blob: 862197be1e012bfcb3f4296c6c02d66ab9423668 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* rcar_du_plane.c -- R-Car Display Unit Planes
*
* Copyright (C) 2013-2015 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*/
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_device.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_plane_helper.h>
#include "rcar_du_drv.h"
#include "rcar_du_group.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
/* -----------------------------------------------------------------------------
* Atomic hardware plane allocator
*
* The hardware plane allocator is solely based on the atomic plane states
* without keeping any external state to avoid races between .atomic_check()
* and .atomic_commit().
*
* The core idea is to avoid using a free planes bitmask that would need to be
* shared between check and commit handlers with a collective knowledge based on
* the allocated hardware plane(s) for each KMS plane. The allocator then loops
* over all plane states to compute the free planes bitmask, allocates hardware
* planes based on that bitmask, and stores the result back in the plane states.
*
* For this to work we need to access the current state of planes not touched by
* the atomic update. To ensure that it won't be modified, we need to lock all
* planes using drm_atomic_get_plane_state(). This effectively serializes atomic
* updates from .atomic_check() up to completion (when swapping the states if
* the check step has succeeded) or rollback (when freeing the states if the
* check step has failed).
*
* Allocation is performed in the .atomic_check() handler and applied
* automatically when the core swaps the old and new states.
*/
static bool rcar_du_plane_needs_realloc(
const struct rcar_du_plane_state *old_state,
const struct rcar_du_plane_state *new_state)
{
/*
* Lowering the number of planes doesn't strictly require reallocation
* as the extra hardware plane will be freed when committing, but doing
* so could lead to more fragmentation.
*/
if (!old_state->format ||
old_state->format->planes != new_state->format->planes)
return true;
/* Reallocate hardware planes if the source has changed. */
if (old_state->source != new_state->source)
return true;
return false;
}
static unsigned int rcar_du_plane_hwmask(struct rcar_du_plane_state *state)
{
unsigned int mask;
if (state->hwindex == -1)
return 0;
mask = 1 << state->hwindex;
if (state->format->planes == 2)
mask |= 1 << ((state->hwindex + 1) % 8);
return mask;
}
/*
* The R8A7790 DU can source frames directly from the VSP1 devices VSPD0 and
* VSPD1. VSPD0 feeds DU0/1 plane 0, and VSPD1 feeds either DU2 plane 0 or
* DU0/1 plane 1.
*
* Allocate the correct fixed plane when sourcing frames from VSPD0 or VSPD1,
* and allocate planes in reverse index order otherwise to ensure maximum
* availability of planes 0 and 1.
*
* The caller is responsible for ensuring that the requested source is
* compatible with the DU revision.
*/
static int rcar_du_plane_hwalloc(struct rcar_du_plane *plane,
struct rcar_du_plane_state *state,
unsigned int free)
{
unsigned int num_planes = state->format->planes;
int fixed = -1;
int i;
if (state->source == RCAR_DU_PLANE_VSPD0) {
/* VSPD0 feeds plane 0 on DU0/1. */
if (plane->group->index != 0)
return -EINVAL;
fixed = 0;
} else if (state->source == RCAR_DU_PLANE_VSPD1) {
/* VSPD1 feeds plane 1 on DU0/1 or plane 0 on DU2. */
fixed = plane->group->index == 0 ? 1 : 0;
}
if (fixed >= 0)
return free & (1 << fixed) ? fixed : -EBUSY;
for (i = RCAR_DU_NUM_HW_PLANES - 1; i >= 0; --i) {
if (!(free & (1 << i)))
continue;
if (num_planes == 1 || free & (1 << ((i + 1) % 8)))
break;
}
return i < 0 ? -EBUSY : i;
}
int rcar_du_atomic_check_planes(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct rcar_du_device *rcdu = to_rcar_du_device(dev);
unsigned int group_freed_planes[RCAR_DU_MAX_GROUPS] = { 0, };
unsigned int group_free_planes[RCAR_DU_MAX_GROUPS] = { 0, };
bool needs_realloc = false;
unsigned int groups = 0;
unsigned int i;
struct drm_plane *drm_plane;
struct drm_plane_state *old_drm_plane_state;
struct drm_plane_state *new_drm_plane_state;
/* Check if hardware planes need to be reallocated. */
for_each_oldnew_plane_in_state(state, drm_plane, old_drm_plane_state,
new_drm_plane_state, i) {
struct rcar_du_plane_state *old_plane_state;
struct rcar_du_plane_state *new_plane_state;
struct rcar_du_plane *plane;
unsigned int index;
plane = to_rcar_plane(drm_plane);
old_plane_state = to_rcar_plane_state(old_drm_plane_state);
new_plane_state = to_rcar_plane_state(new_drm_plane_state);
dev_dbg(rcdu->dev, "%s: checking plane (%u,%tu)\n", __func__,
plane->group->index, plane - plane->group->planes);
/*
* If the plane is being disabled we don't need to go through
* the full reallocation procedure. Just mark the hardware
* plane(s) as freed.
