| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Windfarm PowerMac thermal control. |
| * Control loops for RackMack3,1 (Xserve G5) |
| * |
| * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp. |
| */ |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/reboot.h> |
| #include <asm/prom.h> |
| #include <asm/smu.h> |
| |
| #include "windfarm.h" |
| #include "windfarm_pid.h" |
| #include "windfarm_mpu.h" |
| |
| #define VERSION "1.0" |
| |
| #undef DEBUG |
| #undef LOTSA_DEBUG |
| |
| #ifdef DEBUG |
| #define DBG(args...) printk(args) |
| #else |
| #define DBG(args...) do { } while(0) |
| #endif |
| |
| #ifdef LOTSA_DEBUG |
| #define DBG_LOTS(args...) printk(args) |
| #else |
| #define DBG_LOTS(args...) do { } while(0) |
| #endif |
| |
| /* define this to force CPU overtemp to 60 degree, useful for testing |
| * the overtemp code |
| */ |
| #undef HACKED_OVERTEMP |
| |
| /* We currently only handle 2 chips */ |
| #define NR_CHIPS 2 |
| #define NR_CPU_FANS 3 * NR_CHIPS |
| |
| /* Controls and sensors */ |
| static struct wf_sensor *sens_cpu_temp[NR_CHIPS]; |
| static struct wf_sensor *sens_cpu_volts[NR_CHIPS]; |
| static struct wf_sensor *sens_cpu_amps[NR_CHIPS]; |
| static struct wf_sensor *backside_temp; |
| static struct wf_sensor *slots_temp; |
| static struct wf_sensor *dimms_temp; |
| |
| static struct wf_control *cpu_fans[NR_CHIPS][3]; |
| static struct wf_control *backside_fan; |
| static struct wf_control *slots_fan; |
| static struct wf_control *cpufreq_clamp; |
| |
| /* We keep a temperature history for average calculation of 180s */ |
| #define CPU_TEMP_HIST_SIZE 180 |
| |
| /* PID loop state */ |
| static const struct mpu_data *cpu_mpu_data[NR_CHIPS]; |
| static struct wf_cpu_pid_state cpu_pid[NR_CHIPS]; |
| static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; |
| static int cpu_thist_pt; |
| static s64 cpu_thist_total; |
| static s32 cpu_all_tmax = 100 << 16; |
| static struct wf_pid_state backside_pid; |
| static int backside_tick; |
| static struct wf_pid_state slots_pid; |
| static int slots_tick; |
| static int slots_speed; |
| static struct wf_pid_state dimms_pid; |
| static int dimms_output_clamp; |
| |
| static int nr_chips; |
| static bool have_all_controls; |
| static bool have_all_sensors; |
| static bool started; |
| |
| static int failure_state; |
| #define FAILURE_SENSOR 1 |
| #define FAILURE_FAN 2 |
| #define FAILURE_PERM 4 |
| #define FAILURE_LOW_OVERTEMP 8 |
| #define FAILURE_HIGH_OVERTEMP 16 |
| |
| /* Overtemp values */ |
| #define LOW_OVER_AVERAGE 0 |
| #define LOW_OVER_IMMEDIATE (10 << 16) |
| #define LOW_OVER_CLEAR ((-10) << 16) |
| #define HIGH_OVER_IMMEDIATE (14 << 16) |
| #define HIGH_OVER_AVERAGE (10 << 16) |
| #define HIGH_OVER_IMMEDIATE (14 << 16) |
| |
| |
| static void cpu_max_all_fans(void) |
| { |
| int i; |
| |
| /* We max all CPU fans in case of a sensor error. We also do the |
| * cpufreq clamping now, even if it's supposedly done later by the |
| * generic code anyway, we do it earlier here to react faster |
| */ |
| if (cpufreq_clamp) |
| wf_control_set_max(cpufreq_clamp); |
| for (i = 0; i < nr_chips; i++) { |
| if (cpu_fans[i][0]) |
| wf_control_set_max(cpu_fans[i][0]); |
| if (cpu_fans[i][1]) |
| wf_control_set_max(cpu_fans[i][1]); |
| if (cpu_fans[i][2]) |
| wf_control_set_max(cpu_fans[i][2]); |
| } |
