| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * drivers/media/i2c/ccs/ccs-core.c |
| * |
| * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors |
| * |
| * Copyright (C) 2020 Intel Corporation |
| * Copyright (C) 2010--2012 Nokia Corporation |
| * Contact: Sakari Ailus <sakari.ailus@linux.intel.com> |
| * |
| * Based on smiapp driver by Vimarsh Zutshi |
| * Based on jt8ev1.c by Vimarsh Zutshi |
| * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/firmware.h> |
| #include <linux/gpio.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/module.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/property.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/slab.h> |
| #include <linux/smiapp.h> |
| #include <linux/v4l2-mediabus.h> |
| #include <media/v4l2-fwnode.h> |
| #include <media/v4l2-device.h> |
| #include <uapi/linux/ccs.h> |
| |
| #include "ccs.h" |
| |
| #define CCS_ALIGN_DIM(dim, flags) \ |
| ((flags) & V4L2_SEL_FLAG_GE \ |
| ? ALIGN((dim), 2) \ |
| : (dim) & ~1) |
| |
| static struct ccs_limit_offset { |
| u16 lim; |
| u16 info; |
| } ccs_limit_offsets[CCS_L_LAST + 1]; |
| |
| /* |
| * ccs_module_idents - supported camera modules |
| */ |
| static const struct ccs_module_ident ccs_module_idents[] = { |
| CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"), |
| CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"), |
| CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"), |
| CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"), |
| CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"), |
| CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk), |
| CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"), |
| CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"), |
| CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk), |
| CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk), |
| CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk), |
| }; |
| |
| #define CCS_DEVICE_FLAG_IS_SMIA BIT(0) |
| |
| struct ccs_device { |
| unsigned char flags; |
| }; |
| |
| static const char * const ccs_regulators[] = { "vcore", "vio", "vana" }; |
| |
| /* |
| * |
| * Dynamic Capability Identification |
| * |
| */ |
| |
| static void ccs_assign_limit(void *ptr, unsigned int width, u32 val) |
| { |
| switch (width) { |
| case sizeof(u8): |
| *(u8 *)ptr = val; |
| break; |
| case sizeof(u16): |
| *(u16 *)ptr = val; |
| break; |
| case sizeof(u32): |
| *(u32 *)ptr = val; |
| break; |
| } |
| } |
| |
| static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit, |
| unsigned int offset, void **__ptr) |
| { |
| const struct ccs_limit *linfo; |
| |
| if (WARN_ON(limit >= CCS_L_LAST)) |
| return -EINVAL; |
| |
| linfo = &ccs_limits[ccs_limit_offsets[limit].info]; |
| |
| if (WARN_ON(!sensor->ccs_limits) || |
| WARN_ON(offset + ccs_reg_width(linfo->reg) > |
| ccs_limit_offsets[limit + 1].lim)) |
| return -EINVAL; |
| |
| *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset; |
| |
| return 0; |
| } |
| |
| void ccs_replace_limit(struct ccs_sensor *sensor, |
| unsigned int limit, unsigned int offset, u32 val) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| const struct ccs_limit *linfo; |
| void *ptr; |
| int ret; |
| |
| ret = ccs_limit_ptr(sensor, limit, offset, &ptr); |
| if (ret) |
| return; |
| |
| linfo = &ccs_limits[ccs_limit_offsets[limit].info]; |
| |
| dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n", |
| linfo->reg, linfo->name, offset, val, val); |
| |
| ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val); |
| } |
| |
| u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit, |
| unsigned int offset) |
| { |
| void *ptr; |
| u32 val; |
| int ret; |
| |
| ret = ccs_limit_ptr(sensor, limit, offset, &ptr); |
| if (ret) |
| return 0; |
| |
| switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) { |
| case sizeof(u8): |
| val = *(u8 *)ptr; |
| break; |
| case sizeof(u16): |
| val = *(u16 *)ptr; |
| break; |
| case sizeof(u32): |
| val = *(u32 *)ptr; |
| break; |
| default: |
| WARN_ON(1); |
| return 0; |
| } |
| |
| return ccs_reg_conv(sensor, ccs_limits[limit].reg, val); |
| } |
| |
| static int ccs_read_all_limits(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| void *ptr, *alloc, *end; |
| unsigned int i, l; |
| int ret; |
| |
| kfree(sensor->ccs_limits); |
| sensor->ccs_limits = NULL; |
| |
| alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL); |
| if (!alloc) |
| return -ENOMEM; |
| |
| end = alloc + ccs_limit_offsets[CCS_L_LAST].lim; |
| |
| for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) { |
| u32 reg = ccs_limits[i].reg; |
| unsigned int width = ccs_reg_width(reg); |
| unsigned int j; |
| |
| if (l == CCS_L_LAST) { |
| dev_err(&client->dev, |
| "internal error --- end of limit array\n"); |
| ret = -EINVAL; |
| goto out_err; |
| } |
| |
| for (j = 0; j < ccs_limits[i].size / width; |
| j++, reg += width, ptr += width) { |
| u32 val; |
| |
| ret = ccs_read_addr_noconv(sensor, reg, &val); |
| if (ret) |
| goto out_err; |
| |
| if (ptr + width > end) { |
| dev_err(&client->dev, |
| "internal error --- no room for regs\n"); |
| ret = -EINVAL; |
| goto out_err; |
| } |
| |
| if (!val && j) |
| break; |
| |
| ccs_assign_limit(ptr, width, val); |
| |
| dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n", |
| reg, ccs_limits[i].name, val, val); |
| } |
| |
| if (ccs_limits[i].flags & CCS_L_FL_SAME_REG) |
| continue; |
| |
| l++; |
| ptr = alloc + ccs_limit_offsets[l].lim; |
| } |
| |
| if (l != CCS_L_LAST) { |
| dev_err(&client->dev, |
| "internal error --- insufficient limits\n"); |
| ret = -EINVAL; |
| goto out_err; |
| } |
| |
| sensor->ccs_limits = alloc; |
| |
| if (CCS_LIM(sensor, SCALER_N_MIN) < 16) |
| ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16); |
| |
| return 0; |
| |
| out_err: |
| kfree(alloc); |
| |
| return ret; |
| } |
| |
| static int ccs_read_frame_fmt(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc; |
| unsigned int i; |
| int pixel_count = 0; |
| int line_count = 0; |
| |
| fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE); |
| fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE); |
| |
| ncol_desc = (fmt_model_subtype |
| & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK) |
| >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT; |
| nrow_desc = fmt_model_subtype |
| & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK; |
| |
| dev_dbg(&client->dev, "format_model_type %s\n", |
| fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE |
| ? "2 byte" : |
| fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE |
| ? "4 byte" : "is simply bad"); |
| |
| dev_dbg(&client->dev, "%u column and %u row descriptors\n", |
| ncol_desc, nrow_desc); |
| |
| for (i = 0; i < ncol_desc + nrow_desc; i++) { |
| u32 desc; |
| u32 pixelcode; |
| u32 pixels; |
| char *which; |
| char *what; |
| |
| if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) { |
| desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i); |
| |
| pixelcode = |
| (desc |
| & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK) |
| >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT; |
| pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK; |
| } else if (fmt_model_type |
| == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) { |
| desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i); |
| |
| pixelcode = |
| (desc |
| & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK) |
| >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT; |
| pixels = desc & |
| CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK; |
| } else { |
| dev_dbg(&client->dev, |
| "invalid frame format model type %d\n", |
| fmt_model_type); |
| return -EINVAL; |
| } |
| |
| if (i < ncol_desc) |
| which = "columns"; |
| else |
| which = "rows"; |
| |
| switch (pixelcode) { |
| case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: |
| what = "embedded"; |
| break; |
| case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL: |
| what = "dummy"; |
| break; |
| case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL: |
| what = "black"; |
| break; |
| case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL: |
| what = "dark"; |
| break; |
| case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: |
| what = "visible"; |
| break; |
| default: |
| what = "invalid"; |
| break; |
| } |
| |
| dev_dbg(&client->dev, |
| "%s pixels: %d %s (pixelcode %u)\n", |
| what, pixels, which, pixelcode); |
| |
| if (i < ncol_desc) { |
| if (pixelcode == |
| CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL) |
| sensor->visible_pixel_start = pixel_count; |
| pixel_count += pixels; |
| continue; |
| } |
| |
| /* Handle row descriptors */ |
| switch (pixelcode) { |
| case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: |
| if (sensor->embedded_end) |
| break; |
| sensor->embedded_start = line_count; |
| sensor->embedded_end = line_count + pixels; |
| break; |
| case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: |
| sensor->image_start = line_count; |
| break; |
| } |
| line_count += pixels; |
| } |
| |
| if (sensor->embedded_end > sensor->image_start) { |
| dev_dbg(&client->dev, |
| "adjusting image start line to %u (was %u)\n", |
| sensor->embedded_end, sensor->image_start); |
| sensor->image_start = sensor->embedded_end; |
| } |
| |
| dev_dbg(&client->dev, "embedded data from lines %d to %d\n", |
| sensor->embedded_start, sensor->embedded_end); |
| dev_dbg(&client->dev, "image data starts at line %d\n", |
| sensor->image_start); |
| |
| return 0; |
| } |
| |
| static int ccs_pll_configure(struct ccs_sensor *sensor) |
| { |
| struct ccs_pll *pll = &sensor->pll; |
| int rval; |
| |
| rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier); |
| if (rval < 0) |
| return rval; |
| |
| if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & |
| CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) { |
| /* Lane op clock ratio does not apply here. */ |
| rval = ccs_write(sensor, REQUESTED_LINK_RATE, |
| DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz, |
| 1000000 / 256 / 256) * |
| (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? |
| sensor->pll.csi2.lanes : 1) << |
| (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ? |
| 1 : 0)); |
| if (rval < 0) |
| return rval; |
| } |
| |
| if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS) |
| return 0; |
| |
| rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL)) |
| return 0; |
| |
| rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL); |
| if (rval < 0) |
| return rval; |
| |
| rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV, |
| pll->op_fr.pre_pll_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier); |
| } |
| |
| static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct ccs_pll_limits lim = { |
| .vt_fr = { |
| .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV), |
| .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV), |
| .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ), |
| .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ), |
| .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER), |
| .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER), |
| .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ), |
| .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ), |
| }, |
| .op_fr = { |
| .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV), |
| .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV), |
| .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ), |
| .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ), |
| .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER), |
| .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER), |
| .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ), |
| .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ), |
| }, |
| .op_bk = { |
| .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV), |
| .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV), |
| .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV), |
| .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV), |
| .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ), |
| .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ), |
| .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ), |
| .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ), |
| }, |
| .vt_bk = { |
| .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV), |
| .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV), |
| .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV), |
| .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV), |
