWDMA_MODES] &= ~0x0F00; |
| id[ATA_ID_SWDMA_MODES] &= ~0x0F00; |
| |
| skip: |
| #ifdef CONFIG_BLK_DEV_IDEDMA |
| if (speed >= XFER_SW_DMA_0 && drive->using_dma) |
| hwif->dma_ops->dma_host_set(drive, 1); |
| else if (hwif->dma_ops) /* check if host supports DMA */ |
| ide_dma_off_quietly(drive); |
| #endif |
| |
| if (speed >= XFER_UDMA_0) { |
| i = 1 << (speed - XFER_UDMA_0); |
| id[ATA_ID_UDMA_MODES] |= (i << 8 | i); |
| } else if (speed >= XFER_MW_DMA_0) { |
| i = 1 << (speed - XFER_MW_DMA_0); |
| id[ATA_ID_MWDMA_MODES] |= (i << 8 | i); |
| } else if (speed >= XFER_SW_DMA_0) { |
| i = 1 << (speed - XFER_SW_DMA_0); |
| id[ATA_ID_SWDMA_MODES] |= (i << 8 | i); |
| } |
| |
| if (!drive->init_speed) |
| drive->init_speed = speed; |
| drive->current_speed = speed; |
| return error; |
| } |
| |
| /* |
| * This should get invoked any time we exit the driver to |
| * wait for an interrupt response from a drive. handler() points |
| * at the appropriate code to handle the next interrupt, and a |
| * timer is started to prevent us from waiting forever in case |
| * something goes wrong (see the ide_timer_expiry() handler later on). |
| * |
| * See also ide_execute_command |
| */ |
| static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, |
| unsigned int timeout, ide_expiry_t *expiry) |
| { |
| ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| |
| BUG_ON(hwgroup->handler); |
| hwgroup->handler = handler; |
| hwgroup->expiry = expiry; |
| hwgroup->timer.expires = jiffies + timeout; |
| hwgroup->req_gen_timer = hwgroup->req_gen; |
| add_timer(&hwgroup->timer); |
| } |
| |
| void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, |
| unsigned int timeout, ide_expiry_t *expiry) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&ide_lock, flags); |
| __ide_set_handler(drive, handler, timeout, expiry); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| |
| EXPORT_SYMBOL(ide_set_handler); |
| |
| /** |
| * ide_execute_command - execute an IDE command |
| * @drive: IDE drive to issue the command against |
| * @command: command byte to write |
| * @handler: handler for next phase |
| * @timeout: timeout for command |
| * @expiry: handler to run on timeout |
| * |
| * Helper function to issue an IDE command. This handles the |
| * atomicity requirements, command timing and ensures that the |
| * handler and IRQ setup do not race. All IDE command kick off |
| * should go via this function or do equivalent locking. |
| */ |
| |
| void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler, |
| unsigned timeout, ide_expiry_t *expiry) |
| { |
| unsigned long flags; |
| ide_hwif_t *hwif = HWIF(drive); |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| __ide_set_handler(drive, handler, timeout, expiry); |
| hwif->tp_ops->exec_command(hwif, cmd); |
| /* |
| * Drive takes 400nS to respond, we must avoid the IRQ being |
| * serviced before that. |
| * |
| * FIXME: we could skip this delay with care on non shared devices |
| */ |
| ndelay(400); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| EXPORT_SYMBOL(ide_execute_command); |
| |
| void ide_execute_pkt_cmd(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET); |
| ndelay(400); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd); |
| |
| static inline void ide_complete_drive_reset(ide_drive_t *drive, int err) |
| { |
| struct request *rq = drive->hwif->hwgroup->rq; |
| |
| if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET) |
| ide_end_request(drive, err ? err : 1, 0); |
| } |
| |
| /* needed below */ |
| static ide_startstop_t do_reset1 (ide_drive_t *, int); |
| |
| /* |
| * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms |
| * during an atapi drive reset operation. If the drive has not yet responded, |
| * and we have not yet hit our maximum waiting time, then the timer is restarted |
| * for another 50ms. |
| */ |
| static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| ide_hwgroup_t *hwgroup = hwif->hwgroup; |
| u8 stat; |
| |
| SELECT_DRIVE(drive); |
| udelay (10); |
| stat = hwif->tp_ops->read_status(hwif); |
| |