| } |
| |
| static int cpu_check_overtemp(s32 temp) |
| { |
| int new_state = 0; |
| s32 t_avg, t_old; |
| static bool first = true; |
| |
| /* First check for immediate overtemps */ |
| if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { |
| new_state |= FAILURE_LOW_OVERTEMP; |
| if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
| printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" |
| " temperature !\n"); |
| } |
| if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { |
| new_state |= FAILURE_HIGH_OVERTEMP; |
| if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
| printk(KERN_ERR "windfarm: Critical overtemp due to" |
| " immediate CPU temperature !\n"); |
| } |
| |
| /* |
| * The first time around, initialize the array with the first |
| * temperature reading |
| */ |
| if (first) { |
| int i; |
| |
| cpu_thist_total = 0; |
| for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) { |
| cpu_thist[i] = temp; |
| cpu_thist_total += temp; |
| } |
| first = false; |
| } |
| |
| /* |
| * We calculate a history of max temperatures and use that for the |
| * overtemp management |
| */ |
| t_old = cpu_thist[cpu_thist_pt]; |
| cpu_thist[cpu_thist_pt] = temp; |
| cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; |
| cpu_thist_total -= t_old; |
| cpu_thist_total += temp; |
| t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; |
| |
| DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", |
| FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); |
| |
| /* Now check for average overtemps */ |
| if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { |
| new_state |= FAILURE_LOW_OVERTEMP; |
| if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
| printk(KERN_ERR "windfarm: Overtemp due to average CPU" |
| " temperature !\n"); |
| } |
| if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { |
| new_state |= FAILURE_HIGH_OVERTEMP; |
| if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
| printk(KERN_ERR "windfarm: Critical overtemp due to" |
| " average CPU temperature !\n"); |
| } |
| |
| /* Now handle overtemp conditions. We don't currently use the windfarm |
| * overtemp handling core as it's not fully suited to the needs of those |
| * new machine. This will be fixed later. |
| */ |
| if (new_state) { |
| /* High overtemp -> immediate shutdown */ |
| if (new_state & FAILURE_HIGH_OVERTEMP) |
| machine_power_off(); |
| if ((failure_state & new_state) != new_state) |
| cpu_max_all_fans(); |
| failure_state |= new_state; |
| } else if ((failure_state & FAILURE_LOW_OVERTEMP) && |
| (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { |
| printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); |
| failure_state &= ~FAILURE_LOW_OVERTEMP; |
| } |
| |
| return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); |
| } |
| |
| static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power) |
| { |
| s32 dtemp, volts, amps; |
| int rc; |
| |
| /* Get diode temperature */ |
| rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp); |
| if (rc) { |
| DBG(" CPU%d: temp reading error !\n", cpu); |
| return -EIO; |
| } |
| DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp))); |
| *temp = dtemp; |
| |
| /* Get voltage */ |
| rc = wf_sensor_get(sens_cpu_volts[cpu], &volts); |
| if (rc) { |
| DBG(" CPU%d, volts reading error !\n", cpu); |