| .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ), |
| .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ), |
| .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ), |
| .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ), |
| }, |
| .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN), |
| .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK), |
| }; |
| |
| return ccs_pll_calculate(&client->dev, &lim, pll); |
| } |
| |
| static int ccs_pll_update(struct ccs_sensor *sensor) |
| { |
| struct ccs_pll *pll = &sensor->pll; |
| int rval; |
| |
| pll->binning_horizontal = sensor->binning_horizontal; |
| pll->binning_vertical = sensor->binning_vertical; |
| pll->link_freq = |
| sensor->link_freq->qmenu_int[sensor->link_freq->val]; |
| pll->scale_m = sensor->scale_m; |
| pll->bits_per_pixel = sensor->csi_format->compressed; |
| |
| rval = ccs_pll_try(sensor, pll); |
| if (rval < 0) |
| return rval; |
| |
| __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray, |
| pll->pixel_rate_pixel_array); |
| __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * |
| * V4L2 Controls handling |
| * |
| */ |
| |
| static void __ccs_update_exposure_limits(struct ccs_sensor *sensor) |
| { |
| struct v4l2_ctrl *ctrl = sensor->exposure; |
| int max; |
| |
| max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height |
| + sensor->vblank->val |
| - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN); |
| |
| __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max); |
| } |
| |
| /* |
| * Order matters. |
| * |
| * 1. Bits-per-pixel, descending. |
| * 2. Bits-per-pixel compressed, descending. |
| * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel |
| * orders must be defined. |
| */ |
| static const struct ccs_csi_data_format ccs_csi_data_formats[] = { |
| { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, }, |
| { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, }, |
| { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, }, |
| { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, }, |
| { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, }, |
| }; |
| |
| static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" }; |
| |
| #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \ |
| - (unsigned long)ccs_csi_data_formats) \ |
| / sizeof(*ccs_csi_data_formats)) |
| |
| static u32 ccs_pixel_order(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int flip = 0; |
| |
| if (sensor->hflip) { |
| if (sensor->hflip->val) |
| flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; |
| |
| if (sensor->vflip->val) |
| flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; |
| } |
| |
| flip ^= sensor->hvflip_inv_mask; |
| |
| dev_dbg(&client->dev, "flip %d\n", flip); |
| return sensor->default_pixel_order ^ flip; |
| } |
| |
| static void ccs_update_mbus_formats(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int csi_format_idx = |
| to_csi_format_idx(sensor->csi_format) & ~3; |
| unsigned int internal_csi_format_idx = |
| to_csi_format_idx(sensor->internal_csi_format) & ~3; |
| unsigned int pixel_order = ccs_pixel_order(sensor); |
| |
| if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) + |
| pixel_order >= ARRAY_SIZE(ccs_csi_data_formats))) |
| return; |
| |
| sensor->mbus_frame_fmts = |
| sensor->default_mbus_frame_fmts << pixel_order; |
| sensor->csi_format = |
| &ccs_csi_data_formats[csi_format_idx + pixel_order]; |
| sensor->internal_csi_format = |
| &ccs_csi_data_formats[internal_csi_format_idx |
| + pixel_order]; |
| |
| dev_dbg(&client->dev, "new pixel order %s\n", |
| pixel_order_str[pixel_order]); |
| } |
| |
| static const char * const ccs_test_patterns[] = { |
| "Disabled", |
| "Solid Colour", |
| "Eight Vertical Colour Bars", |
| "Colour Bars With Fade to Grey", |
| "Pseudorandom Sequence (PN9)", |
| }; |
| |
| static int ccs_set_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct ccs_sensor *sensor = |
| container_of(ctrl->handler, struct ccs_subdev, ctrl_handler) |
| ->sensor; |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int pm_status; |
| u32 orient = 0; |
| unsigned int i; |
| int exposure; |
| int rval; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_HFLIP: |
| case V4L2_CID_VFLIP: |
| if (sensor->streaming) |
| return -EBUSY; |
| |
| if (sensor->hflip->val) |
| orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; |
| |
| if (sensor->vflip->val) |
| orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; |
| |
| orient ^= sensor->hvflip_inv_mask; |
| |
| ccs_update_mbus_formats(sensor); |
| |
| break; |
| case V4L2_CID_VBLANK: |
| exposure = sensor->exposure->val; |
| |
| __ccs_update_exposure_limits(sensor); |
| |
| if (exposure > sensor->exposure->maximum) { |
| sensor->exposure->val = sensor->exposure->maximum; |
| rval = ccs_set_ctrl(sensor->exposure); |
| if (rval < 0) |
| return rval; |
| } |
| |
| break; |
| case V4L2_CID_LINK_FREQ: |
| if (sensor->streaming) |
| return -EBUSY; |
| |
| rval = ccs_pll_update(sensor); |
| if (rval) |
| return rval; |
| |
| return 0; |
| case V4L2_CID_TEST_PATTERN: |
| for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) |
| v4l2_ctrl_activate( |
| sensor->test_data[i], |
| ctrl->val == |
| V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR); |
| |
| break; |
| } |
| |
| pm_status = pm_runtime_get_if_active(&client->dev, true); |
| if (!pm_status) |
| return 0; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_ANALOGUE_GAIN: |
| rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val); |
| |
| break; |
| |
| case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN: |
| rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val); |
| |
| break; |
| |
| case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN: |
| rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL, |
| ctrl->val); |
| |
| break; |
| |
| case V4L2_CID_DIGITAL_GAIN: |
| if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == |
| CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) { |
| rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL, |
| ctrl->val); |
| break; |
| } |
| |
| rval = ccs_write_addr(sensor, |
| SMIAPP_REG_U16_DIGITAL_GAIN_GREENR, |
| ctrl->val); |
| if (rval) |
| break; |
| |
| rval = ccs_write_addr(sensor, |
| SMIAPP_REG_U16_DIGITAL_GAIN_RED, |
| ctrl->val); |
| if (rval) |
| break; |
| |
| rval = ccs_write_addr(sensor, |
| SMIAPP_REG_U16_DIGITAL_GAIN_BLUE, |
| ctrl->val); |
| if (rval) |
| break; |
| |
| rval = ccs_write_addr(sensor, |
| SMIAPP_REG_U16_DIGITAL_GAIN_GREENB, |
| ctrl->val); |
| |
| break; |
| case V4L2_CID_EXPOSURE: |
| rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val); |
| |
| break; |
| case V4L2_CID_HFLIP: |
| case V4L2_CID_VFLIP: |
| rval = ccs_write(sensor, IMAGE_ORIENTATION, orient); |
| |
| break; |
| case V4L2_CID_VBLANK: |
| rval = ccs_write(sensor, FRAME_LENGTH_LINES, |
| sensor->pixel_array->crop[ |
| CCS_PA_PAD_SRC].height |
| + ctrl->val); |
| |
| break; |
| case V4L2_CID_HBLANK: |
| rval = ccs_write(sensor, LINE_LENGTH_PCK, |
| sensor->pixel_array->crop[CCS_PA_PAD_SRC].width |
| + ctrl->val); |
| |
| break; |
| case V4L2_CID_TEST_PATTERN: |
| rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val); |
| |
| break; |
| case V4L2_CID_TEST_PATTERN_RED: |
| rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val); |
| |
| break; |
| case V4L2_CID_TEST_PATTERN_GREENR: |
| rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val); |
| |
| break; |
| case V4L2_CID_TEST_PATTERN_BLUE: |
| rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val); |
| |
| break; |
| case V4L2_CID_TEST_PATTERN_GREENB: |
| rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val); |
| |
| break; |
| case V4L2_CID_CCS_SHADING_CORRECTION: |
| rval = ccs_write(sensor, SHADING_CORRECTION_EN, |
| ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE : |
| 0); |
| |
| if (!rval && sensor->luminance_level) |
| v4l2_ctrl_activate(sensor->luminance_level, ctrl->val); |
| |
| break; |
| case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL: |
| rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val); |
| |
| break; |
| case V4L2_CID_PIXEL_RATE: |
| /* For v4l2_ctrl_s_ctrl_int64() used internally. */ |
| rval = 0; |
| |
| break; |
| default: |
| rval = -EINVAL; |
| } |
| |
| if (pm_status > 0) { |
| pm_runtime_mark_last_busy(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| } |
| |
| return rval; |
| } |
| |
| static const struct v4l2_ctrl_ops ccs_ctrl_ops = { |
| .s_ctrl = ccs_set_ctrl, |
| }; |
| |
| static int ccs_init_controls(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17); |
| if (rval) |
| return rval; |
| |
| sensor->pixel_array->ctrl_handler.lock = &sensor->mutex; |
| |
| switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) { |
| case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: { |
| struct { |
| const char *name; |
| u32 id; |
| s32 value; |
| } const gain_ctrls[] = { |
| { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0, |
| CCS_LIM(sensor, ANALOG_GAIN_M0), }, |
| { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0, |
| CCS_LIM(sensor, ANALOG_GAIN_C0), }, |
| { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1, |
| CCS_LIM(sensor, ANALOG_GAIN_M1), }, |
| { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1, |
| CCS_LIM(sensor, ANALOG_GAIN_C1), }, |
| }; |
| struct v4l2_ctrl_config ctrl_cfg = { |
| .type = V4L2_CTRL_TYPE_INTEGER, |
| .ops = &ccs_ctrl_ops, |
| .flags = V4L2_CTRL_FLAG_READ_ONLY, |
| .step = 1, |
| }; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { |
| ctrl_cfg.name = gain_ctrls[i].name; |
| ctrl_cfg.id = gain_ctrls[i].id; |
| ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def = |
| gain_ctrls[i].value; |
| |
| v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, |
| &ctrl_cfg, NULL); |
| } |
| |
| v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, |
| &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, |
| CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN), |
| CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX), |
| max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP), |
| 1U), |
| CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN)); |
| } |
| break; |
| |
| case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: { |
| struct { |
| const char *name; |
| u32 id; |
| u16 min, max, step; |
| } const gain_ctrls[] = { |
| { |
| "Analogue Linear Gain", |
| V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN, |
| CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN), |
| CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX), |
| max(CCS_LIM(sensor, |
| ANALOG_LINEAR_GAIN_STEP_SIZE), |
| 1U), |
| }, |
| { |
| "Analogue Exponential Gain", |
| V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN, |
| CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN), |
| CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX), |
| max(CCS_LIM(sensor, |
| ANALOG_EXPONENTIAL_GAIN_STEP_SIZE), |
| 1U), |
| }, |
| }; |
| struct v4l2_ctrl_config ctrl_cfg = { |
| .type = V4L2_CTRL_TYPE_INTEGER, |
| .ops = &ccs_ctrl_ops, |
| }; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { |
| ctrl_cfg.name = gain_ctrls[i].name; |
| ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min; |
| ctrl_cfg.max = gain_ctrls[i].max; |
| ctrl_cfg.step = gain_ctrls[i].step; |
| ctrl_cfg.id = gain_ctrls[i].id; |
| |
| v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, |
| &ctrl_cfg, NULL); |
| } |
| } |
| } |
| |
| if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & |
| (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING | |
| CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) { |
| const struct v4l2_ctrl_config ctrl_cfg = { |
| .name = "Shading Correction", |
| .type = V4L2_CTRL_TYPE_BOOLEAN, |
| .id = V4L2_CID_CCS_SHADING_CORRECTION, |
| .ops = &ccs_ctrl_ops, |
| .max = 1, |
| .step = 1, |
| }; |
| |
| v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, |
| &ctrl_cfg, NULL); |
| } |
| |
| if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & |
| CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) { |
| const struct v4l2_ctrl_config ctrl_cfg = { |
| .name = "Luminance Correction Level", |
| .type = V4L2_CTRL_TYPE_BOOLEAN, |
| .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL, |
| .ops = &ccs_ctrl_ops, |
| .max = 255, |
| .step = 1, |
| .def = 128, |
| }; |
| |
| sensor->luminance_level = |
| v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, |
| &ctrl_cfg, NULL); |
| } |
| |
| if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == |
| CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL || |
| CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == |
| SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL) |
| v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, |
| &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN, |
| CCS_LIM(sensor, DIGITAL_GAIN_MIN), |
| CCS_LIM(sensor, DIGITAL_GAIN_MAX), |
| max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE), |
| 1U), |
| 0x100); |
| |
| /* Exposure limits will be updated soon, use just something here. */ |
| sensor->exposure = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_EXPOSURE, 0, 0, 1, 0); |
| |
| sensor->hflip = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_HFLIP, 0, 1, 1, 0); |
| sensor->vflip = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_VFLIP, 0, 1, 1, 0); |
| |
| sensor->vblank = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_VBLANK, 0, 1, 1, 0); |
| |
| if (sensor->vblank) |
| sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE; |
| |
| sensor->hblank = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_HBLANK, 0, 1, 1, 0); |
| |
| if (sensor->hblank) |
| sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE; |
| |
| sensor->pixel_rate_parray = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); |
| |
| v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler, |
| &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN, |
| ARRAY_SIZE(ccs_test_patterns) - 1, |
| 0, 0, ccs_test_patterns); |
| |
| if (sensor->pixel_array->ctrl_handler.error) { |
| dev_err(&client->dev, |
| "pixel array controls initialization failed (%d)\n", |
| sensor->pixel_array->ctrl_handler.error); |
| return sensor->pixel_array->ctrl_handler.error; |
| } |
| |
| sensor->pixel_array->sd.ctrl_handler = |
| &sensor->pixel_array->ctrl_handler; |
| |
| v4l2_ctrl_cluster(2, &sensor->hflip); |
| |
| rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0); |
| if (rval) |
| return rval; |
| |
| sensor->src->ctrl_handler.lock = &sensor->mutex; |
| |
| sensor->pixel_rate_csi = v4l2_ctrl_new_std( |
| &sensor->src->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); |
| |
| if (sensor->src->ctrl_handler.error) { |
| dev_err(&client->dev, |
| "src controls initialization failed (%d)\n", |
| sensor->src->ctrl_handler.error); |
| return sensor->src->ctrl_handler.error; |
| } |
| |
| sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler; |
| |
| return 0; |
| } |
| |
| /* |
| * For controls that require information on available media bus codes |
| * and linke frequencies. |
| */ |
| static int ccs_init_late_controls(struct ccs_sensor *sensor) |
| { |
| unsigned long *valid_link_freqs = &sensor->valid_link_freqs[ |
| sensor->csi_format->compressed - sensor->compressed_min_bpp]; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) { |
| int max_value = (1 << sensor->csi_format->width) - 1; |
| |
| sensor->test_data[i] = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, |
| &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i, |
| 0, max_value, 1, max_value); |
| } |
| |
| sensor->link_freq = v4l2_ctrl_new_int_menu( |
| &sensor->src->ctrl_handler, &ccs_ctrl_ops, |
| V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs), |
| __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock); |
| |
| return sensor->src->ctrl_handler.error; |
| } |
| |
| static void ccs_free_controls(struct ccs_sensor *sensor) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sensor->ssds_used; i++) |
| v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler); |
| } |
| |
| static int ccs_get_mbus_formats(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct ccs_pll *pll = &sensor->pll; |
| u8 compressed_max_bpp = 0; |
| unsigned int type, n; |
| unsigned int i, pixel_order; |
| int rval; |
| |
| type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE); |
| |
| dev_dbg(&client->dev, "data_format_model_type %d\n", type); |
| |
| rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order); |
| if (rval) |
| return rval; |
| |
| if (pixel_order >= ARRAY_SIZE(pixel_order_str)) { |
| dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order); |
| return -EINVAL; |
| } |
| |
| dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order, |
| pixel_order_str[pixel_order]); |
| |
| switch (type) { |
| case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL: |
| n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N; |
| break; |
| case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED: |
| n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| sensor->default_pixel_order = pixel_order; |
| sensor->mbus_frame_fmts = 0; |
| |
| for (i = 0; i < n; i++) { |
| unsigned int fmt, j; |
| |
| fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i); |
| |
| dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n", |
| i, fmt >> 8, (u8)fmt); |
| |
| for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) { |
| const struct ccs_csi_data_format *f = |
| &ccs_csi_data_formats[j]; |
| |
| if (f->pixel_order != CCS_PIXEL_ORDER_GRBG) |
| continue; |
| |
| if (f->width != fmt >> |
| CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT || |
| f->compressed != |
| (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK)) |
| continue; |
| |
| dev_dbg(&client->dev, "jolly good! %d\n", j); |
| |
| sensor->default_mbus_frame_fmts |= 1 << j; |
| } |
| } |
| |
| /* Figure out which BPP values can be used with which formats. */ |
| pll->binning_horizontal = 1; |
| pll->binning_vertical = 1; |
| pll->scale_m = sensor->scale_m; |
| |
| for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { |
| sensor->compressed_min_bpp = |
| min(ccs_csi_data_formats[i].compressed, |
| sensor->compressed_min_bpp); |
| compressed_max_bpp = |
| max(ccs_csi_data_formats[i].compressed, |
| compressed_max_bpp); |
| } |
| |
| sensor->valid_link_freqs = devm_kcalloc( |
| &client->dev, |
| compressed_max_bpp - sensor->compressed_min_bpp + 1, |
| sizeof(*sensor->valid_link_freqs), GFP_KERNEL); |
| if (!sensor->valid_link_freqs) |
| return -ENOMEM; |
| |
| for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { |
| const struct ccs_csi_data_format *f = |
| &ccs_csi_data_formats[i]; |
| unsigned long *valid_link_freqs = |
| &sensor->valid_link_freqs[ |
| f->compressed - sensor->compressed_min_bpp]; |
| unsigned int j; |
| |
| if (!(sensor->default_mbus_frame_fmts & 1 << i)) |
| continue; |
| |
| pll->bits_per_pixel = f->compressed; |
| |
| for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) { |
| pll->link_freq = sensor->hwcfg.op_sys_clock[j]; |
| |
| rval = ccs_pll_try(sensor, pll); |
| dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n", |
| pll->link_freq, pll->bits_per_pixel, |
| rval ? "not ok" : "ok"); |
| if (rval) |
| continue; |
| |
| set_bit(j, valid_link_freqs); |
| } |
| |
| if (!*valid_link_freqs) { |
| dev_info(&client->dev, |
| "no valid link frequencies for %u bpp\n", |
| f->compressed); |
| sensor->default_mbus_frame_fmts &= ~BIT(i); |
| continue; |
| } |
| |
| if (!sensor->csi_format |
| || f->width > sensor->csi_format->width |
| || (f->width == sensor->csi_format->width |
| && f->compressed > sensor->csi_format->compressed)) { |
| sensor->csi_format = f; |
| sensor->internal_csi_format = f; |
| } |
| } |
| |
| if (!sensor->csi_format) { |
| dev_err(&client->dev, "no supported mbus code found\n"); |
| return -EINVAL; |
| } |
| |
| ccs_update_mbus_formats(sensor); |
| |
| return 0; |
| } |
| |
| static void ccs_update_blanking(struct ccs_sensor *sensor) |
| { |
| struct v4l2_ctrl *vblank = sensor->vblank; |
| struct v4l2_ctrl *hblank = sensor->hblank; |
| u16 min_fll, max_fll, min_llp, max_llp, min_lbp; |
| int min, max; |
| |
| if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) { |
| min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN); |
| max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN); |
| min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN); |
| max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN); |
| min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN); |
| } else { |
| min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES); |
| max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES); |
| min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK); |
| max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK); |
| min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK); |
| } |
| |
| min = max_t(int, |
| CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES), |
| min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height); |
| max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height; |
| |
| __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min); |
| |
| min = max_t(int, |
| min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width, |
| min_lbp); |
| max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width; |
| |
| __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min); |
| |
| __ccs_update_exposure_limits(sensor); |
| } |
| |
| static int ccs_pll_blanking_update(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| rval = ccs_pll_update(sensor); |
| if (rval < 0) |
| return rval; |
| |
| /* Output from pixel array, including blanking */ |
| ccs_update_blanking(sensor); |
| |
| dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val); |
| dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val); |
| |
| dev_dbg(&client->dev, "real timeperframe\t100/%d\n", |
| sensor->pll.pixel_rate_pixel_array / |
| ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width |
| + sensor->hblank->val) * |
| (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height |
| + sensor->vblank->val) / 100)); |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * SMIA++ NVM handling |
| * |
| */ |
| |
| static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm, |
| u8 *status) |
| { |
| unsigned int i; |
| int rval; |
| u32 s; |
| |
| *status = 0; |
| |
| rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p); |
| if (rval) |
| return rval; |
| |
| rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, |
| CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE); |
| if (rval) |
| return rval; |
| |
| rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); |
| if (rval) |
| return rval; |
| |
| if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) { |
| *status = s; |
| return -ENODATA; |
| } |
| |
| if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & |
| CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) { |
| for (i = 1000; i > 0; i--) { |
| if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY) |
| break; |
| |
| rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); |
| if (rval) |
| return rval; |
| } |
| |
| if (!i) |
| return -ETIMEDOUT; |
| } |
| |
| for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) { |
| u32 v; |
| |
| rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v); |
| if (rval) |
| return rval; |
| |
| *nvm++ = v; |
| } |
| |
| return 0; |
| } |
| |
| static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm, |
| size_t nvm_size) |
| { |
| u8 status = 0; |
| u32 p; |
| int rval = 0, rval2; |
| |
| for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1) |
| && !rval; p++) { |
| rval = ccs_read_nvm_page(sensor, p, nvm, &status); |
| nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1; |
| } |
| |
| if (rval == -ENODATA && |
| status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) |
| rval = 0; |
| |
| rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0); |
| if (rval < 0) |
| return rval; |
| else |
| return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1); |
| } |
| |
| /* |
| * |
| * SMIA++ CCI address control |
| * |
| */ |
| static int ccs_change_cci_addr(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| u32 val; |
| |
| client->addr = sensor->hwcfg.i2c_addr_dfl; |
| |
| rval = ccs_write(sensor, CCI_ADDRESS_CTRL, |
| sensor->hwcfg.i2c_addr_alt << 1); |
| if (rval) |
| return rval; |
| |
| client->addr = sensor->hwcfg.i2c_addr_alt; |
| |
| /* verify addr change went ok */ |
| rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val); |
| if (rval) |
| return rval; |
| |
| if (val != sensor->hwcfg.i2c_addr_alt << 1) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * SMIA++ Mode Control |
| * |
| */ |
| static int ccs_setup_flash_strobe(struct ccs_sensor *sensor) |
| { |
| struct ccs_flash_strobe_parms *strobe_setup; |
| unsigned int ext_freq = sensor->hwcfg.ext_clk; |
| u32 tmp; |
| u32 strobe_adjustment; |
| u32 strobe_width_high_rs; |
| int rval; |
| |
| strobe_setup = sensor->hwcfg.strobe_setup; |
| |
| /* |
| * How to calculate registers related to strobe length. Please |
| * do not change, or if you do at least know what you're |