*/
if (!new_plane_state->format) {
dev_dbg(rcdu->dev, "%s: plane is being disabled\n",
__func__);
index = plane - plane->group->planes;
group_freed_planes[plane->group->index] |= 1 << index;
new_plane_state->hwindex = -1;
continue;
}
/*
* If the plane needs to be reallocated mark it as such, and
* mark the hardware plane(s) as free.
*/
if (rcar_du_plane_needs_realloc(old_plane_state, new_plane_state)) {
dev_dbg(rcdu->dev, "%s: plane needs reallocation\n",
__func__);
groups |= 1 << plane->group->index;
needs_realloc = true;
index = plane - plane->group->planes;
group_freed_planes[plane->group->index] |= 1 << index;
new_plane_state->hwindex = -1;
}
}
if (!needs_realloc)
return 0;
/*
* Grab all plane states for the groups that need reallocation to ensure
* locking and avoid racy updates. This serializes the update operation,
* but there's not much we can do about it as that's the hardware
* design.
*
* Compute the used planes mask for each group at the same time to avoid
* looping over the planes separately later.
*/
while (groups) {
unsigned int index = ffs(groups) - 1;
struct rcar_du_group *group = &rcdu->groups[index];
unsigned int used_planes = 0;
dev_dbg(rcdu->dev, "%s: finding free planes for group %u\n",
__func__, index);
for (i = 0; i < group->num_planes; ++i) {
struct rcar_du_plane *plane = &group->planes[i];
struct rcar_du_plane_state *new_plane_state;
struct drm_plane_state *s;
s = drm_atomic_get_plane_state(state, &plane->plane);
if (IS_ERR(s))
return PTR_ERR(s);
/*
* If the plane has been freed in the above loop its
* hardware planes must not be added to the used planes
* bitmask. However, the current state doesn't reflect
* the free state yet, as we've modified the new state
* above. Use the local freed planes list to check for
* that condition instead.
*/
if (group_freed_planes[index] & (1 << i)) {
dev_dbg(rcdu->dev,
"%s: plane (%u,%tu) has been freed, skipping\n",
__func__, plane->group->index,
plane - plane->group->planes);
continue;
}
new_plane_state = to_rcar_plane_state(s);
used_planes |= rcar_du_plane_hwmask(new_plane_state);
dev_dbg(rcdu->dev,
"%s: plane (%u,%tu) uses %u hwplanes (index %d)\n",
__func__, plane->group->index,
plane - plane->group->planes,
new_plane_state->format ?
new_plane_state->format->planes : 0,
new_plane_state->hwindex);
}
group_free_planes[index] = 0xff & ~used_planes;
groups &= ~(1 << index);
dev_dbg(rcdu->dev, "%s: group %u free planes mask 0x%02x\n",
__func__, index, group_free_planes[index]);
}
/* Reallocate hardware planes for each plane that needs it. */
for_each_oldnew_plane_in_state(state, drm_plane, old_drm_plane_state,
new_drm_plane_state, i) {
struct rcar_du_plane_state *old_plane_state;
struct rcar_du_plane_state *new_plane_state;
struct rcar_du_plane *plane;
unsigned int crtc_planes;
unsigned int free;
int idx;
plane = to_rcar_plane(drm_plane);
old_plane_state = to_rcar_plane_state(old_drm_plane_state);
new_plane_state = to_rcar_plane_state(new_drm_plane_state);
dev_dbg(rcdu->dev, "%s: allocating plane (%u,%tu)\n", __func__,
plane->group->index, plane - plane->group->planes);
/*
* Skip planes that are being disabled or don't need to be
* reallocated.
