| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2014-2016 Intel Corporation |
| */ |
| |
| #include <linux/pagevec.h> |
| #include <linux/swap.h> |
| |
| #include "gem/i915_gem_region.h" |
| #include "i915_drv.h" |
| #include "i915_gemfs.h" |
| #include "i915_gem_object.h" |
| #include "i915_scatterlist.h" |
| #include "i915_trace.h" |
| |
| /* |
| * Move pages to appropriate lru and release the pagevec, decrementing the |
| * ref count of those pages. |
| */ |
| static void check_release_pagevec(struct pagevec *pvec) |
| { |
| check_move_unevictable_pages(pvec); |
| __pagevec_release(pvec); |
| cond_resched(); |
| } |
| |
| static int shmem_get_pages(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct intel_memory_region *mem = obj->mm.region; |
| const unsigned long page_count = obj->base.size / PAGE_SIZE; |
| unsigned long i; |
| struct address_space *mapping; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| struct sgt_iter sgt_iter; |
| struct page *page; |
| unsigned long last_pfn = 0; /* suppress gcc warning */ |
| unsigned int max_segment = i915_sg_segment_size(); |
| unsigned int sg_page_sizes; |
| gfp_t noreclaim; |
| int ret; |
| |
| /* |
| * Assert that the object is not currently in any GPU domain. As it |
| * wasn't in the GTT, there shouldn't be any way it could have been in |
| * a GPU cache |
| */ |
| GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); |
| GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); |
| |
| /* |
| * If there's no chance of allocating enough pages for the whole |
| * object, bail early. |
| */ |
| if (obj->base.size > resource_size(&mem->region)) |
| return -ENOMEM; |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| return -ENOMEM; |
| |
| rebuild_st: |
| if (sg_alloc_table(st, page_count, GFP_KERNEL)) { |
| kfree(st); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Get the list of pages out of our struct file. They'll be pinned |
| * at this point until we release them. |
| * |
| * Fail silently without starting the shrinker |
| */ |
| mapping = obj->base.filp->f_mapping; |
| mapping_set_unevictable(mapping); |
| noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); |
| noreclaim |= __GFP_NORETRY | __GFP_NOWARN; |
| |
| sg = st->sgl; |
| st->nents = 0; |
| sg_page_sizes = 0; |
| for (i = 0; i < page_count; i++) { |
| const unsigned int shrink[] = { |
| I915_SHRINK_BOUND | I915_SHRINK_UNBOUND, |
| 0, |
| }, *s = shrink; |
| gfp_t gfp = noreclaim; |
| |
| do { |
| cond_resched(); |
| page = shmem_read_mapping_page_gfp(mapping, i, gfp); |
| if (!IS_ERR(page)) |
| break; |
| |
| if (!*s) { |
| ret = PTR_ERR(page); |
| goto err_sg; |
| } |
| |
| i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++); |
| |
| /* |
| * We've tried hard to allocate the memory by reaping |
| * our own buffer, now let the real VM do its job and |
| * go down in flames if truly OOM. |
| * |
| * However, since graphics tend to be disposable, |
| * defer the oom here by reporting the ENOMEM back |
| * to userspace. |
| */ |
| if (!*s) { |
| /* reclaim and warn, but no oom */ |
| gfp = mapping_gfp_mask(mapping); |
| |
| /* |
| * Our bo are always dirty and so we require |
| * kswapd to reclaim our pages (direct reclaim |
| * does not effectively begin pageout of our |
| * buffers on its own). However, direct reclaim |
| * only waits for kswapd when under allocation |
| * congestion. So as a result __GFP_RECLAIM is |
| * unreliable and fails to actually reclaim our |
| * dirty pages -- unless you try over and over |
| * again with !__GFP_NORETRY. However, we still |