| return -EIO; |
| } |
| DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts))); |
| |
| /* Get current */ |
| rc = wf_sensor_get(sens_cpu_amps[cpu], &s); |
| if (rc) { |
| DBG(" CPU%d, current reading error !\n", cpu); |
| return -EIO; |
| } |
| DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps))); |
| |
| /* Calculate power */ |
| |
| /* Scale voltage and current raw sensor values according to fixed scales |
| * obtained in Darwin and calculate power from I and V |
| */ |
| *power = (((u64)volts) * ((u64)amps)) >> 16; |
| |
| DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power))); |
| |
| return 0; |
| |
| } |
| |
| static void cpu_fans_tick(void) |
| { |
| int err, cpu, i; |
| s32 speed, temp, power, t_max = 0; |
| |
| DBG_LOTS("* cpu fans_tick_split()\n"); |
| |
| for (cpu = 0; cpu < nr_chips; ++cpu) { |
| struct wf_cpu_pid_state *sp = &cpu_pid[cpu]; |
| |
| /* Read current speed */ |
| wf_control_get(cpu_fans[cpu][0], &sp->target); |
| |
| err = read_one_cpu_vals(cpu, &temp, &power); |
| if (err) { |
| failure_state |= FAILURE_SENSOR; |
| cpu_max_all_fans(); |
| return; |
| } |
| |
| /* Keep track of highest temp */ |
| t_max = max(t_max, temp); |
| |
| /* Handle possible overtemps */ |
| if (cpu_check_overtemp(t_max)) |
| return; |
| |
| /* Run PID */ |
| wf_cpu_pid_run(sp, power, temp); |
| |
| DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target); |
| |
| /* Apply DIMMs clamp */ |
| speed = max(sp->target, dimms_output_clamp); |
| |
| /* Apply result to all cpu fans */ |
| for (i = 0; i < 3; i++) { |
| err = wf_control_set(cpu_fans[cpu][i], speed); |
| if (err) { |
| pr_warn("wf_rm31: Fan %s reports error %d\n", |
| cpu_fans[cpu][i]->name, err); |
| failure_state |= FAILURE_FAN; |
| } |
| } |
| } |
| } |
| |
| /* Implementation... */ |
| static int cpu_setup_pid(int cpu) |
| { |
| struct wf_cpu_pid_param pid; |
| const struct mpu_data *mpu = cpu_mpu_data[cpu]; |
| s32 tmax, ttarget, ptarget; |
| int fmin, fmax, hsize; |
| |
| /* Get PID params from the appropriate MPU EEPROM */ |
| tmax = mpu->tmax << 16; |
| ttarget = mpu->ttarget << 16; |
| ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16; |
| |
| DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n", |
| cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax)); |
| |
| /* We keep a global tmax for overtemp calculations */ |
| if (tmax < cpu_all_tmax) |
| cpu_all_tmax = tmax; |
| |
| /* Set PID min/max by using the rear fan min/max */ |
| fmin = wf_control_get_min(cpu_fans[cpu][0]); |
| fmax = wf_control_get_max(cpu_fans[cpu][0]); |
| DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax); |
| |
| /* History size */ |
| hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY); |
| DBG("wf_72: CPU%d history size = %d\n", cpu, hsize); |
| |
| /* Initialize PID loop */ |
| pid.interval = 1; /* seconds */ |
| pid.history_len = hsize; |
| pid.gd = mpu->pid_gd; |
| pid.gp = mpu->pid_gp; |
| pid.gr = mpu->pid_gr; |
| pid.tmax = tmax; |
| pid.ttarget = ttarget; |
| pid.pmaxadj = ptarget; |
| pid.min = fmin; |
| pid.max = fmax; |
| |
| wf_cpu_pid_init(&cpu_pid[cpu], &pid); |
| cpu_pid[cpu].target = 4000; |
| |
| return 0; |
| } |
| |
| /* Backside/U3 fan */ |
| static const struct wf_pid_param backside_param = { |
| .interval = 1, |
| .history_len = 2, |