*/
if (!new_plane_state->format ||
!rcar_du_plane_needs_realloc(old_plane_state, new_plane_state))
continue;
/*
* Try to allocate the plane from the free planes currently
* associated with the target CRTC to avoid restarting the CRTC
* group and thus minimize flicker. If it fails fall back to
* allocating from all free planes.
*/
crtc_planes = to_rcar_crtc(new_plane_state->state.crtc)->index % 2
? plane->group->dptsr_planes
: ~plane->group->dptsr_planes;
free = group_free_planes[plane->group->index];
idx = rcar_du_plane_hwalloc(plane, new_plane_state,
free & crtc_planes);
if (idx < 0)
idx = rcar_du_plane_hwalloc(plane, new_plane_state,
free);
if (idx < 0) {
dev_dbg(rcdu->dev, "%s: no available hardware plane\n",
__func__);
return idx;
}
dev_dbg(rcdu->dev, "%s: allocated %u hwplanes (index %u)\n",
__func__, new_plane_state->format->planes, idx);
new_plane_state->hwindex = idx;
group_free_planes[plane->group->index] &=
~rcar_du_plane_hwmask(new_plane_state);
dev_dbg(rcdu->dev, "%s: group %u free planes mask 0x%02x\n",
__func__, plane->group->index,
group_free_planes[plane->group->index]);
}
return 0;
}
/* -----------------------------------------------------------------------------
* Plane Setup
*/
#define RCAR_DU_COLORKEY_NONE (0 << 24)
#define RCAR_DU_COLORKEY_SOURCE (1 << 24)
#define RCAR_DU_COLORKEY_MASK (1 << 24)
static void rcar_du_plane_write(struct rcar_du_group *rgrp,
unsigned int index, u32 reg, u32 data)
{
rcar_du_write(rgrp->dev, rgrp->mmio_offset + index * PLANE_OFF + reg,
data);
}
static void rcar_du_plane_setup_scanout(struct rcar_du_group *rgrp,
const struct rcar_du_plane_state *state)
{
unsigned int src_x = state->state.src.x1 >> 16;
unsigned int src_y = state->state.src.y1 >> 16;
unsigned int index = state->hwindex;
unsigned int pitch;
bool interlaced;
u32 dma[2];
interlaced = state->state.crtc->state->adjusted_mode.flags
& DRM_MODE_FLAG_INTERLACE;
if (state->source == RCAR_DU_PLANE_MEMORY) {
struct drm_framebuffer *fb = state->state.fb;
struct drm_gem_cma_object *gem;
unsigned int i;
if (state->format->planes == 2)
pitch = fb->pitches[0];
else
pitch = fb->pitches[0] * 8 / state->format->bpp;
for (i = 0; i < state->format->planes; ++i) {
gem = drm_fb_cma_get_gem_obj(fb, i);
dma[i] = gem->paddr + fb->offsets[i];
}
} else {
pitch = drm_rect_width(&state->state.src) >> 16;
dma[0] = 0;
dma[1] = 0;
}
/*
* Memory pitch (expressed in pixels). Must be doubled for interlaced
* operation with 32bpp formats.
*/
rcar_du_plane_write(rgrp, index, PnMWR,
(interlaced && state->format->bpp == 32) ?
pitch * 2 : pitch);
/*
* The Y position is expressed in raster line units and must be doubled
* for 32bpp formats, according to the R8A7790 datasheet. No mention of
* doubling the Y position is found in the R8A7779 datasheet, but the
* rule seems to apply there as well.
*
* Despite not being documented, doubling seem not to be needed when
* operating in interlaced mode.
*
* Similarly, for the second plane, NV12 and NV21 formats seem to
* require a halved Y position value, in both progressive and interlaced
* modes.
*/
rcar_du_plane_write(rgrp, index, PnSPXR, src_x);
rcar_du_plane_write(rgrp, index, PnSPYR, src_y *
(!interlaced && state->format->bpp == 32 ? 2 : 1));
rcar_du_plane_write(rgrp, index, PnDSA0R, dma[0]);
if (state->format->planes == 2) {
index = (index + 1) % 8;
rcar_du_plane_write(rgrp, index, PnMWR, pitch);
rcar_du_plane_write(rgrp, index, PnSPXR, src_x);
rcar_du_plane_write(rgrp, index, PnSPYR, src_y *
(state->format->bpp == 16 ? 2 : 1) / 2);
rcar_du_plane_write(rgrp, index, PnDSA0R, dma[1]);
}
}
static void rcar_du_plane_setup_mode(struct rcar_du_group *rgrp,
unsigned int index,
const struct rcar_du_plane_state *state)
{
u32 colorkey;
u32 pnmr;
/*
* The PnALPHAR register controls alpha-blending in 16bpp formats
* (ARGB1555 and XRGB1555).