| * want to fail this allocation rather than |
| * trigger the out-of-memory killer and for |
| * this we want __GFP_RETRY_MAYFAIL. |
| */ |
| gfp |= __GFP_RETRY_MAYFAIL; |
| } |
| } while (1); |
| |
| if (!i || |
| sg->length >= max_segment || |
| page_to_pfn(page) != last_pfn + 1) { |
| if (i) { |
| sg_page_sizes |= sg->length; |
| sg = sg_next(sg); |
| } |
| st->nents++; |
| sg_set_page(sg, page, PAGE_SIZE, 0); |
| } else { |
| sg->length += PAGE_SIZE; |
| } |
| last_pfn = page_to_pfn(page); |
| |
| /* Check that the i965g/gm workaround works. */ |
| GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL); |
| } |
| if (sg) { /* loop terminated early; short sg table */ |
| sg_page_sizes |= sg->length; |
| sg_mark_end(sg); |
| } |
| |
| /* Trim unused sg entries to avoid wasting memory. */ |
| i915_sg_trim(st); |
| |
| ret = i915_gem_gtt_prepare_pages(obj, st); |
| if (ret) { |
| /* |
| * DMA remapping failed? One possible cause is that |
| * it could not reserve enough large entries, asking |
| * for PAGE_SIZE chunks instead may be helpful. |
| */ |
| if (max_segment > PAGE_SIZE) { |
| for_each_sgt_page(page, sgt_iter, st) |
| put_page(page); |
| sg_free_table(st); |
| |
| max_segment = PAGE_SIZE; |
| goto rebuild_st; |
| } else { |
| dev_warn(i915->drm.dev, |
| "Failed to DMA remap %lu pages\n", |
| page_count); |
| goto err_pages; |
| } |
| } |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_do_bit_17_swizzle(obj, st); |
| |
| if (i915_gem_object_can_bypass_llc(obj)) |
| obj->cache_dirty = true; |
| |
| __i915_gem_object_set_pages(obj, st, sg_page_sizes); |
| |
| return 0; |
| |
| err_sg: |
| sg_mark_end(sg); |
| err_pages: |
| mapping_clear_unevictable(mapping); |
| if (sg != st->sgl) { |
| struct pagevec pvec; |
| |
| pagevec_init(&pvec); |
| for_each_sgt_page(page, sgt_iter, st) { |
| if (!pagevec_add(&pvec, page)) |
| check_release_pagevec(&pvec); |
| } |
| if (pagevec_count(&pvec)) |
| check_release_pagevec(&pvec); |
| } |
| sg_free_table(st); |
| kfree(st); |
| |
| /* |
| * shmemfs first checks if there is enough memory to allocate the page |
| * and reports ENOSPC should there be insufficient, along with the usual |
| * ENOMEM for a genuine allocation failure. |
| * |
| * We use ENOSPC in our driver to mean that we have run out of aperture |
| * space and so want to translate the error from shmemfs back to our |
| * usual understanding of ENOMEM. |
| */ |
| if (ret == -ENOSPC) |
| ret = -ENOMEM; |
| |
| return ret; |
| } |
| |
| static void |
| shmem_truncate(struct drm_i915_gem_object *obj) |
| { |
| /* |
| * Our goal here is to return as much of the memory as |
| * is possible back to the system as we are called from OOM. |
| * To do this we must instruct the shmfs to drop all of its |
| * backing pages, *now*. |
| */ |
| shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); |
| obj->mm.madv = __I915_MADV_PURGED; |
| obj->mm.pages = ERR_PTR(-EFAULT); |
| } |
| |
| static void |
| shmem_writeback(struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping; |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_NONE, |
| .nr_to_write = SWAP_CLUSTER_MAX, |
| .range_start = 0, |
| .range_end = LLONG_MAX, |
| .for_reclaim = 1, |
| }; |
| unsigned long i; |
| |
| /* |
| * Leave mmapings intact (GTT will have been revoked on unbinding, |
| * leaving only CPU mmapings around) and add those pages to the LRU |
| * instead of invoking writeback so they are aged and paged out |
| * as normal. |
| */ |
| mapping = obj->base.filp->f_mapping; |
| |
| /* Begin writeback on each dirty page */ |
| for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) { |