| if (OK_STAT(stat, 0, ATA_BUSY)) |
| printk("%s: ATAPI reset complete\n", drive->name); |
| else { |
| if (time_before(jiffies, hwgroup->poll_timeout)) { |
| ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); |
| /* continue polling */ |
| return ide_started; |
| } |
| /* end of polling */ |
| hwgroup->polling = 0; |
| printk("%s: ATAPI reset timed-out, status=0x%02x\n", |
| drive->name, stat); |
| /* do it the old fashioned way */ |
| return do_reset1(drive, 1); |
| } |
| /* done polling */ |
| hwgroup->polling = 0; |
| ide_complete_drive_reset(drive, 0); |
| return ide_stopped; |
| } |
| |
| /* |
| * reset_pollfunc() gets invoked to poll the interface for completion every 50ms |
| * during an ide reset operation. If the drives have not yet responded, |
| * and we have not yet hit our maximum waiting time, then the timer is restarted |
| * for another 50ms. |
| */ |
| static ide_startstop_t reset_pollfunc (ide_drive_t *drive) |
| { |
| ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| ide_hwif_t *hwif = HWIF(drive); |
| const struct ide_port_ops *port_ops = hwif->port_ops; |
| u8 tmp; |
| int err = 0; |
| |
| if (port_ops && port_ops->reset_poll) { |
| err = port_ops->reset_poll(drive); |
| if (err) { |
| printk(KERN_ERR "%s: host reset_poll failure for %s.\n", |
| hwif->name, drive->name); |
| goto out; |
| } |
| } |
| |
| tmp = hwif->tp_ops->read_status(hwif); |
| |
| if (!OK_STAT(tmp, 0, ATA_BUSY)) { |
| if (time_before(jiffies, hwgroup->poll_timeout)) { |
| ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); |
| /* continue polling */ |
| return ide_started; |
| } |
| printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); |
| drive->failures++; |
| err = -EIO; |
| } else { |
| printk("%s: reset: ", hwif->name); |
| tmp = ide_read_error(drive); |
| |
| if (tmp == 1) { |
| printk("success\n"); |
| drive->failures = 0; |
| } else { |
| drive->failures++; |
| printk("master: "); |
| switch (tmp & 0x7f) { |
| case 1: printk("passed"); |
| break; |
| case 2: printk("formatter device error"); |
| break; |
| case 3: printk("sector buffer error"); |
| break; |
| case 4: printk("ECC circuitry error"); |
| break; |
| case 5: printk("controlling MPU error"); |
| break; |
| default:printk("error (0x%02x?)", tmp); |
| } |
| if (tmp & 0x80) |
| printk("; slave: failed"); |
| printk("\n"); |
| err = -EIO; |
| } |
| } |
| out: |
| hwgroup->polling = 0; /* done polling */ |
| ide_complete_drive_reset(drive, err); |
| return ide_stopped; |
| } |
| |
| static void ide_disk_pre_reset(ide_drive_t *drive) |
| { |
| int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1; |
| |
| drive->special.all = 0; |
| drive->special.b.set_geometry = legacy; |
| drive->special.b.recalibrate = legacy; |
| drive->mult_count = 0; |
| if (!drive->keep_settings && !drive->using_dma) |
| drive->mult_req = 0; |
| if (drive->mult_req != drive->mult_count) |
| drive->special.b.set_multmode = 1; |
| } |
| |
| static void pre_reset(ide_drive_t *drive) |
| { |
| const struct ide_port_ops *port_ops = drive->hwif->port_ops; |
| |
| if (drive->media == ide_disk) |
| ide_disk_pre_reset(drive); |
| else |
| drive->post_reset = 1; |
| |
| if (drive->using_dma) { |
| if (drive->crc_count) |
| ide_check_dma_crc(drive); |
| else |
| ide_dma_off(drive); |
| } |
| |
| if (!drive->keep_settings) { |
| if (!drive->using_dma) { |
| drive->unmask = 0; |
| drive->io_32bit = 0; |
| } |
| return; |
| } |
| |
| if (port_ops && port_ops->pre_reset) |
| port_ops->pre_reset(drive); |
| |
| if (drive->current_speed != 0xff) |
| drive->desired_speed = drive->current_speed; |
| drive->current_speed = 0xff; |
| } |
| |
| /* |
| * do_reset1() attempts to recover a confused drive by resetting it. |
| * Unfortunately, resetting a disk drive actually resets all devices on |
| * the same interface, so it can really be thought of as resetting the |
| * interface rather than resetting the drive. |
| * |
| * ATAPI devices have their own reset mechanism which allows them to be |
| * individually reset without clobbering other devices on the same interface. |
| * |