*
* For ARGB, set the alpha value to 0, and enable alpha-blending when
* the A bit is 0. This maps A=0 to alpha=0 and A=1 to alpha=255.
*
* For XRGB, set the alpha value to the plane-wide alpha value and
* enable alpha-blending regardless of the X bit value.
*/
if (state->format->fourcc != DRM_FORMAT_XRGB1555)
rcar_du_plane_write(rgrp, index, PnALPHAR, PnALPHAR_ABIT_0);
else
rcar_du_plane_write(rgrp, index, PnALPHAR,
PnALPHAR_ABIT_X | state->state.alpha >> 8);
pnmr = PnMR_BM_MD | state->format->pnmr;
/*
* Disable color keying when requested. YUV formats have the
* PnMR_SPIM_TP_OFF bit set in their pnmr field, disabling color keying
* automatically.
*/
if ((state->colorkey & RCAR_DU_COLORKEY_MASK) == RCAR_DU_COLORKEY_NONE)
pnmr |= PnMR_SPIM_TP_OFF;
/* For packed YUV formats we need to select the U/V order. */
if (state->format->fourcc == DRM_FORMAT_YUYV)
pnmr |= PnMR_YCDF_YUYV;
rcar_du_plane_write(rgrp, index, PnMR, pnmr);
switch (state->format->fourcc) {
case DRM_FORMAT_RGB565:
colorkey = ((state->colorkey & 0xf80000) >> 8)
| ((state->colorkey & 0x00fc00) >> 5)
| ((state->colorkey & 0x0000f8) >> 3);
rcar_du_plane_write(rgrp, index, PnTC2R, colorkey);
break;
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_XRGB1555:
colorkey = ((state->colorkey & 0xf80000) >> 9)
| ((state->colorkey & 0x00f800) >> 6)
| ((state->colorkey & 0x0000f8) >> 3);
rcar_du_plane_write(rgrp, index, PnTC2R, colorkey);
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
rcar_du_plane_write(rgrp, index, PnTC3R,
PnTC3R_CODE | (state->colorkey & 0xffffff));
break;
}
}
static void rcar_du_plane_setup_format_gen2(struct rcar_du_group *rgrp,
unsigned int index,
const struct rcar_du_plane_state *state)
{
u32 ddcr2 = PnDDCR2_CODE;
u32 ddcr4;
/*
* Data format
*
* The data format is selected by the DDDF field in PnMR and the EDF
* field in DDCR4.
*/
rcar_du_plane_setup_mode(rgrp, index, state);
if (state->format->planes == 2) {
if (state->hwindex != index) {
if (state->format->fourcc == DRM_FORMAT_NV12 ||
state->format->fourcc == DRM_FORMAT_NV21)
ddcr2 |= PnDDCR2_Y420;
if (state->format->fourcc == DRM_FORMAT_NV21)
ddcr2 |= PnDDCR2_NV21;
ddcr2 |= PnDDCR2_DIVU;
} else {
ddcr2 |= PnDDCR2_DIVY;
}
}
rcar_du_plane_write(rgrp, index, PnDDCR2, ddcr2);
ddcr4 = state->format->edf | PnDDCR4_CODE;
if (state->source != RCAR_DU_PLANE_MEMORY)
ddcr4 |= PnDDCR4_VSPS;
rcar_du_plane_write(rgrp, index, PnDDCR4, ddcr4);
}
static void rcar_du_plane_setup_format_gen3(struct rcar_du_group *rgrp,
unsigned int index,
const struct rcar_du_plane_state *state)
{
rcar_du_plane_write(rgrp, index, PnMR,
PnMR_SPIM_TP_OFF | state->format->pnmr);
rcar_du_plane_write(rgrp, index, PnDDCR4,
state->format->edf | PnDDCR4_CODE);
}
static void rcar_du_plane_setup_format(struct rcar_du_group *rgrp,
unsigned int index,
const struct rcar_du_plane_state *state)
{
struct rcar_du_device *rcdu = rgrp->dev;
const struct drm_rect *dst = &state->state.dst;
if (rcdu->info->gen < 3)
rcar_du_plane_setup_format_gen2(rgrp, index, state);