| struct page *page; |
| |
| page = find_lock_page(mapping, i); |
| if (!page) |
| continue; |
| |
| if (!page_mapped(page) && clear_page_dirty_for_io(page)) { |
| int ret; |
| |
| SetPageReclaim(page); |
| ret = mapping->a_ops->writepage(page, &wbc); |
| if (!PageWriteback(page)) |
| ClearPageReclaim(page); |
| if (!ret) |
| goto put; |
| } |
| unlock_page(page); |
| put: |
| put_page(page); |
| } |
| } |
| |
| void |
| __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, |
| struct sg_table *pages, |
| bool needs_clflush) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| |
| GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); |
| |
| if (obj->mm.madv == I915_MADV_DONTNEED) |
| obj->mm.dirty = false; |
| |
| if (needs_clflush && |
| (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && |
| !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) |
| drm_clflush_sg(pages); |
| |
| __start_cpu_write(obj); |
| /* |
| * On non-LLC platforms, force the flush-on-acquire if this is ever |
| * swapped-in. Our async flush path is not trust worthy enough yet(and |
| * happens in the wrong order), and with some tricks it's conceivable |
| * for userspace to change the cache-level to I915_CACHE_NONE after the |
| * pages are swapped-in, and since execbuf binds the object before doing |
| * the async flush, we have a race window. |
| */ |
| if (!HAS_LLC(i915)) |
| obj->cache_dirty = true; |
| } |
| |
| void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages) |
| { |
| struct sgt_iter sgt_iter; |
| struct pagevec pvec; |
| struct page *page; |
| |
| GEM_WARN_ON(IS_DGFX(to_i915(obj->base.dev))); |
| __i915_gem_object_release_shmem(obj, pages, true); |
| |
| i915_gem_gtt_finish_pages(obj, pages); |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_save_bit_17_swizzle(obj, pages); |
| |
| mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping); |
| |
| pagevec_init(&pvec); |
| for_each_sgt_page(page, sgt_iter, pages) { |
| if (obj->mm.dirty) |
| set_page_dirty(page); |
| |
| if (obj->mm.madv == I915_MADV_WILLNEED) |
| mark_page_accessed(page); |
| |
| if (!pagevec_add(&pvec, page)) |
| check_release_pagevec(&pvec); |
| } |
| if (pagevec_count(&pvec)) |
| check_release_pagevec(&pvec); |
| obj->mm.dirty = false; |
| |
| sg_free_table(pages); |
| kfree(pages); |
| } |
| |
| static void |
| shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) |
| { |
| if (likely(i915_gem_object_has_struct_page(obj))) |
| i915_gem_object_put_pages_shmem(obj, pages); |
| else |
| i915_gem_object_put_pages_phys(obj, pages); |
| } |
| |
| static int |
| shmem_pwrite(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *arg) |
| { |
| struct address_space *mapping = obj->base.filp->f_mapping; |
| char __user *user_data = u64_to_user_ptr(arg->data_ptr); |
| u64 remain, offset; |
| unsigned int pg; |
| |
| /* Caller already validated user args */ |
| GEM_BUG_ON(!access_ok(user_data, arg->size)); |
| |
| if (!i915_gem_object_has_struct_page(obj)) |
| return i915_gem_object_pwrite_phys(obj, arg); |
| |
| /* |
| * Before we instantiate/pin the backing store for our use, we |
| * can prepopulate the shmemfs filp efficiently using a write into |
| * the pagecache. We avoid the penalty of instantiating all the |
| * pages, important if the user is just writing to a few and never |
| * uses the object on the GPU, and using a direct write into shmemfs |
| * allows it to avoid the cost of retrieving a page (either swapin |
| * or clearing-before-use) before it is overwritten. |
| */ |
| if (i915_gem_object_has_pages(obj)) |