| .gd = 0x00500000, |
| .gp = 0x0004cccc, |
| .gr = 0, |
| .itarget = 70 << 16, |
| .additive = 0, |
| .min = 20, |
| .max = 100, |
| }; |
| |
| /* DIMMs temperature (clamp the backside fan) */ |
| static const struct wf_pid_param dimms_param = { |
| .interval = 1, |
| .history_len = 20, |
| .gd = 0, |
| .gp = 0, |
| .gr = 0x06553600, |
| .itarget = 50 << 16, |
| .additive = 0, |
| .min = 4000, |
| .max = 14000, |
| }; |
| |
| static void backside_fan_tick(void) |
| { |
| s32 temp, dtemp; |
| int speed, dspeed, fan_min; |
| int err; |
| |
| if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick) |
| return; |
| if (--backside_tick > 0) |
| return; |
| backside_tick = backside_pid.param.interval; |
| |
| DBG_LOTS("* backside fans tick\n"); |
| |
| /* Update fan speed from actual fans */ |
| err = wf_control_get(backside_fan, &speed); |
| if (!err) |
| backside_pid.target = speed; |
| |
| err = wf_sensor_get(backside_temp, &temp); |
| if (err) { |
| printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n", |
| err); |
| failure_state |= FAILURE_SENSOR; |
| wf_control_set_max(backside_fan); |
| return; |
| } |
| speed = wf_pid_run(&backside_pid, temp); |
| |
| DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", |
| FIX32TOPRINT(temp), speed); |
| |
| err = wf_sensor_get(dimms_temp, &dtemp); |
| if (err) { |
| printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n", |
| err); |
| failure_state |= FAILURE_SENSOR; |
| wf_control_set_max(backside_fan); |
| return; |
| } |
| dspeed = wf_pid_run(&dimms_pid, dtemp); |
| dimms_output_clamp = dspeed; |
| |
| fan_min = (dspeed * 100) / 14000; |
| fan_min = max(fan_min, backside_param.min); |
| speed = max(speed, fan_min); |
| |
| err = wf_control_set(backside_fan, speed); |
| if (err) { |
| printk(KERN_WARNING "windfarm: backside fan error %d\n", err); |
| failure_state |= FAILURE_FAN; |
| } |
| } |
| |
| static void backside_setup_pid(void) |
| { |
| /* first time initialize things */ |
| s32 fmin = wf_control_get_min(backside_fan); |
| s32 fmax = wf_control_get_max(backside_fan); |
| struct wf_pid_param param; |
| |
| param = backside_param; |
| param.min = max(param.min, fmin); |
| param.max = min(param.max, fmax); |
| wf_pid_init(&backside_pid, ¶m); |
| |
| param = dimms_param; |
| wf_pid_init(&dimms_pid, ¶m); |
| |
| backside_tick = 1; |
| |
| pr_info("wf_rm31: Backside control loop started.\n"); |
| } |
| |
| /* Slots fan */ |
| static const struct wf_pid_param slots_param = { |
| .interval = 1, |
| .history_len = 20, |
| .gd = 0, |
| .gp = 0, |
| .gr = 0x00100000, |
| .itarget = 3200000, |
| .additive = 0, |
| .min = 20, |
| .max = 100, |
| }; |
| |
| static void slots_fan_tick(void) |
| { |
| s32 temp; |
| int speed; |
| int err; |
| |
| if (!slots_fan || !slots_temp || !slots_tick) |
| return; |
| if (--slots_tick > 0) |
| return; |
| slots_tick = slots_pid.param.interval; |
| |
| DBG_LOTS("* slots fans tick\n"); |
| |
| err = wf_sensor_get(slots_temp, &temp); |
| if (err) { |
| pr_warn("wf_rm31: slots temp sensor error %d\n", err); |
| failure_state |= FAILURE_SENSOR; |
| wf_control_set_max(slots_fan); |
| return; |
| } |
| speed = wf_pid_run(&slots_pid, temp); |
| |
| DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n", |
| FIX32TOPRINT(temp), speed); |
| |
| slots_speed = speed; |
| err = wf_control_set(slots_fan, speed); |