| * doing. :-) |
| * |
| * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25 |
| * |
| * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl |
| * / EXTCLK freq [Hz]) * flash_strobe_adjustment |
| * |
| * tFlash_strobe_width_ctrl E N, [1 - 0xffff] |
| * flash_strobe_adjustment E N, [1 - 0xff] |
| * |
| * The formula above is written as below to keep it on one |
| * line: |
| * |
| * l / 10^6 = w / e * a |
| * |
| * Let's mark w * a by x: |
| * |
| * x = w * a |
| * |
| * Thus, we get: |
| * |
| * x = l * e / 10^6 |
| * |
| * The strobe width must be at least as long as requested, |
| * thus rounding upwards is needed. |
| * |
| * x = (l * e + 10^6 - 1) / 10^6 |
| * ----------------------------- |
| * |
| * Maximum possible accuracy is wanted at all times. Thus keep |
| * a as small as possible. |
| * |
| * Calculate a, assuming maximum w, with rounding upwards: |
| * |
| * a = (x + (2^16 - 1) - 1) / (2^16 - 1) |
| * ------------------------------------- |
| * |
| * Thus, we also get w, with that a, with rounding upwards: |
| * |
| * w = (x + a - 1) / a |
| * ------------------- |
| * |
| * To get limits: |
| * |
| * x E [1, (2^16 - 1) * (2^8 - 1)] |
| * |
| * Substituting maximum x to the original formula (with rounding), |
| * the maximum l is thus |
| * |
| * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1 |
| * |
| * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e |
| * -------------------------------------------------- |
| * |
| * flash_strobe_length must be clamped between 1 and |
| * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq. |
| * |
| * Then, |
| * |
| * flash_strobe_adjustment = ((flash_strobe_length * |
| * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1) |
| * |
| * tFlash_strobe_width_ctrl = ((flash_strobe_length * |
| * EXTCLK freq + 10^6 - 1) / 10^6 + |
| * flash_strobe_adjustment - 1) / flash_strobe_adjustment |
| */ |
| tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) - |
| 1000000 + 1, ext_freq); |
| strobe_setup->strobe_width_high_us = |
| clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp); |
| |
| tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq + |
| 1000000 - 1), 1000000ULL); |
| strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1); |
| strobe_width_high_rs = (tmp + strobe_adjustment - 1) / |
| strobe_adjustment; |
| |
| rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL, |
| strobe_width_high_rs); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL, |
| strobe_setup->strobe_delay); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write(sensor, FLASH_STROBE_START_POINT, |
| strobe_setup->stobe_start_point); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger); |
| |
| out: |
| sensor->hwcfg.strobe_setup->trigger = 0; |
| |
| return rval; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Power management |
| */ |
| |
| static int ccs_write_msr_regs(struct ccs_sensor *sensor) |
| { |
| int rval; |
| |
| rval = ccs_write_data_regs(sensor, |
| sensor->sdata.sensor_manufacturer_regs, |
| sensor->sdata.num_sensor_manufacturer_regs); |
| if (rval) |
| return rval; |
| |
| return ccs_write_data_regs(sensor, |
| sensor->mdata.module_manufacturer_regs, |
| sensor->mdata.num_module_manufacturer_regs); |
| } |
| |
| static int ccs_update_phy_ctrl(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| u8 val; |
| |
| if (!sensor->ccs_limits) |
| return 0; |
| |
| if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & |
| CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) { |
| val = CCS_PHY_CTRL_AUTO; |
| } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & |
| CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) { |
| val = CCS_PHY_CTRL_UI; |
| } else { |
| dev_err(&client->dev, "manual PHY control not supported\n"); |
| return -EINVAL; |
| } |
| |
| return ccs_write(sensor, PHY_CTRL, val); |
| } |
| |
| static int ccs_power_on(struct device *dev) |
| { |
| struct v4l2_subdev *subdev = dev_get_drvdata(dev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| /* |
| * The sub-device related to the I2C device is always the |
| * source one, i.e. ssds[0]. |
| */ |
| struct ccs_sensor *sensor = |
| container_of(ssd, struct ccs_sensor, ssds[0]); |
| const struct ccs_device *ccsdev = device_get_match_data(dev); |
| int rval; |
| |
| rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators), |
| sensor->regulators); |
| if (rval) { |
| dev_err(dev, "failed to enable vana regulator\n"); |
| return rval; |
| } |
| |
| if (sensor->reset || sensor->xshutdown || sensor->ext_clk) { |
| unsigned int sleep; |
| |
| rval = clk_prepare_enable(sensor->ext_clk); |
| if (rval < 0) { |
| dev_dbg(dev, "failed to enable xclk\n"); |
| goto out_xclk_fail; |
| } |
| |
| gpiod_set_value(sensor->reset, 0); |
| gpiod_set_value(sensor->xshutdown, 1); |
| |
| if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) |
| sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk); |
| else |
| sleep = 5000; |
| |
| usleep_range(sleep, sleep); |
| } |
| |
| /* |
| * Failures to respond to the address change command have been noticed. |
| * Those failures seem to be caused by the sensor requiring a longer |
| * boot time than advertised. An additional 10ms delay seems to work |
| * around the issue, but the SMIA++ I2C write retry hack makes the delay |
| * unnecessary. The failures need to be investigated to find a proper |
| * fix, and a delay will likely need to be added here if the I2C write |
| * retry hack is reverted before the root cause of the boot time issue |
| * is found. |
| */ |
| |
| if (!sensor->reset && !sensor->xshutdown) { |
| u8 retry = 100; |
| u32 reset; |
| |
| rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); |
| if (rval < 0) { |
| dev_err(dev, "software reset failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| do { |
| rval = ccs_read(sensor, SOFTWARE_RESET, &reset); |
| reset = !rval && reset == CCS_SOFTWARE_RESET_OFF; |
| if (reset) |
| break; |
| |
| usleep_range(1000, 2000); |
| } while (--retry); |
| |
| if (!reset) |
| return -EIO; |
| } |
| |
| if (sensor->hwcfg.i2c_addr_alt) { |
| rval = ccs_change_cci_addr(sensor); |
| if (rval) { |
| dev_err(dev, "cci address change error\n"); |
| goto out_cci_addr_fail; |
| } |
| } |
| |
| rval = ccs_write(sensor, COMPRESSION_MODE, |
| CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE); |
| if (rval) { |
| dev_err(dev, "compression mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ, |
| sensor->hwcfg.ext_clk / (1000000 / (1 << 8))); |
| if (rval) { |
| dev_err(dev, "extclk frequency set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1); |
| if (rval) { |
| dev_err(dev, "csi lane mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = ccs_write(sensor, FAST_STANDBY_CTRL, |
| CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION); |
| if (rval) { |
| dev_err(dev, "fast standby set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = ccs_write(sensor, CSI_SIGNALING_MODE, |
| sensor->hwcfg.csi_signalling_mode); |
| if (rval) { |
| dev_err(dev, "csi signalling mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = ccs_update_phy_ctrl(sensor); |
| if (rval < 0) |
| goto out_cci_addr_fail; |
| |
| rval = ccs_write_msr_regs(sensor); |
| if (rval) |
| goto out_cci_addr_fail; |
| |
| rval = ccs_call_quirk(sensor, post_poweron); |
| if (rval) { |
| dev_err(dev, "post_poweron quirks failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| return 0; |
| |
| out_cci_addr_fail: |
| gpiod_set_value(sensor->reset, 1); |
| gpiod_set_value(sensor->xshutdown, 0); |
| clk_disable_unprepare(sensor->ext_clk); |
| |
| out_xclk_fail: |
| regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), |
| sensor->regulators); |
| |
| return rval; |
| } |
| |
| static int ccs_power_off(struct device *dev) |
| { |
| struct v4l2_subdev *subdev = dev_get_drvdata(dev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| struct ccs_sensor *sensor = |
| container_of(ssd, struct ccs_sensor, ssds[0]); |
| |
| /* |
| * Currently power/clock to lens are enable/disabled separately |
| * but they are essentially the same signals. So if the sensor is |
| * powered off while the lens is powered on the sensor does not |
| * really see a power off and next time the cci address change |
| * will fail. So do a soft reset explicitly here. |
| */ |
| if (sensor->hwcfg.i2c_addr_alt) |
| ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); |
| |
| gpiod_set_value(sensor->reset, 1); |
| gpiod_set_value(sensor->xshutdown, 0); |
| clk_disable_unprepare(sensor->ext_clk); |
| usleep_range(5000, 5000); |
| regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), |
| sensor->regulators); |
| sensor->streaming = false; |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Video stream management |
| */ |
| |
| static int ccs_start_streaming(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int binning_mode; |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| |
| rval = ccs_write(sensor, CSI_DATA_FORMAT, |
| (sensor->csi_format->width << 8) | |
| sensor->csi_format->compressed); |
| if (rval) |
| goto out; |
| |
| /* Binning configuration */ |
| if (sensor->binning_horizontal == 1 && |
| sensor->binning_vertical == 1) { |
| binning_mode = 0; |
| } else { |
| u8 binning_type = |
| (sensor->binning_horizontal << 4) |
| | sensor->binning_vertical; |
| |
| rval = ccs_write(sensor, BINNING_TYPE, binning_type); |
| if (rval < 0) |
| goto out; |
| |
| binning_mode = 1; |
| } |
| rval = ccs_write(sensor, BINNING_MODE, binning_mode); |
| if (rval < 0) |
| goto out; |
| |
| /* Set up PLL */ |
| rval = ccs_pll_configure(sensor); |
| if (rval) |
| goto out; |
| |
| /* Analog crop start coordinates */ |
| rval = ccs_write(sensor, X_ADDR_START, |
| sensor->pixel_array->crop[CCS_PA_PAD_SRC].left); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write(sensor, Y_ADDR_START, |
| sensor->pixel_array->crop[CCS_PA_PAD_SRC].top); |
| if (rval < 0) |
| goto out; |
| |
| /* Analog crop end coordinates */ |
| rval = ccs_write( |
| sensor, X_ADDR_END, |
| sensor->pixel_array->crop[CCS_PA_PAD_SRC].left |
| + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write( |
| sensor, Y_ADDR_END, |
| sensor->pixel_array->crop[CCS_PA_PAD_SRC].top |
| + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1); |
| if (rval < 0) |
| goto out; |
| |
| /* |
| * Output from pixel array, including blanking, is set using |
| * controls below. No need to set here. |
| */ |
| |
| /* Digital crop */ |
| if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) |
| == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { |
| rval = ccs_write( |
| sensor, DIGITAL_CROP_X_OFFSET, |
| sensor->scaler->crop[CCS_PAD_SINK].left); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write( |
| sensor, DIGITAL_CROP_Y_OFFSET, |
| sensor->scaler->crop[CCS_PAD_SINK].top); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write( |
| sensor, DIGITAL_CROP_IMAGE_WIDTH, |
| sensor->scaler->crop[CCS_PAD_SINK].width); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write( |
| sensor, DIGITAL_CROP_IMAGE_HEIGHT, |
| sensor->scaler->crop[CCS_PAD_SINK].height); |
| if (rval < 0) |
| goto out; |
| } |
| |
| /* Scaling */ |
| if (CCS_LIM(sensor, SCALING_CAPABILITY) |
| != CCS_SCALING_CAPABILITY_NONE) { |
| rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode); |
| if (rval < 0) |
| goto out; |
| |
| rval = ccs_write(sensor, SCALE_M, sensor->scale_m); |
| if (rval < 0) |
| goto out; |
| } |
| |
| /* Output size from sensor */ |
| rval = ccs_write(sensor, X_OUTPUT_SIZE, |
| sensor->src->crop[CCS_PAD_SRC].width); |
| if (rval < 0) |
| goto out; |
| rval = ccs_write(sensor, Y_OUTPUT_SIZE, |
| sensor->src->crop[CCS_PAD_SRC].height); |
| if (rval < 0) |
| goto out; |
| |
| if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) & |
| (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE | |
| SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) && |
| sensor->hwcfg.strobe_setup != NULL && |
| sensor->hwcfg.strobe_setup->trigger != 0) { |
| rval = ccs_setup_flash_strobe(sensor); |
| if (rval) |
| goto out; |
| } |
| |
| rval = ccs_call_quirk(sensor, pre_streamon); |
| if (rval) { |
| dev_err(&client->dev, "pre_streamon quirks failed\n"); |
| goto out; |
| } |
| |
| rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING); |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static int ccs_stop_streaming(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY); |
| if (rval) |
| goto out; |
| |
| rval = ccs_call_quirk(sensor, post_streamoff); |
| if (rval) |