| * Unfortunately, the IDE interface does not generate an interrupt to let |
| * us know when the reset operation has finished, so we must poll for this. |
| * Equally poor, though, is the fact that this may a very long time to complete, |
| * (up to 30 seconds worstcase). So, instead of busy-waiting here for it, |
| * we set a timer to poll at 50ms intervals. |
| */ |
| static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) |
| { |
| unsigned int unit; |
| unsigned long flags; |
| ide_hwif_t *hwif; |
| ide_hwgroup_t *hwgroup; |
| struct ide_io_ports *io_ports; |
| const struct ide_tp_ops *tp_ops; |
| const struct ide_port_ops *port_ops; |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| hwif = HWIF(drive); |
| hwgroup = HWGROUP(drive); |
| |
| io_ports = &hwif->io_ports; |
| |
| tp_ops = hwif->tp_ops; |
| |
| /* We must not reset with running handlers */ |
| BUG_ON(hwgroup->handler != NULL); |
| |
| /* For an ATAPI device, first try an ATAPI SRST. */ |
| if (drive->media != ide_disk && !do_not_try_atapi) { |
| pre_reset(drive); |
| SELECT_DRIVE(drive); |
| udelay (20); |
| tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET); |
| ndelay(400); |
| hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; |
| hwgroup->polling = 1; |
| __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return ide_started; |
| } |
| |
| /* |
| * First, reset any device state data we were maintaining |
| * for any of the drives on this interface. |
| */ |
| for (unit = 0; unit < MAX_DRIVES; ++unit) |
| pre_reset(&hwif->drives[unit]); |
| |
| if (io_ports->ctl_addr == 0) { |
| spin_unlock_irqrestore(&ide_lock, flags); |
| ide_complete_drive_reset(drive, -ENXIO); |
| return ide_stopped; |
| } |
| |
| /* |
| * Note that we also set nIEN while resetting the device, |
| * to mask unwanted interrupts from the interface during the reset. |
| * However, due to the design of PC hardware, this will cause an |
| * immediate interrupt due to the edge transition it produces. |
| * This single interrupt gives us a "fast poll" for drives that |
| * recover from reset very quickly, saving us the first 50ms wait time. |
| * |
| * TODO: add ->softreset method and stop abusing ->set_irq |
| */ |
| /* set SRST and nIEN */ |
| tp_ops->set_irq(hwif, 4); |
| /* more than enough time */ |
| udelay(10); |
| /* clear SRST, leave nIEN (unless device is on the quirk list) */ |
| tp_ops->set_irq(hwif, drive->quirk_list == 2); |
| /* more than enough time */ |
| udelay(10); |
| hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; |
| hwgroup->polling = 1; |
| __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); |
| |
| /* |
| * Some weird controller like resetting themselves to a strange |
| * state when the disks are reset this way. At least, the Winbond |
| * 553 documentation says that |
| */ |
| port_ops = hwif->port_ops; |
| if (port_ops && port_ops->resetproc) |
| port_ops->resetproc(drive); |
| |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return ide_started; |
| } |
| |
| /* |
| * ide_do_reset() is the entry point to the drive/interface reset code. |
| */ |
| |
| ide_startstop_t ide_do_reset (ide_drive_t *drive) |
| { |
| return do_reset1(drive, 0); |
| } |
| |
| EXPORT_SYMBOL(ide_do_reset); |
| |
| /* |
| * ide_wait_not_busy() waits for the currently selected device on the hwif |
| * to report a non-busy status, see comments in ide_probe_port(). |
| */ |
| int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) |
| { |
| u8 stat = 0; |
| |
| while(timeout--) { |
| /* |
| * Turn this into a schedule() sleep once I'm sure |
| * about locking issues (2.5 work ?). |
| */ |
| mdelay(1); |
| stat = hwif->tp_ops->read_status(hwif); |
| if ((stat & ATA_BUSY) == 0) |
| return 0; |
| /* |
| * Assume a value of 0xff means nothing is connected to |
| * the interface and it doesn't implement the pull-down |
| * resistor on D7. |
| */ |
| if (stat == 0xff) |
| return -ENODEV; |
| touch_softlockup_watchdog(); |
| touch_nmi_watchdog(); |
| } |
| return -EBUSY; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_wait_not_busy); |
| |