else
rcar_du_plane_setup_format_gen3(rgrp, index, state);
/* Destination position and size */
rcar_du_plane_write(rgrp, index, PnDSXR, drm_rect_width(dst));
rcar_du_plane_write(rgrp, index, PnDSYR, drm_rect_height(dst));
rcar_du_plane_write(rgrp, index, PnDPXR, dst->x1);
rcar_du_plane_write(rgrp, index, PnDPYR, dst->y1);
if (rcdu->info->gen < 3) {
/* Wrap-around and blinking, disabled */
rcar_du_plane_write(rgrp, index, PnWASPR, 0);
rcar_du_plane_write(rgrp, index, PnWAMWR, 4095);
rcar_du_plane_write(rgrp, index, PnBTR, 0);
rcar_du_plane_write(rgrp, index, PnMLR, 0);
}
}
void __rcar_du_plane_setup(struct rcar_du_group *rgrp,
const struct rcar_du_plane_state *state)
{
struct rcar_du_device *rcdu = rgrp->dev;
rcar_du_plane_setup_format(rgrp, state->hwindex, state);
if (state->format->planes == 2)
rcar_du_plane_setup_format(rgrp, (state->hwindex + 1) % 8,
state);
if (rcdu->info->gen < 3)
rcar_du_plane_setup_scanout(rgrp, state);
if (state->source == RCAR_DU_PLANE_VSPD1) {
unsigned int vspd1_sink = rgrp->index ? 2 : 0;
if (rcdu->vspd1_sink != vspd1_sink) {
rcdu->vspd1_sink = vspd1_sink;
rcar_du_set_dpad0_vsp1_routing(rcdu);
}
}
}
int __rcar_du_plane_atomic_check(struct drm_plane *plane,
struct drm_plane_state *state,
const struct rcar_du_format_info **format)
{
struct drm_device *dev = plane->dev;
struct drm_crtc_state *crtc_state;
int ret;
if (!state->crtc) {
/*
* The visible field is not reset by the DRM core but only
* updated by drm_plane_helper_check_state(), set it manually.
*/
state->visible = false;
*format = NULL;
return 0;
}
crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
ret = drm_atomic_helper_check_plane_state(state, crtc_state,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
true, true);
if (ret < 0)
return ret;
if (!state->visible) {
*format = NULL;
return 0;
}
*format = rcar_du_format_info(state->fb->format->format);
if (*format == NULL) {
dev_dbg(dev->dev, "%s: unsupported format %08x\n", __func__,
state->fb->format->format);
return -EINVAL;
}
return 0;
}
static int rcar_du_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct rcar_du_plane_state *rstate = to_rcar_plane_state(new_plane_state);
return __rcar_du_plane_atomic_check(plane, new_plane_state,
&rstate->format);
}
static void rcar_du_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane);
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
struct rcar_du_plane *rplane = to_rcar_plane(plane);
struct rcar_du_plane_state *old_rstate;
struct rcar_du_plane_state *new_rstate;
if (!new_state->visible)
return;
rcar_du_plane_setup(rplane);
/*
* Check whether the source has changed from memory to live source or
* from live source to memory. The source has been configured by the
* VSPS bit in the PnDDCR4 register. Although the datasheet states that
* the bit is updated during vertical blanking, it seems that updates
* only occur when the DU group is held in reset through the DSYSR.DRES
* bit. We thus need to restart the group if the source changes.