| dev_err(&client->dev, "post_streamoff quirks failed\n"); |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| return rval; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 subdev video operations |
| */ |
| |
| static int ccs_pm_get_init(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| /* |
| * It can't use pm_runtime_resume_and_get() here, as the driver |
| * relies at the returned value to detect if the device was already |
| * active or not. |
| */ |
| rval = pm_runtime_get_sync(&client->dev); |
| if (rval < 0) |
| goto error; |
| |
| /* Device was already active, so don't set controls */ |
| if (rval == 1) |
| return 0; |
| |
| /* Restore V4L2 controls to the previously suspended device */ |
| rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler); |
| if (rval) |
| goto error; |
| |
| rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler); |
| if (rval) |
| goto error; |
| |
| /* Keep PM runtime usage_count incremented on success */ |
| return 0; |
| error: |
| pm_runtime_put(&client->dev); |
| return rval; |
| } |
| |
| static int ccs_set_stream(struct v4l2_subdev *subdev, int enable) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| if (sensor->streaming == enable) |
| return 0; |
| |
| if (!enable) { |
| ccs_stop_streaming(sensor); |
| sensor->streaming = false; |
| pm_runtime_mark_last_busy(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| |
| return 0; |
| } |
| |
| rval = ccs_pm_get_init(sensor); |
| if (rval) |
| return rval; |
| |
| sensor->streaming = true; |
| |
| rval = ccs_start_streaming(sensor); |
| if (rval < 0) { |
| sensor->streaming = false; |
| pm_runtime_mark_last_busy(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| } |
| |
| return rval; |
| } |
| |
| static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { |
| switch (sensor->hwcfg.csi_signalling_mode) { |
| case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY: |
| if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & |
| CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY)) |
| return -EACCES; |
| break; |
| case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY: |
| if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & |
| CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY)) |
| return -EACCES; |
| break; |
| default: |
| return -EACCES; |
| } |
| } |
| |
| rval = ccs_pm_get_init(sensor); |
| if (rval) |
| return rval; |
| |
| if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { |
| rval = ccs_write(sensor, MANUAL_LP_CTRL, |
| CCS_MANUAL_LP_CTRL_ENABLE); |
| if (rval) |
| pm_runtime_put(&client->dev); |
| } |
| |
| return rval; |
| } |
| |
| static int ccs_post_streamoff(struct v4l2_subdev *subdev) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| |
| return pm_runtime_put(&client->dev); |
| } |
| |
| static int ccs_enum_mbus_code(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_mbus_code_enum *code) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| unsigned int i; |
| int idx = -1; |
| int rval = -EINVAL; |
| |
| mutex_lock(&sensor->mutex); |
| |
| dev_err(&client->dev, "subdev %s, pad %d, index %d\n", |
| subdev->name, code->pad, code->index); |
| |
| if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) { |
| if (code->index) |
| goto out; |
| |
| code->code = sensor->internal_csi_format->code; |
| rval = 0; |
| goto out; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { |
| if (sensor->mbus_frame_fmts & (1 << i)) |
| idx++; |
| |
| if (idx == code->index) { |
| code->code = ccs_csi_data_formats[i].code; |
| dev_err(&client->dev, "found index %d, i %d, code %x\n", |
| code->index, i, code->code); |
| rval = 0; |
| break; |
| } |
| } |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| |
| if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC) |
| return sensor->csi_format->code; |
| else |
| return sensor->internal_csi_format->code; |
| } |
| |
| static int __ccs_get_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| |
| if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { |
| fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state, |
| fmt->pad); |
| } else { |
| struct v4l2_rect *r; |
| |
| if (fmt->pad == ssd->source_pad) |
| r = &ssd->crop[ssd->source_pad]; |
| else |
| r = &ssd->sink_fmt; |
| |
| fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); |
| fmt->format.width = r->width; |
| fmt->format.height = r->height; |
| fmt->format.field = V4L2_FIELD_NONE; |
| } |
| |
| return 0; |
| } |
| |
| static int ccs_get_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = __ccs_get_format(subdev, sd_state, fmt); |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static void ccs_get_crop_compose(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_rect **crops, |
| struct v4l2_rect **comps, int which) |
| { |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| unsigned int i; |
| |
| if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (crops) |
| for (i = 0; i < subdev->entity.num_pads; i++) |
| crops[i] = &ssd->crop[i]; |
| if (comps) |
| *comps = &ssd->compose; |
| } else { |
| if (crops) { |
| for (i = 0; i < subdev->entity.num_pads; i++) |
| crops[i] = v4l2_subdev_get_try_crop(subdev, |
| sd_state, |
| i); |
| } |
| if (comps) |
| *comps = v4l2_subdev_get_try_compose(subdev, sd_state, |
| CCS_PAD_SINK); |
| } |
| } |
| |
| /* Changes require propagation only on sink pad. */ |
| static void ccs_propagate(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, int which, |
| int target) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| struct v4l2_rect *comp, *crops[CCS_PADS]; |
| |
| ccs_get_crop_compose(subdev, sd_state, crops, &comp, which); |
| |
| switch (target) { |
| case V4L2_SEL_TGT_CROP: |
| comp->width = crops[CCS_PAD_SINK]->width; |
| comp->height = crops[CCS_PAD_SINK]->height; |
| if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (ssd == sensor->scaler) { |
| sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); |
| sensor->scaling_mode = |
| CCS_SCALING_MODE_NO_SCALING; |
| } else if (ssd == sensor->binner) { |
| sensor->binning_horizontal = 1; |
| sensor->binning_vertical = 1; |
| } |
| } |
| fallthrough; |
| case V4L2_SEL_TGT_COMPOSE: |
| *crops[CCS_PAD_SRC] = *comp; |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| } |
| } |
| |
| static const struct ccs_csi_data_format |
| *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { |
| if (sensor->mbus_frame_fmts & (1 << i) && |
| ccs_csi_data_formats[i].code == code) |
| return &ccs_csi_data_formats[i]; |
| } |
| |
| return sensor->csi_format; |
| } |
| |
| static int ccs_set_format_source(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| const struct ccs_csi_data_format *csi_format, |
| *old_csi_format = sensor->csi_format; |
| unsigned long *valid_link_freqs; |
| u32 code = fmt->format.code; |
| unsigned int i; |
| int rval; |
| |
| rval = __ccs_get_format(subdev, sd_state, fmt); |
| if (rval) |
| return rval; |
| |
| /* |
| * Media bus code is changeable on src subdev's source pad. On |
| * other source pads we just get format here. |
| */ |
| if (subdev != &sensor->src->sd) |
| return 0; |
| |
| csi_format = ccs_validate_csi_data_format(sensor, code); |
| |
| fmt->format.code = csi_format->code; |
| |
| if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE) |
| return 0; |
| |
| sensor->csi_format = csi_format; |
| |
| if (csi_format->width != old_csi_format->width) |
| for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) |
| __v4l2_ctrl_modify_range( |
| sensor->test_data[i], 0, |
| (1 << csi_format->width) - 1, 1, 0); |
| |
| if (csi_format->compressed == old_csi_format->compressed) |
| return 0; |
| |
| valid_link_freqs = |
| &sensor->valid_link_freqs[sensor->csi_format->compressed |
| - sensor->compressed_min_bpp]; |
| |
| __v4l2_ctrl_modify_range( |
| sensor->link_freq, 0, |
| __fls(*valid_link_freqs), ~*valid_link_freqs, |
| __ffs(*valid_link_freqs)); |
| |
| return ccs_pll_update(sensor); |
| } |
| |
| static int ccs_set_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| struct v4l2_rect *crops[CCS_PADS]; |
| |
| mutex_lock(&sensor->mutex); |
| |
| if (fmt->pad == ssd->source_pad) { |
| int rval; |
| |
| rval = ccs_set_format_source(subdev, sd_state, fmt); |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| /* Sink pad. Width and height are changeable here. */ |
| fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); |
| fmt->format.width &= ~1; |
| fmt->format.height &= ~1; |
| fmt->format.field = V4L2_FIELD_NONE; |
| |
| fmt->format.width = |
| clamp(fmt->format.width, |
| CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), |
| CCS_LIM(sensor, MAX_X_OUTPUT_SIZE)); |
| fmt->format.height = |
| clamp(fmt->format.height, |
| CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), |
| CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE)); |
| |
| ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which); |
| |
| crops[ssd->sink_pad]->left = 0; |
| crops[ssd->sink_pad]->top = 0; |
| crops[ssd->sink_pad]->width = fmt->format.width; |
| crops[ssd->sink_pad]->height = fmt->format.height; |
| if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| ssd->sink_fmt = *crops[ssd->sink_pad]; |
| ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP); |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate goodness of scaled image size compared to expected image |
| * size and flags provided. |
| */ |
| #define SCALING_GOODNESS 100000 |
| #define SCALING_GOODNESS_EXTREME 100000000 |
| static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w, |
| int h, int ask_h, u32 flags) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| int val = 0; |
| |
| w &= ~1; |
| ask_w &= ~1; |
| h &= ~1; |
| ask_h &= ~1; |
| |
| if (flags & V4L2_SEL_FLAG_GE) { |
| if (w < ask_w) |
| val -= SCALING_GOODNESS; |
| if (h < ask_h) |
| val -= SCALING_GOODNESS; |
| } |
| |
| if (flags & V4L2_SEL_FLAG_LE) { |
| if (w > ask_w) |
| val -= SCALING_GOODNESS; |
| if (h > ask_h) |
| val -= SCALING_GOODNESS; |
| } |
| |
| val -= abs(w - ask_w); |
| val -= abs(h - ask_h); |
| |
| if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE)) |
| val -= SCALING_GOODNESS_EXTREME; |
| |
| dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n", |
| w, ask_w, h, ask_h, val); |
| |
| return val; |
| } |
| |
| static void ccs_set_compose_binner(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel, |
| struct v4l2_rect **crops, |
| struct v4l2_rect *comp) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| unsigned int i; |
| unsigned int binh = 1, binv = 1; |
| int best = scaling_goodness( |
| subdev, |
| crops[CCS_PAD_SINK]->width, sel->r.width, |
| crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags); |
| |
| for (i = 0; i < sensor->nbinning_subtypes; i++) { |
| int this = scaling_goodness( |
| subdev, |
| crops[CCS_PAD_SINK]->width |
| / sensor->binning_subtypes[i].horizontal, |
| sel->r.width, |
| crops[CCS_PAD_SINK]->height |
| / sensor->binning_subtypes[i].vertical, |
| sel->r.height, sel->flags); |
| |
| if (this > best) { |
| binh = sensor->binning_subtypes[i].horizontal; |
| binv = sensor->binning_subtypes[i].vertical; |
| best = this; |
| } |
| } |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sensor->binning_vertical = binv; |
| sensor->binning_horizontal = binh; |
| } |
| |
| sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1; |
| sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1; |
| } |
| |
| /* |
| * Calculate best scaling ratio and mode for given output resolution. |
| * |
| * Try all of these: horizontal ratio, vertical ratio and smallest |
| * size possible (horizontally). |
| * |
| * Also try whether horizontal scaler or full scaler gives a better |
| * result. |
| */ |
| static void ccs_set_compose_scaler(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel, |
| struct v4l2_rect **crops, |
| struct v4l2_rect *comp) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| u32 min, max, a, b, max_m; |
| u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN); |
| int mode = CCS_SCALING_MODE_HORIZONTAL; |
| u32 try[4]; |
| u32 ntry = 0; |
| unsigned int i; |
| int best = INT_MIN; |
| |
| sel->r.width = min_t(unsigned int, sel->r.width, |
| crops[CCS_PAD_SINK]->width); |
| sel->r.height = min_t(unsigned int, sel->r.height, |
| crops[CCS_PAD_SINK]->height); |
| |
| a = crops[CCS_PAD_SINK]->width |
| * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width; |
| b = crops[CCS_PAD_SINK]->height |
| * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height; |
| max_m = crops[CCS_PAD_SINK]->width |
| * CCS_LIM(sensor, SCALER_N_MIN) |
| / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE); |
| |