| return -ENODEV; |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) |
| return -EFAULT; |
| |
| /* |
| * Before the pages are instantiated the object is treated as being |
| * in the CPU domain. The pages will be clflushed as required before |
| * use, and we can freely write into the pages directly. If userspace |
| * races pwrite with any other operation; corruption will ensue - |
| * that is userspace's prerogative! |
| */ |
| |
| remain = arg->size; |
| offset = arg->offset; |
| pg = offset_in_page(offset); |
| |
| do { |
| unsigned int len, unwritten; |
| struct page *page; |
| void *data, *vaddr; |
| int err; |
| char c; |
| |
| len = PAGE_SIZE - pg; |
| if (len > remain) |
| len = remain; |
| |
| /* Prefault the user page to reduce potential recursion */ |
| err = __get_user(c, user_data); |
| if (err) |
| return err; |
| |
| err = __get_user(c, user_data + len - 1); |
| if (err) |
| return err; |
| |
| err = pagecache_write_begin(obj->base.filp, mapping, |
| offset, len, 0, |
| &page, &data); |
| if (err < 0) |
| return err; |
| |
| vaddr = kmap_atomic(page); |
| unwritten = __copy_from_user_inatomic(vaddr + pg, |
| user_data, |
| len); |
| kunmap_atomic(vaddr); |
| |
| err = pagecache_write_end(obj->base.filp, mapping, |
| offset, len, len - unwritten, |
| page, data); |
| if (err < 0) |
| return err; |
| |
| /* We don't handle -EFAULT, leave it to the caller to check */ |
| if (unwritten) |
| return -ENODEV; |
| |
| remain -= len; |
| user_data += len; |
| offset += len; |
| pg = 0; |
| } while (remain); |
| |
| return 0; |
| } |
| |
| static int |
| shmem_pread(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pread *arg) |
| { |
| if (!i915_gem_object_has_struct_page(obj)) |
| return i915_gem_object_pread_phys(obj, arg); |
| |
| return -ENODEV; |
| } |
| |
| static void shmem_release(struct drm_i915_gem_object *obj) |
| { |
| if (i915_gem_object_has_struct_page(obj)) |
| i915_gem_object_release_memory_region(obj); |
| |
| fput(obj->base.filp); |
| } |
| |
| const struct drm_i915_gem_object_ops i915_gem_shmem_ops = { |
| .name = "i915_gem_object_shmem", |
| .flags = I915_GEM_OBJECT_IS_SHRINKABLE, |
| |
| .get_pages = shmem_get_pages, |
| .put_pages = shmem_put_pages, |
| .truncate = shmem_truncate, |
| .writeback = shmem_writeback, |
| |
| .pwrite = shmem_pwrite, |
| .pread = shmem_pread, |
| |
| .release = shmem_release, |
| }; |
| |
| static int __create_shmem(struct drm_i915_private *i915, |
| struct drm_gem_object *obj, |
| resource_size_t size) |
| { |
| unsigned long flags = VM_NORESERVE; |
| struct file *filp; |
| |
| drm_gem_private_object_init(&i915->drm, obj, size); |
| |
| if (i915->mm.gemfs) |
| filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, |
| flags); |
| else |
| filp = shmem_file_setup("i915", size, flags); |
| if (IS_ERR(filp)) |
| return PTR_ERR(filp); |
| |
| obj->filp = filp; |
| return 0; |
| } |
| |
| static int shmem_object_init(struct intel_memory_region *mem, |
| struct drm_i915_gem_object *obj, |
| resource_size_t size, |
| resource_size_t page_size, |
| unsigned int flags) |
| { |
| static struct lock_class_key lock_class; |
| struct drm_i915_private *i915 = mem->i915; |
| struct address_space *mapping; |
| unsigned int cache_level; |
| gfp_t mask; |
| int ret; |
| |
| ret = __create_shmem(i915, &obj->base, size); |
| if (ret) |
| return ret; |
| |
| mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; |
| if (IS_I965GM(i915) || IS_I965G(i915)) { |
| /* 965gm cannot relocate objects above 4GiB. */ |
| mask &= ~__GFP_HIGHMEM; |
| mask |= __GFP_DMA32; |
| } |
| |