| if (err) { |
| printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err); |
| failure_state |= FAILURE_FAN; |
| } |
| } |
| |
| static void slots_setup_pid(void) |
| { |
| /* first time initialize things */ |
| s32 fmin = wf_control_get_min(slots_fan); |
| s32 fmax = wf_control_get_max(slots_fan); |
| struct wf_pid_param param = slots_param; |
| |
| param.min = max(param.min, fmin); |
| param.max = min(param.max, fmax); |
| wf_pid_init(&slots_pid, ¶m); |
| slots_tick = 1; |
| |
| pr_info("wf_rm31: Slots control loop started.\n"); |
| } |
| |
| static void set_fail_state(void) |
| { |
| cpu_max_all_fans(); |
| |
| if (backside_fan) |
| wf_control_set_max(backside_fan); |
| if (slots_fan) |
| wf_control_set_max(slots_fan); |
| } |
| |
| static void rm31_tick(void) |
| { |
| int i, last_failure; |
| |
| if (!started) { |
| started = true; |
| printk(KERN_INFO "windfarm: CPUs control loops started.\n"); |
| for (i = 0; i < nr_chips; ++i) { |
| if (cpu_setup_pid(i) < 0) { |
| failure_state = FAILURE_PERM; |
| set_fail_state(); |
| break; |
| } |
| } |
| DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); |
| |
| backside_setup_pid(); |
| slots_setup_pid(); |
| |
| #ifdef HACKED_OVERTEMP |
| cpu_all_tmax = 60 << 16; |
| #endif |
| } |
| |
| /* Permanent failure, bail out */ |
| if (failure_state & FAILURE_PERM) |
| return; |
| |
| /* |
| * Clear all failure bits except low overtemp which will be eventually |
| * cleared by the control loop itself |
| */ |
| last_failure = failure_state; |
| failure_state &= FAILURE_LOW_OVERTEMP; |
| backside_fan_tick(); |
| slots_fan_tick(); |
| |
| /* We do CPUs last because they can be clamped high by |
| * DIMM temperature |
| */ |
| cpu_fans_tick(); |
| |
| DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n", |
| last_failure, failure_state); |
| |
| /* Check for failures. Any failure causes cpufreq clamping */ |
| if (failure_state && last_failure == 0 && cpufreq_clamp) |
| wf_control_set_max(cpufreq_clamp); |
| if (failure_state == 0 && last_failure && cpufreq_clamp) |
| wf_control_set_min(cpufreq_clamp); |
| |
| /* That's it for now, we might want to deal with other failures |
| * differently in the future though |
| */ |
| } |
| |
| static void rm31_new_control(struct wf_control *ct) |
| { |
| bool all_controls; |
| |
| if (!strcmp(ct->name, "cpu-fan-a-0")) |
| cpu_fans[0][0] = ct; |
| else if (!strcmp(ct->name, "cpu-fan-b-0")) |
| cpu_fans[0][1] = ct; |
| else if (!strcmp(ct->name, "cpu-fan-c-0")) |
| cpu_fans[0][2] = ct; |
| else if (!strcmp(ct->name, "cpu-fan-a-1")) |
| cpu_fans[1][0] = ct; |
| else if (!strcmp(ct->name, "cpu-fan-b-1")) |
| cpu_fans[1][1] = ct; |
| else if (!strcmp(ct->name, "cpu-fan-c-1")) |
| cpu_fans[1][2] = ct; |
| else if (!strcmp(ct->name, "backside-fan")) |
| backside_fan = ct; |
| else if (!strcmp(ct->name, "slots-fan")) |
| slots_fan = ct; |
| else if (!strcmp(ct->name, "cpufreq-clamp")) |
| cpufreq_clamp = ct; |
| |
| all_controls = |
| cpu_fans[0][0] && |
| cpu_fans[0][1] && |
| cpu_fans[0][2] && |
| backside_fan && |
| slots_fan; |
| if (nr_chips > 1) |
| all_controls &= |
| cpu_fans[1][0] && |
| cpu_fans[1][1] && |
| cpu_fans[1][2]; |
| have_all_controls = all_controls; |
| } |
| |
| |
| static void rm31_new_sensor(struct wf_sensor *sr) |
| { |
| bool all_sensors; |
| |