| a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN), |
| CCS_LIM(sensor, SCALER_M_MAX)); |
| b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN), |
| CCS_LIM(sensor, SCALER_M_MAX)); |
| max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN), |
| CCS_LIM(sensor, SCALER_M_MAX)); |
| |
| dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m); |
| |
| min = min(max_m, min(a, b)); |
| max = min(max_m, max(a, b)); |
| |
| try[ntry] = min; |
| ntry++; |
| if (min != max) { |
| try[ntry] = max; |
| ntry++; |
| } |
| if (max != max_m) { |
| try[ntry] = min + 1; |
| ntry++; |
| if (min != max) { |
| try[ntry] = max + 1; |
| ntry++; |
| } |
| } |
| |
| for (i = 0; i < ntry; i++) { |
| int this = scaling_goodness( |
| subdev, |
| crops[CCS_PAD_SINK]->width |
| / try[i] * CCS_LIM(sensor, SCALER_N_MIN), |
| sel->r.width, |
| crops[CCS_PAD_SINK]->height, |
| sel->r.height, |
| sel->flags); |
| |
| dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i); |
| |
| if (this > best) { |
| scale_m = try[i]; |
| mode = CCS_SCALING_MODE_HORIZONTAL; |
| best = this; |
| } |
| |
| if (CCS_LIM(sensor, SCALING_CAPABILITY) |
| == CCS_SCALING_CAPABILITY_HORIZONTAL) |
| continue; |
| |
| this = scaling_goodness( |
| subdev, crops[CCS_PAD_SINK]->width |
| / try[i] |
| * CCS_LIM(sensor, SCALER_N_MIN), |
| sel->r.width, |
| crops[CCS_PAD_SINK]->height |
| / try[i] |
| * CCS_LIM(sensor, SCALER_N_MIN), |
| sel->r.height, |
| sel->flags); |
| |
| if (this > best) { |
| scale_m = try[i]; |
| mode = SMIAPP_SCALING_MODE_BOTH; |
| best = this; |
| } |
| } |
| |
| sel->r.width = |
| (crops[CCS_PAD_SINK]->width |
| / scale_m |
| * CCS_LIM(sensor, SCALER_N_MIN)) & ~1; |
| if (mode == SMIAPP_SCALING_MODE_BOTH) |
| sel->r.height = |
| (crops[CCS_PAD_SINK]->height |
| / scale_m |
| * CCS_LIM(sensor, SCALER_N_MIN)) |
| & ~1; |
| else |
| sel->r.height = crops[CCS_PAD_SINK]->height; |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sensor->scale_m = scale_m; |
| sensor->scaling_mode = mode; |
| } |
| } |
| /* We're only called on source pads. This function sets scaling. */ |
| static int ccs_set_compose(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| struct v4l2_rect *comp, *crops[CCS_PADS]; |
| |
| ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); |
| |
| sel->r.top = 0; |
| sel->r.left = 0; |
| |
| if (ssd == sensor->binner) |
| ccs_set_compose_binner(subdev, sd_state, sel, crops, comp); |
| else |
| ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp); |
| |
| *comp = sel->r; |
| ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| return ccs_pll_blanking_update(sensor); |
| |
| return 0; |
| } |
| |
| static int __ccs_sel_supported(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| |
| /* We only implement crop in three places. */ |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP: |
| case V4L2_SEL_TGT_CROP_BOUNDS: |
| if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) |
| return 0; |
| if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) |
| return 0; |
| if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK && |
| CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) |
| == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) |
| return 0; |
| return -EINVAL; |
| case V4L2_SEL_TGT_NATIVE_SIZE: |
| if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) |
| return 0; |
| return -EINVAL; |
| case V4L2_SEL_TGT_COMPOSE: |
| case V4L2_SEL_TGT_COMPOSE_BOUNDS: |
| if (sel->pad == ssd->source_pad) |
| return -EINVAL; |
| if (ssd == sensor->binner) |
| return 0; |
| if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY) |
| != CCS_SCALING_CAPABILITY_NONE) |
| return 0; |
| fallthrough; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int ccs_set_crop(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| struct v4l2_rect *src_size, *crops[CCS_PADS]; |
| struct v4l2_rect _r; |
| |
| ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (sel->pad == ssd->sink_pad) |
| src_size = &ssd->sink_fmt; |
| else |
| src_size = &ssd->compose; |
| } else { |
| if (sel->pad == ssd->sink_pad) { |
| _r.left = 0; |
| _r.top = 0; |
| _r.width = v4l2_subdev_get_try_format(subdev, |
| sd_state, |
| sel->pad) |
| ->width; |
| _r.height = v4l2_subdev_get_try_format(subdev, |
| sd_state, |
| sel->pad) |
| ->height; |
| src_size = &_r; |
| } else { |
| src_size = v4l2_subdev_get_try_compose( |
| subdev, sd_state, ssd->sink_pad); |
| } |
| } |
| |
| if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) { |
| sel->r.left = 0; |
| sel->r.top = 0; |
| } |
| |
| sel->r.width = min(sel->r.width, src_size->width); |
| sel->r.height = min(sel->r.height, src_size->height); |
| |
| sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width); |
| sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height); |
| |
| *crops[sel->pad] = sel->r; |
| |
| if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK) |
| ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP); |
| |
| return 0; |
| } |
| |
| static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r) |
| { |
| r->top = 0; |
| r->left = 0; |
| r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1; |
| r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1; |
| } |
| |
| static int __ccs_get_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct ccs_subdev *ssd = to_ccs_subdev(subdev); |
| struct v4l2_rect *comp, *crops[CCS_PADS]; |
| struct v4l2_rect sink_fmt; |
| int ret; |
| |
| ret = __ccs_sel_supported(subdev, sel); |
| if (ret) |
| return ret; |
| |
| ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sink_fmt = ssd->sink_fmt; |
| } else { |
| struct v4l2_mbus_framefmt *fmt = |
| v4l2_subdev_get_try_format(subdev, sd_state, |
| ssd->sink_pad); |
| |
| sink_fmt.left = 0; |
| sink_fmt.top = 0; |
| sink_fmt.width = fmt->width; |
| sink_fmt.height = fmt->height; |
| } |
| |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP_BOUNDS: |
| case V4L2_SEL_TGT_NATIVE_SIZE: |
| if (ssd == sensor->pixel_array) |
| ccs_get_native_size(ssd, &sel->r); |
| else if (sel->pad == ssd->sink_pad) |
| sel->r = sink_fmt; |
| else |
| sel->r = *comp; |
| break; |
| case V4L2_SEL_TGT_CROP: |
| case V4L2_SEL_TGT_COMPOSE_BOUNDS: |
| sel->r = *crops[sel->pad]; |
| break; |
| case V4L2_SEL_TGT_COMPOSE: |
| sel->r = *comp; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int ccs_get_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = __ccs_get_selection(subdev, sd_state, sel); |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static int ccs_set_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| int ret; |
| |
| ret = __ccs_sel_supported(subdev, sel); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&sensor->mutex); |
| |
| sel->r.left = max(0, sel->r.left & ~1); |
| sel->r.top = max(0, sel->r.top & ~1); |
| sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags); |
| sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags); |
| |
| sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), |
| sel->r.width); |
| sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), |
| sel->r.height); |
| |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP: |
| ret = ccs_set_crop(subdev, sd_state, sel); |
| break; |
| case V4L2_SEL_TGT_COMPOSE: |
| ret = ccs_set_compose(subdev, sd_state, sel); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| return ret; |
| } |
| |
| static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| |
| *frames = sensor->frame_skip; |
| return 0; |
| } |
| |
| static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| |
| *lines = sensor->image_start; |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * sysfs attributes |
| */ |
| |
| static ssize_t |
| nvm_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| int rval; |
| |
| if (!sensor->dev_init_done) |
| return -EBUSY; |
| |
| rval = ccs_pm_get_init(sensor); |
| if (rval < 0) |
| return -ENODEV; |
| |
| rval = ccs_read_nvm(sensor, buf, PAGE_SIZE); |
| if (rval < 0) { |
| pm_runtime_put(&client->dev); |
| dev_err(&client->dev, "nvm read failed\n"); |
| return -ENODEV; |
| } |
| |
| pm_runtime_mark_last_busy(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| |
| /* |
| * NVM is still way below a PAGE_SIZE, so we can safely |
| * assume this for now. |
| */ |
| return rval; |
| } |
| static DEVICE_ATTR_RO(nvm); |
| |
| static ssize_t |
| ident_show(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| struct ccs_module_info *minfo = &sensor->minfo; |
| |
| if (minfo->mipi_manufacturer_id) |
| return snprintf(buf, PAGE_SIZE, "%4.4x%4.4x%2.2x\n", |
| minfo->mipi_manufacturer_id, minfo->model_id, |
| minfo->revision_number) + 1; |
| else |
| return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n", |
| minfo->smia_manufacturer_id, minfo->model_id, |
| minfo->revision_number) + 1; |
| } |
| static DEVICE_ATTR_RO(ident); |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 subdev core operations |
| */ |
| |
| static int ccs_identify_module(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct ccs_module_info *minfo = &sensor->minfo; |
| unsigned int i; |
| u32 rev; |
| int rval = 0; |
| |
| /* Module info */ |
| rval = ccs_read(sensor, MODULE_MANUFACTURER_ID, |
| &minfo->mipi_manufacturer_id); |
| if (!rval && !minfo->mipi_manufacturer_id) |
| rval = ccs_read_addr_8only(sensor, |
| SMIAPP_REG_U8_MANUFACTURER_ID, |
| &minfo->smia_manufacturer_id); |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID, |
| &minfo->model_id); |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, |
| CCS_R_MODULE_REVISION_NUMBER_MAJOR, |
| &rev); |
| if (!rval) { |
| rval = ccs_read_addr_8only(sensor, |
| CCS_R_MODULE_REVISION_NUMBER_MINOR, |
| &minfo->revision_number); |
| minfo->revision_number |= rev << 8; |
| } |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR, |
| &minfo->module_year); |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH, |
| &minfo->module_month); |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY, |
| &minfo->module_day); |
| |
| /* Sensor info */ |
| if (!rval) |
| rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID, |
| &minfo->sensor_mipi_manufacturer_id); |
| if (!rval && !minfo->sensor_mipi_manufacturer_id) |
| rval = ccs_read_addr_8only(sensor, |
| CCS_R_SENSOR_MANUFACTURER_ID, |
| &minfo->sensor_smia_manufacturer_id); |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, |
| CCS_R_SENSOR_MODEL_ID, |
| &minfo->sensor_model_id); |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, |
| CCS_R_SENSOR_REVISION_NUMBER, |
| &minfo->sensor_revision_number); |
| if (!rval) |
| rval = ccs_read_addr_8only(sensor, |
| CCS_R_SENSOR_FIRMWARE_VERSION, |
| &minfo->sensor_firmware_version); |
| |
| /* SMIA */ |
| if (!rval) |
| rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version); |
| if (!rval && !minfo->ccs_version) |
| rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION, |
| &minfo->smia_version); |
| if (!rval && !minfo->ccs_version) |
| rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION, |
| &minfo->smiapp_version); |
| |
| if (rval) { |
| dev_err(&client->dev, "sensor detection failed\n"); |
| return -ENODEV; |
| } |
| |
| if (minfo->mipi_manufacturer_id) |
| dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n", |
| minfo->mipi_manufacturer_id, minfo->model_id); |
| else |
| dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n", |
| minfo->smia_manufacturer_id, minfo->model_id); |
| |
| dev_dbg(&client->dev, |
| "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n", |
| minfo->revision_number, minfo->module_year, minfo->module_month, |
| minfo->module_day); |
| |
| if (minfo->sensor_mipi_manufacturer_id) |
| dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n", |
| minfo->sensor_mipi_manufacturer_id, |
| minfo->sensor_model_id); |
| else |
| dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n", |
| minfo->sensor_smia_manufacturer_id, |
| minfo->sensor_model_id); |
| |
| dev_dbg(&client->dev, |
| "sensor revision 0x%2.2x firmware version 0x%2.2x\n", |
| minfo->sensor_revision_number, minfo->sensor_firmware_version); |
| |
| if (minfo->ccs_version) { |
| dev_dbg(&client->dev, "MIPI CCS version %u.%u", |
| (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK) |
| >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT, |
| (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK)); |
| minfo->name = CCS_NAME; |
| } else { |
| dev_dbg(&client->dev, |
| "smia version %2.2d smiapp version %2.2d\n", |
| minfo->smia_version, minfo->smiapp_version); |
| minfo->name = SMIAPP_NAME; |
| } |
| |
| /* |
| * Some modules have bad data in the lvalues below. Hope the |
| * rvalues have better stuff. The lvalues are module |