| mapping = obj->base.filp->f_mapping; |
| mapping_set_gfp_mask(mapping, mask); |
| GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); |
| |
| i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, 0); |
| obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE; |
| obj->write_domain = I915_GEM_DOMAIN_CPU; |
| obj->read_domains = I915_GEM_DOMAIN_CPU; |
| |
| if (HAS_LLC(i915)) |
| /* On some devices, we can have the GPU use the LLC (the CPU |
| * cache) for about a 10% performance improvement |
| * compared to uncached. Graphics requests other than |
| * display scanout are coherent with the CPU in |
| * accessing this cache. This means in this mode we |
| * don't need to clflush on the CPU side, and on the |
| * GPU side we only need to flush internal caches to |
| * get data visible to the CPU. |
| * |
| * However, we maintain the display planes as UC, and so |
| * need to rebind when first used as such. |
| */ |
| cache_level = I915_CACHE_LLC; |
| else |
| cache_level = I915_CACHE_NONE; |
| |
| i915_gem_object_set_cache_coherency(obj, cache_level); |
| |
| i915_gem_object_init_memory_region(obj, mem); |
| |
| return 0; |
| } |
| |
| struct drm_i915_gem_object * |
| i915_gem_object_create_shmem(struct drm_i915_private *i915, |
| resource_size_t size) |
| { |
| return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM], |
| size, 0, 0); |
| } |
| |
| /* Allocate a new GEM object and fill it with the supplied data */ |
| struct drm_i915_gem_object * |
| i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv, |
| const void *data, resource_size_t size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct file *file; |
| resource_size_t offset; |
| int err; |
| |
| GEM_WARN_ON(IS_DGFX(dev_priv)); |
| obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE)); |
| if (IS_ERR(obj)) |
| return obj; |
| |
| GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); |
| |
| file = obj->base.filp; |
| offset = 0; |
| do { |
| unsigned int len = min_t(typeof(size), size, PAGE_SIZE); |
| struct page *page; |
| void *pgdata, *vaddr; |
| |
| err = pagecache_write_begin(file, file->f_mapping, |
| offset, len, 0, |
| &page, &pgdata); |
| if (err < 0) |
| goto fail; |
| |
| vaddr = kmap(page); |
| memcpy(vaddr, data, len); |
| kunmap(page); |
| |
| err = pagecache_write_end(file, file->f_mapping, |
| offset, len, len, |
| page, pgdata); |
| if (err < 0) |
| goto fail; |
| |
| size -= len; |
| data += len; |
| offset += len; |
| } while (size); |
| |
| return obj; |
| |
| fail: |
| i915_gem_object_put(obj); |
| return ERR_PTR(err); |
| } |
| |
| static int init_shmem(struct intel_memory_region *mem) |
| { |
| int err; |
| |
| err = i915_gemfs_init(mem->i915); |
| if (err) { |
| DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", |
| err); |
| } |
| |
| intel_memory_region_set_name(mem, "system"); |
| |
| return 0; /* Don't error, we can simply fallback to the kernel mnt */ |
| } |
| |
| static void release_shmem(struct intel_memory_region *mem) |
| { |
| i915_gemfs_fini(mem->i915); |
| } |
| |
| static const struct intel_memory_region_ops shmem_region_ops = { |
| .init = init_shmem, |
| .release = release_shmem, |
| .init_object = shmem_object_init, |
| }; |
| |
| struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915, |
| u16 type, u16 instance) |
| { |
| return intel_memory_region_create(i915, 0, |
| totalram_pages() << PAGE_SHIFT, |
| PAGE_SIZE, 0, |
| type, instance, |
| &shmem_region_ops); |
| } |
| |
| bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj) |
| { |
| return obj->ops == &i915_gem_shmem_ops; |
| } |