| if (!strcmp(sr->name, "cpu-diode-temp-0")) |
| sens_cpu_temp[0] = sr; |
| else if (!strcmp(sr->name, "cpu-diode-temp-1")) |
| sens_cpu_temp[1] = sr; |
| else if (!strcmp(sr->name, "cpu-voltage-0")) |
| sens_cpu_volts[0] = sr; |
| else if (!strcmp(sr->name, "cpu-voltage-1")) |
| sens_cpu_volts[1] = sr; |
| else if (!strcmp(sr->name, "cpu-current-0")) |
| sens_cpu_amps[0] = sr; |
| else if (!strcmp(sr->name, "cpu-current-1")) |
| sens_cpu_amps[1] = sr; |
| else if (!strcmp(sr->name, "backside-temp")) |
| backside_temp = sr; |
| else if (!strcmp(sr->name, "slots-temp")) |
| slots_temp = sr; |
| else if (!strcmp(sr->name, "dimms-temp")) |
| dimms_temp = sr; |
| |
| all_sensors = |
| sens_cpu_temp[0] && |
| sens_cpu_volts[0] && |
| sens_cpu_amps[0] && |
| backside_temp && |
| slots_temp && |
| dimms_temp; |
| if (nr_chips > 1) |
| all_sensors &= |
| sens_cpu_temp[1] && |
| sens_cpu_volts[1] && |
| sens_cpu_amps[1]; |
| |
| have_all_sensors = all_sensors; |
| } |
| |
| static int rm31_wf_notify(struct notifier_block *self, |
| unsigned long event, void *data) |
| { |
| switch (event) { |
| case WF_EVENT_NEW_SENSOR: |
| rm31_new_sensor(data); |
| break; |
| case WF_EVENT_NEW_CONTROL: |
| rm31_new_control(data); |
| break; |
| case WF_EVENT_TICK: |
| if (have_all_controls && have_all_sensors) |
| rm31_tick(); |
| } |
| return 0; |
| } |
| |
| static struct notifier_block rm31_events = { |
| .notifier_call = rm31_wf_notify, |
| }; |
| |
| static int wf_rm31_probe(struct platform_device *dev) |
| { |
| wf_register_client(&rm31_events); |
| return 0; |
| } |
| |
| static int wf_rm31_remove(struct platform_device *dev) |
| { |
| wf_unregister_client(&rm31_events); |
| |
| /* should release all sensors and controls */ |
| return 0; |
| } |
| |
| static struct platform_driver wf_rm31_driver = { |
| .probe = wf_rm31_probe, |
| .remove = wf_rm31_remove, |
| .driver = { |
| .name = "windfarm", |
| }, |
| }; |
| |
| static int __init wf_rm31_init(void) |
| { |
| struct device_node *cpu; |
| int i; |
| |
| if (!of_machine_is_compatible("RackMac3,1")) |
| return -ENODEV; |
| |
| /* Count the number of CPU cores */ |
| nr_chips = 0; |
| for_each_node_by_type(cpu, "cpu") |
| ++nr_chips; |
| if (nr_chips > NR_CHIPS) |
| nr_chips = NR_CHIPS; |
| |
| pr_info("windfarm: Initializing for desktop G5 with %d chips\n", |
| nr_chips); |
| |
| /* Get MPU data for each CPU */ |
| for (i = 0; i < nr_chips; i++) { |
| cpu_mpu_data[i] = wf_get_mpu(i); |
| if (!cpu_mpu_data[i]) { |
| pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i); |
| return -ENXIO; |
| } |
| } |
| |
| #ifdef MODULE |
| request_module("windfarm_fcu_controls"); |
| request_module("windfarm_lm75_sensor"); |
| request_module("windfarm_lm87_sensor"); |
| request_module("windfarm_ad7417_sensor"); |
| request_module("windfarm_max6690_sensor"); |
| request_module("windfarm_cpufreq_clamp"); |
| #endif /* MODULE */ |
| |
| platform_driver_register(&wf_rm31_driver); |
| return 0; |
| } |
| |
| static void __exit wf_rm31_exit(void) |
| { |
| platform_driver_unregister(&wf_rm31_driver); |
| } |
| |
| module_init(wf_rm31_init); |
| module_exit(wf_rm31_exit); |
| |
| MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); |
| MODULE_DESCRIPTION("Thermal control for Xserve G5"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:windfarm"); |