| * parameters whereas the rvalues are sensor parameters. |
| */ |
| if (minfo->sensor_smia_manufacturer_id && |
| !minfo->smia_manufacturer_id && !minfo->model_id) { |
| minfo->smia_manufacturer_id = |
| minfo->sensor_smia_manufacturer_id; |
| minfo->model_id = minfo->sensor_model_id; |
| minfo->revision_number = minfo->sensor_revision_number; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) { |
| if (ccs_module_idents[i].mipi_manufacturer_id && |
| ccs_module_idents[i].mipi_manufacturer_id |
| != minfo->mipi_manufacturer_id) |
| continue; |
| if (ccs_module_idents[i].smia_manufacturer_id && |
| ccs_module_idents[i].smia_manufacturer_id |
| != minfo->smia_manufacturer_id) |
| continue; |
| if (ccs_module_idents[i].model_id != minfo->model_id) |
| continue; |
| if (ccs_module_idents[i].flags |
| & CCS_MODULE_IDENT_FLAG_REV_LE) { |
| if (ccs_module_idents[i].revision_number_major |
| < (minfo->revision_number >> 8)) |
| continue; |
| } else { |
| if (ccs_module_idents[i].revision_number_major |
| != (minfo->revision_number >> 8)) |
| continue; |
| } |
| |
| minfo->name = ccs_module_idents[i].name; |
| minfo->quirk = ccs_module_idents[i].quirk; |
| break; |
| } |
| |
| if (i >= ARRAY_SIZE(ccs_module_idents)) |
| dev_warn(&client->dev, |
| "no quirks for this module; let's hope it's fully compliant\n"); |
| |
| dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_ops ccs_ops; |
| static const struct v4l2_subdev_internal_ops ccs_internal_ops; |
| static const struct media_entity_operations ccs_entity_ops; |
| |
| static int ccs_register_subdev(struct ccs_sensor *sensor, |
| struct ccs_subdev *ssd, |
| struct ccs_subdev *sink_ssd, |
| u16 source_pad, u16 sink_pad, u32 link_flags) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| if (!sink_ssd) |
| return 0; |
| |
| rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads); |
| if (rval) { |
| dev_err(&client->dev, "media_entity_pads_init failed\n"); |
| return rval; |
| } |
| |
| rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd); |
| if (rval) { |
| dev_err(&client->dev, "v4l2_device_register_subdev failed\n"); |
| return rval; |
| } |
| |
| rval = media_create_pad_link(&ssd->sd.entity, source_pad, |
| &sink_ssd->sd.entity, sink_pad, |
| link_flags); |
| if (rval) { |
| dev_err(&client->dev, "media_create_pad_link failed\n"); |
| v4l2_device_unregister_subdev(&ssd->sd); |
| return rval; |
| } |
| |
| return 0; |
| } |
| |
| static void ccs_unregistered(struct v4l2_subdev *subdev) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| unsigned int i; |
| |
| for (i = 1; i < sensor->ssds_used; i++) |
| v4l2_device_unregister_subdev(&sensor->ssds[i].sd); |
| } |
| |
| static int ccs_registered(struct v4l2_subdev *subdev) |
| { |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| int rval; |
| |
| if (sensor->scaler) { |
| rval = ccs_register_subdev(sensor, sensor->binner, |
| sensor->scaler, |
| CCS_PAD_SRC, CCS_PAD_SINK, |
| MEDIA_LNK_FL_ENABLED | |
| MEDIA_LNK_FL_IMMUTABLE); |
| if (rval < 0) |
| return rval; |
| } |
| |
| rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner, |
| CCS_PA_PAD_SRC, CCS_PAD_SINK, |
| MEDIA_LNK_FL_ENABLED | |
| MEDIA_LNK_FL_IMMUTABLE); |
| if (rval) |
| goto out_err; |
| |
| return 0; |
| |
| out_err: |
| ccs_unregistered(subdev); |
| |
| return rval; |
| } |
| |
| static void ccs_cleanup(struct ccs_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| |
| device_remove_file(&client->dev, &dev_attr_nvm); |
| device_remove_file(&client->dev, &dev_attr_ident); |
| |
| ccs_free_controls(sensor); |
| } |
| |
| static void ccs_create_subdev(struct ccs_sensor *sensor, |
| struct ccs_subdev *ssd, const char *name, |
| unsigned short num_pads, u32 function) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| |
| if (!ssd) |
| return; |
| |
| if (ssd != sensor->src) |
| v4l2_subdev_init(&ssd->sd, &ccs_ops); |
| |
| ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; |
| ssd->sd.entity.function = function; |
| ssd->sensor = sensor; |
| |
| ssd->npads = num_pads; |
| ssd->source_pad = num_pads - 1; |
| |
| v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name); |
| |
| ccs_get_native_size(ssd, &ssd->sink_fmt); |
| |
| ssd->compose.width = ssd->sink_fmt.width; |
| ssd->compose.height = ssd->sink_fmt.height; |
| ssd->crop[ssd->source_pad] = ssd->compose; |
| ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE; |
| if (ssd != sensor->pixel_array) { |
| ssd->crop[ssd->sink_pad] = ssd->compose; |
| ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK; |
| } |
| |
| ssd->sd.entity.ops = &ccs_entity_ops; |
| |
| if (ssd == sensor->src) |
| return; |
| |
| ssd->sd.internal_ops = &ccs_internal_ops; |
| ssd->sd.owner = THIS_MODULE; |
| ssd->sd.dev = &client->dev; |
| v4l2_set_subdevdata(&ssd->sd, client); |
| } |
| |
| static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) |
| { |
| struct ccs_subdev *ssd = to_ccs_subdev(sd); |
| struct ccs_sensor *sensor = ssd->sensor; |
| unsigned int i; |
| |
| mutex_lock(&sensor->mutex); |
| |
| for (i = 0; i < ssd->npads; i++) { |
| struct v4l2_mbus_framefmt *try_fmt = |
| v4l2_subdev_get_try_format(sd, fh->state, i); |
| struct v4l2_rect *try_crop = |
| v4l2_subdev_get_try_crop(sd, fh->state, i); |
| struct v4l2_rect *try_comp; |
| |
| ccs_get_native_size(ssd, try_crop); |
| |
| try_fmt->width = try_crop->width; |
| try_fmt->height = try_crop->height; |
| try_fmt->code = sensor->internal_csi_format->code; |
| try_fmt->field = V4L2_FIELD_NONE; |
| |
| if (ssd != sensor->pixel_array) |
| continue; |
| |
| try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i); |
| *try_comp = *try_crop; |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_video_ops ccs_video_ops = { |
| .s_stream = ccs_set_stream, |
| .pre_streamon = ccs_pre_streamon, |
| .post_streamoff = ccs_post_streamoff, |
| }; |
| |
| static const struct v4l2_subdev_pad_ops ccs_pad_ops = { |
| .enum_mbus_code = ccs_enum_mbus_code, |
| .get_fmt = ccs_get_format, |
| .set_fmt = ccs_set_format, |
| .get_selection = ccs_get_selection, |
| .set_selection = ccs_set_selection, |
| }; |
| |
| static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = { |
| .g_skip_frames = ccs_get_skip_frames, |
| .g_skip_top_lines = ccs_get_skip_top_lines, |
| }; |
| |
| static const struct v4l2_subdev_ops ccs_ops = { |
| .video = &ccs_video_ops, |
| .pad = &ccs_pad_ops, |
| .sensor = &ccs_sensor_ops, |
| }; |
| |
| static const struct media_entity_operations ccs_entity_ops = { |
| .link_validate = v4l2_subdev_link_validate, |
| }; |
| |
| static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = { |
| .registered = ccs_registered, |
| .unregistered = ccs_unregistered, |
| .open = ccs_open, |
| }; |
| |
| static const struct v4l2_subdev_internal_ops ccs_internal_ops = { |
| .open = ccs_open, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * I2C Driver |
| */ |
| |
| static int __maybe_unused ccs_suspend(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| bool streaming = sensor->streaming; |
| int rval; |
| |
| rval = pm_runtime_resume_and_get(dev); |
| if (rval < 0) |
| return rval; |
| |
| if (sensor->streaming) |
| ccs_stop_streaming(sensor); |
| |
| /* save state for resume */ |
| sensor->streaming = streaming; |
| |
| return 0; |
| } |
| |
| static int __maybe_unused ccs_resume(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| int rval = 0; |
| |
| pm_runtime_put(dev); |
| |
| if (sensor->streaming) |
| rval = ccs_start_streaming(sensor); |
| |
| return rval; |
| } |
| |
| static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev) |
| { |
| struct ccs_hwconfig *hwcfg = &sensor->hwcfg; |
| struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN }; |
| struct fwnode_handle *ep; |
| struct fwnode_handle *fwnode = dev_fwnode(dev); |
| u32 rotation; |
| int i; |
| int rval; |
| |
| ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0, |
| FWNODE_GRAPH_ENDPOINT_NEXT); |
| if (!ep) |
| return -ENODEV; |
| |
| /* |
| * Note that we do need to rely on detecting the bus type between CSI-2 |
| * D-PHY and CCP2 as the old bindings did not require it. |
| */ |
| rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); |
| if (rval) |
| goto out_err; |
| |
| switch (bus_cfg.bus_type) { |
| case V4L2_MBUS_CSI2_DPHY: |
| hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY; |
| hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; |
| break; |
| case V4L2_MBUS_CSI2_CPHY: |
| hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY; |
| hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; |
| break; |
| case V4L2_MBUS_CSI1: |
| case V4L2_MBUS_CCP2: |
| hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ? |
| SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE : |
| SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK; |
| hwcfg->lanes = 1; |
| break; |
| default: |
| dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type); |
| rval = -EINVAL; |
| goto out_err; |
| } |
| |
| dev_dbg(dev, "lanes %u\n", hwcfg->lanes); |
| |
| rval = fwnode_property_read_u32(fwnode, "rotation", &rotation); |
| if (!rval) { |
| switch (rotation) { |
| case 180: |
| hwcfg->module_board_orient = |
| CCS_MODULE_BOARD_ORIENT_180; |
| fallthrough; |
| case 0: |
| break; |
| default: |
| dev_err(dev, "invalid rotation %u\n", rotation); |
| rval = -EINVAL; |
| goto out_err; |
| } |
| } |
| |
| rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency", |
| &hwcfg->ext_clk); |
| if (rval) |
| dev_info(dev, "can't get clock-frequency\n"); |
| |
| dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk, |
| hwcfg->csi_signalling_mode); |
| |
| if (!bus_cfg.nr_of_link_frequencies) { |
| dev_warn(dev, "no link frequencies defined\n"); |
| rval = -EINVAL; |
| goto out_err; |
| } |
| |
| hwcfg->op_sys_clock = devm_kcalloc( |
| dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */, |
| sizeof(*hwcfg->op_sys_clock), GFP_KERNEL); |
| if (!hwcfg->op_sys_clock) { |
| rval = -ENOMEM; |
| goto out_err; |
| } |
| |
| for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) { |
| hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i]; |
| dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]); |
| } |
| |
| v4l2_fwnode_endpoint_free(&bus_cfg); |
| fwnode_handle_put(ep); |
| |
| return 0; |
| |
| out_err: |
| v4l2_fwnode_endpoint_free(&bus_cfg); |
| fwnode_handle_put(ep); |
| |
| return rval; |
| } |
| |
| static int ccs_probe(struct i2c_client *client) |
| { |
| struct ccs_sensor *sensor; |
| const struct firmware *fw; |
| char filename[40]; |
| unsigned int i; |
| int rval; |
| |
| sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); |
| if (sensor == NULL) |
| return -ENOMEM; |
| |
| rval = ccs_get_hwconfig(sensor, &client->dev); |
| if (rval) |
| return rval; |
| |
| sensor->src = &sensor->ssds[sensor->ssds_used]; |
| |
| v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops); |
| sensor->src->sd.internal_ops = &ccs_internal_src_ops; |
| |
| sensor->regulators = devm_kcalloc(&client->dev, |
| ARRAY_SIZE(ccs_regulators), |
| sizeof(*sensor->regulators), |
| GFP_KERNEL); |
| if (!sensor->regulators) |
| return -ENOMEM; |
| |
| for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++) |
| sensor->regulators[i].supply = ccs_regulators[i]; |
| |
| rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators), |
| sensor->regulators); |
| if (rval) { |
| dev_err(&client->dev, "could not get regulators\n"); |
| return rval; |
| } |
| |
| sensor->ext_clk = devm_clk_get(&client->dev, NULL); |
| if (PTR_ERR(sensor->ext_clk) == -ENOENT) { |
| dev_info(&client->dev, "no clock defined, continuing...\n"); |
| sensor->ext_clk = NULL; |
| } else if (IS_ERR(sensor->ext_clk)) { |
| dev_err(&client->dev, "could not get clock (%ld)\n", |
| PTR_ERR(sensor->ext_clk)); |
| return -EPROBE_DEFER; |
| } |
| |
| if (sensor->ext_clk) { |
| if (sensor->hwcfg.ext_clk) { |
| unsigned long rate; |
| |
| rval = clk_set_rate(sensor->ext_clk, |
| sensor->hwcfg.ext_clk); |
| if (rval < 0) { |
| dev_err(&client->dev, |
| "unable to set clock freq to %u\n", |
| sensor->hwcfg.ext_clk); |
| return rval; |
| } |
| |
| rate = clk_get_rate(sensor->ext_clk); |
| if (rate != sensor->hwcfg.ext_clk) { |
| dev_err(&client->dev, |
| "can't set clock freq, asked for %u but got %lu\n", |
| sensor->hwcfg.ext_clk, rate); |
| return -EINVAL; |
| } |
| } else { |
| sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk); |
| dev_dbg(&client->dev, "obtained clock freq %u\n", |
| sensor->hwcfg.ext_clk); |
| } |
| } else if (sensor->hwcfg.ext_clk) { |
| dev_dbg(&client->dev, "assuming clock freq %u\n", |
| sensor->hwcfg.ext_clk); |
| } else { |
| dev_err(&client->dev, "unable to obtain clock freq\n"); |