*/
old_rstate = to_rcar_plane_state(old_state);
new_rstate = to_rcar_plane_state(new_state);
if ((old_rstate->source == RCAR_DU_PLANE_MEMORY) !=
(new_rstate->source == RCAR_DU_PLANE_MEMORY))
rplane->group->need_restart = true;
}
static const struct drm_plane_helper_funcs rcar_du_plane_helper_funcs = {
.atomic_check = rcar_du_plane_atomic_check,
.atomic_update = rcar_du_plane_atomic_update,
};
static struct drm_plane_state *
rcar_du_plane_atomic_duplicate_state(struct drm_plane *plane)
{
struct rcar_du_plane_state *state;
struct rcar_du_plane_state *copy;
if (WARN_ON(!plane->state))
return NULL;
state = to_rcar_plane_state(plane->state);
copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
if (copy == NULL)
return NULL;
__drm_atomic_helper_plane_duplicate_state(plane, &copy->state);
return &copy->state;
}
static void rcar_du_plane_atomic_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
__drm_atomic_helper_plane_destroy_state(state);
kfree(to_rcar_plane_state(state));
}
static void rcar_du_plane_reset(struct drm_plane *plane)
{
struct rcar_du_plane_state *state;
if (plane->state) {
rcar_du_plane_atomic_destroy_state(plane, plane->state);
plane->state = NULL;
}
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state == NULL)
return;
__drm_atomic_helper_plane_reset(plane, &state->state);
state->hwindex = -1;
state->source = RCAR_DU_PLANE_MEMORY;
state->colorkey = RCAR_DU_COLORKEY_NONE;
state->state.zpos = plane->type == DRM_PLANE_TYPE_PRIMARY ? 0 : 1;
}
static int rcar_du_plane_atomic_set_property(struct drm_plane *plane,
struct drm_plane_state *state,
struct drm_property *property,
uint64_t val)
{
struct rcar_du_plane_state *rstate = to_rcar_plane_state(state);
struct rcar_du_device *rcdu = to_rcar_plane(plane)->group->dev;
if (property == rcdu->props.colorkey)
rstate->colorkey = val;
else
return -EINVAL;
return 0;
}
static int rcar_du_plane_atomic_get_property(struct drm_plane *plane,
const struct drm_plane_state *state, struct drm_property *property,
uint64_t *val)
{
const struct rcar_du_plane_state *rstate =
container_of(state, const struct rcar_du_plane_state, state);
struct rcar_du_device *rcdu = to_rcar_plane(plane)->group->dev;
if (property == rcdu->props.colorkey)
*val = rstate->colorkey;
else
return -EINVAL;
return 0;
}
static const struct drm_plane_funcs rcar_du_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.reset = rcar_du_plane_reset,
.destroy = drm_plane_cleanup,
.atomic_duplicate_state = rcar_du_plane_atomic_duplicate_state,
.atomic_destroy_state = rcar_du_plane_atomic_destroy_state,
.atomic_set_property = rcar_du_plane_atomic_set_property,
.atomic_get_property = rcar_du_plane_atomic_get_property,
};
static const uint32_t formats[] = {
DRM_FORMAT_RGB565,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_UYVY,
DRM_FORMAT_YUYV,
DRM_FORMAT_NV12,
DRM_FORMAT_NV21,
DRM_FORMAT_NV16,
};
int rcar_du_planes_init(struct rcar_du_group *rgrp)
{
struct rcar_du_device *rcdu = rgrp->dev;
unsigned int crtcs;
unsigned int i;
int ret;
/*
* Create one primary plane per CRTC in this group and seven overlay
* planes.
*/
rgrp->num_planes = rgrp->num_crtcs + 7;
crtcs = ((1 << rcdu->num_crtcs) - 1) & (3 << (2 * rgrp->index));
for (i = 0; i < rgrp->num_planes; ++i) {
enum drm_plane_type type = i < rgrp->num_crtcs
? DRM_PLANE_TYPE_PRIMARY
: DRM_PLANE_TYPE_OVERLAY;
struct rcar_du_plane *plane = &rgrp->planes[i];
plane->group = rgrp;
ret = drm_universal_plane_init(&rcdu->ddev, &plane->plane,
crtcs, &rcar_du_plane_funcs,
formats, ARRAY_SIZE(formats),
NULL, type, NULL);
if (ret < 0)
return ret;
drm_plane_helper_add(&plane->plane,
&rcar_du_plane_helper_funcs);
drm_plane_create_alpha_property(&plane->plane);
if (type == DRM_PLANE_TYPE_PRIMARY) {
drm_plane_create_zpos_immutable_property(&plane->plane,
0);
} else {
drm_object_attach_property(&plane->plane.base,
rcdu->props.colorkey,
RCAR_DU_COLORKEY_NONE);
drm_plane_create_zpos_property(&plane->plane, 1, 1, 7);
}
}
return 0;
}