| return -EINVAL; |
| } |
| |
| if (!sensor->hwcfg.ext_clk) { |
| dev_err(&client->dev, "cannot work with xclk frequency 0\n"); |
| return -EINVAL; |
| } |
| |
| sensor->reset = devm_gpiod_get_optional(&client->dev, "reset", |
| GPIOD_OUT_HIGH); |
| if (IS_ERR(sensor->reset)) |
| return PTR_ERR(sensor->reset); |
| /* Support old users that may have used "xshutdown" property. */ |
| if (!sensor->reset) |
| sensor->xshutdown = devm_gpiod_get_optional(&client->dev, |
| "xshutdown", |
| GPIOD_OUT_LOW); |
| if (IS_ERR(sensor->xshutdown)) |
| return PTR_ERR(sensor->xshutdown); |
| |
| rval = ccs_power_on(&client->dev); |
| if (rval < 0) |
| return rval; |
| |
| mutex_init(&sensor->mutex); |
| |
| rval = ccs_identify_module(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| |
| rval = snprintf(filename, sizeof(filename), |
| "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw", |
| sensor->minfo.sensor_mipi_manufacturer_id, |
| sensor->minfo.sensor_model_id, |
| sensor->minfo.sensor_revision_number); |
| if (rval >= sizeof(filename)) { |
| rval = -ENOMEM; |
| goto out_power_off; |
| } |
| |
| rval = request_firmware(&fw, filename, &client->dev); |
| if (!rval) { |
| ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev, |
| true); |
| release_firmware(fw); |
| } |
| |
| rval = snprintf(filename, sizeof(filename), |
| "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw", |
| sensor->minfo.mipi_manufacturer_id, |
| sensor->minfo.model_id, |
| sensor->minfo.revision_number); |
| if (rval >= sizeof(filename)) { |
| rval = -ENOMEM; |
| goto out_release_sdata; |
| } |
| |
| rval = request_firmware(&fw, filename, &client->dev); |
| if (!rval) { |
| ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev, |
| true); |
| release_firmware(fw); |
| } |
| |
| rval = ccs_read_all_limits(sensor); |
| if (rval) |
| goto out_release_mdata; |
| |
| rval = ccs_read_frame_fmt(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_free_ccs_limits; |
| } |
| |
| rval = ccs_update_phy_ctrl(sensor); |
| if (rval < 0) |
| goto out_free_ccs_limits; |
| |
| /* |
| * Handle Sensor Module orientation on the board. |
| * |
| * The application of H-FLIP and V-FLIP on the sensor is modified by |
| * the sensor orientation on the board. |
| * |
| * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set |
| * both H-FLIP and V-FLIP for normal operation which also implies |
| * that a set/unset operation for user space HFLIP and VFLIP v4l2 |
| * controls will need to be internally inverted. |
| * |
| * Rotation also changes the bayer pattern. |
| */ |
| if (sensor->hwcfg.module_board_orient == |
| CCS_MODULE_BOARD_ORIENT_180) |
| sensor->hvflip_inv_mask = |
| CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR | |
| CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; |
| |
| rval = ccs_call_quirk(sensor, limits); |
| if (rval) { |
| dev_err(&client->dev, "limits quirks failed\n"); |
| goto out_free_ccs_limits; |
| } |
| |
| if (CCS_LIM(sensor, BINNING_CAPABILITY)) { |
| sensor->nbinning_subtypes = |
| min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES), |
| CCS_LIM_BINNING_SUB_TYPE_MAX_N); |
| |
| for (i = 0; i < sensor->nbinning_subtypes; i++) { |
| sensor->binning_subtypes[i].horizontal = |
| CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >> |
| CCS_BINNING_SUB_TYPE_COLUMN_SHIFT; |
| sensor->binning_subtypes[i].vertical = |
| CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) & |
| CCS_BINNING_SUB_TYPE_ROW_MASK; |
| |
| dev_dbg(&client->dev, "binning %xx%x\n", |
| sensor->binning_subtypes[i].horizontal, |
| sensor->binning_subtypes[i].vertical); |
| } |
| } |
| sensor->binning_horizontal = 1; |
| sensor->binning_vertical = 1; |
| |
| if (device_create_file(&client->dev, &dev_attr_ident) != 0) { |
| dev_err(&client->dev, "sysfs ident entry creation failed\n"); |
| rval = -ENOENT; |
| goto out_free_ccs_limits; |
| } |
| |
| if (sensor->minfo.smiapp_version && |
| CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & |
| CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) { |
| if (device_create_file(&client->dev, &dev_attr_nvm) != 0) { |
| dev_err(&client->dev, "sysfs nvm entry failed\n"); |
| rval = -EBUSY; |
| goto out_cleanup; |
| } |
| } |
| |
| if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) || |
| !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) || |
| !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) || |
| !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) { |
| /* No OP clock branch */ |
| sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS; |
| } else if (CCS_LIM(sensor, SCALING_CAPABILITY) |
| != CCS_SCALING_CAPABILITY_NONE || |
| CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) |
| == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { |
| /* We have a scaler or digital crop. */ |
| sensor->scaler = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| } |
| sensor->binner = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| sensor->pixel_array = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| |
| sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); |
| |
| /* prepare PLL configuration input values */ |
| sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY; |
| sensor->pll.csi2.lanes = sensor->hwcfg.lanes; |
| if (CCS_LIM(sensor, CLOCK_CALCULATION) & |
| CCS_CLOCK_CALCULATION_LANE_SPEED) { |
| sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL; |
| if (CCS_LIM(sensor, CLOCK_CALCULATION) & |
| CCS_CLOCK_CALCULATION_LINK_DECOUPLED) { |
| sensor->pll.vt_lanes = |
| CCS_LIM(sensor, NUM_OF_VT_LANES) + 1; |
| sensor->pll.op_lanes = |
| CCS_LIM(sensor, NUM_OF_OP_LANES) + 1; |
| sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED; |
| } else { |
| sensor->pll.vt_lanes = sensor->pll.csi2.lanes; |
| sensor->pll.op_lanes = sensor->pll.csi2.lanes; |
| } |
| } |
| if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & |
| CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER) |
| sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER; |
| if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & |
| CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV) |
| sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV; |
| if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & |
| CCS_FIFO_SUPPORT_CAPABILITY_DERATING) |
| sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING; |
| if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & |
| CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING) |
| sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING | |
| CCS_PLL_FLAG_FIFO_OVERRATING; |
| if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & |
| CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) { |
| if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & |
| CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) { |
| u32 v; |
| |
| /* Use sensor default in PLL mode selection */ |
| rval = ccs_read(sensor, PLL_MODE, &v); |
| if (rval) |
| goto out_cleanup; |
| |
| if (v == CCS_PLL_MODE_DUAL) |
| sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; |
| } else { |
| sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; |
| } |
| if (CCS_LIM(sensor, CLOCK_CALCULATION) & |
| CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR) |
| sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR; |
| if (CCS_LIM(sensor, CLOCK_CALCULATION) & |
| CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR) |
| sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR; |
| } |
| sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE); |
| sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk; |
| sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN); |
| |
| ccs_create_subdev(sensor, sensor->scaler, " scaler", 2, |
| MEDIA_ENT_F_PROC_VIDEO_SCALER); |
| ccs_create_subdev(sensor, sensor->binner, " binner", 2, |
| MEDIA_ENT_F_PROC_VIDEO_SCALER); |
| ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1, |
| MEDIA_ENT_F_CAM_SENSOR); |
| |
| rval = ccs_init_controls(sensor); |
| if (rval < 0) |
| goto out_cleanup; |
| |
| rval = ccs_call_quirk(sensor, init); |
| if (rval) |
| goto out_cleanup; |
| |
| rval = ccs_get_mbus_formats(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_cleanup; |
| } |
| |
| rval = ccs_init_late_controls(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_cleanup; |
| } |
| |
| mutex_lock(&sensor->mutex); |
| rval = ccs_pll_blanking_update(sensor); |
| mutex_unlock(&sensor->mutex); |
| if (rval) { |
| dev_err(&client->dev, "update mode failed\n"); |
| goto out_cleanup; |
| } |
| |
| sensor->streaming = false; |
| sensor->dev_init_done = true; |
| |
| rval = media_entity_pads_init(&sensor->src->sd.entity, 2, |
| sensor->src->pads); |
| if (rval < 0) |
| goto out_media_entity_cleanup; |
| |
| rval = ccs_write_msr_regs(sensor); |
| if (rval) |
| goto out_media_entity_cleanup; |
| |
| pm_runtime_set_active(&client->dev); |
| pm_runtime_get_noresume(&client->dev); |
| pm_runtime_enable(&client->dev); |
| |
| rval = v4l2_async_register_subdev_sensor(&sensor->src->sd); |
| if (rval < 0) |
| goto out_disable_runtime_pm; |
| |
| pm_runtime_set_autosuspend_delay(&client->dev, 1000); |
| pm_runtime_use_autosuspend(&client->dev); |
| pm_runtime_put_autosuspend(&client->dev); |
| |
| return 0; |
| |
| out_disable_runtime_pm: |
| pm_runtime_put_noidle(&client->dev); |
| pm_runtime_disable(&client->dev); |
| |
| out_media_entity_cleanup: |
| media_entity_cleanup(&sensor->src->sd.entity); |
| |
| out_cleanup: |
| ccs_cleanup(sensor); |
| |
| out_release_mdata: |
| kvfree(sensor->mdata.backing); |
| |
| out_release_sdata: |
| kvfree(sensor->sdata.backing); |
| |
| out_free_ccs_limits: |
| kfree(sensor->ccs_limits); |
| |
| out_power_off: |
| ccs_power_off(&client->dev); |
| mutex_destroy(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static int ccs_remove(struct i2c_client *client) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct ccs_sensor *sensor = to_ccs_sensor(subdev); |
| unsigned int i; |
| |
| v4l2_async_unregister_subdev(subdev); |
| |
| pm_runtime_disable(&client->dev); |
| if (!pm_runtime_status_suspended(&client->dev)) |
| ccs_power_off(&client->dev); |
| pm_runtime_set_suspended(&client->dev); |
| |
| for (i = 0; i < sensor->ssds_used; i++) { |
| v4l2_device_unregister_subdev(&sensor->ssds[i].sd); |
| media_entity_cleanup(&sensor->ssds[i].sd.entity); |
| } |
| ccs_cleanup(sensor); |
| mutex_destroy(&sensor->mutex); |
| kfree(sensor->ccs_limits); |
| kvfree(sensor->sdata.backing); |
| kvfree(sensor->mdata.backing); |
| |
| return 0; |
| } |
| |
| static const struct ccs_device smia_device = { |
| .flags = CCS_DEVICE_FLAG_IS_SMIA, |
| }; |
| |
| static const struct ccs_device ccs_device = {}; |
| |
| static const struct acpi_device_id ccs_acpi_table[] = { |
| { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(acpi, ccs_acpi_table); |
| |
| static const struct of_device_id ccs_of_table[] = { |
| { .compatible = "mipi-ccs-1.1", .data = &ccs_device }, |
| { .compatible = "mipi-ccs-1.0", .data = &ccs_device }, |
| { .compatible = "mipi-ccs", .data = &ccs_device }, |
| { .compatible = "nokia,smia", .data = &smia_device }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, ccs_of_table); |
| |
| static const struct dev_pm_ops ccs_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume) |
| SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL) |
| }; |
| |
| static struct i2c_driver ccs_i2c_driver = { |
| .driver = { |
| .acpi_match_table = ccs_acpi_table, |
| .of_match_table = ccs_of_table, |
| .name = CCS_NAME, |
| .pm = &ccs_pm_ops, |
| }, |
| .probe_new = ccs_probe, |
| .remove = ccs_remove, |
| }; |
| |
| static int ccs_module_init(void) |
| { |
| unsigned int i, l; |
| |
| for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) { |
| if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) { |
| ccs_limit_offsets[l + 1].lim = |
| ALIGN(ccs_limit_offsets[l].lim + |
| ccs_limits[i].size, |
| ccs_reg_width(ccs_limits[i + 1].reg)); |
| ccs_limit_offsets[l].info = i; |
| l++; |
| } else { |
| ccs_limit_offsets[l].lim += ccs_limits[i].size; |
| } |
| } |
| |
| if (WARN_ON(ccs_limits[i].size)) |
| return -EINVAL; |
| |
| if (WARN_ON(l != CCS_L_LAST)) |
| return -EINVAL; |
| |
| return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver); |
| } |
| |
| static void ccs_module_cleanup(void) |
| { |
| i2c_del_driver(&ccs_i2c_driver); |
| } |
| |
| module_init(ccs_module_init); |
| module_exit(ccs_module_cleanup); |
| |
| MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>"); |
| MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("smiapp"); |