blob: a1b4ce6a27b47d6f4ca4c025fbdee98f22005723 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Broadcom. All Rights Reserved. The term
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
*/
#include "efc.h"
int
efc_remote_node_cb(void *arg, int event, void *data)
{
struct efc *efc = arg;
struct efc_remote_node *rnode = data;
struct efc_node *node = rnode->node;
unsigned long flags = 0;
spin_lock_irqsave(&efc->lock, flags);
efc_node_post_event(node, event, NULL);
spin_unlock_irqrestore(&efc->lock, flags);
return 0;
}
struct efc_node *
efc_node_find(struct efc_nport *nport, u32 port_id)
{
/* Find an FC node structure given the FC port ID */
return xa_load(&nport->lookup, port_id);
}
static void
_efc_node_free(struct kref *arg)
{
struct efc_node *node = container_of(arg, struct efc_node, ref);
struct efc *efc = node->efc;
struct efc_dma *dma;
dma = &node->sparm_dma_buf;
dma_pool_free(efc->node_dma_pool, dma->virt, dma->phys);
memset(dma, 0, sizeof(struct efc_dma));
mempool_free(node, efc->node_pool);
}
struct efc_node *efc_node_alloc(struct efc_nport *nport,
u32 port_id, bool init, bool targ)
{
int rc;
struct efc_node *node = NULL;
struct efc *efc = nport->efc;
struct efc_dma *dma;
if (nport->shutting_down) {
efc_log_debug(efc, "node allocation when shutting down %06x",
port_id);
return NULL;
}
node = mempool_alloc(efc->node_pool, GFP_ATOMIC);
if (!node) {
efc_log_err(efc, "node allocation failed %06x", port_id);
return NULL;
}
memset(node, 0, sizeof(*node));
dma = &node->sparm_dma_buf;
dma->size = NODE_SPARAMS_SIZE;
dma->virt = dma_pool_zalloc(efc->node_dma_pool, GFP_ATOMIC, &dma->phys);
if (!dma->virt) {
efc_log_err(efc, "node dma alloc failed\n");
goto dma_fail;
}
node->rnode.indicator = U32_MAX;
node->nport = nport;
node->efc = efc;
node->init = init;
node->targ = targ;
spin_lock_init(&node->pend_frames_lock);
INIT_LIST_HEAD(&node->pend_frames);
spin_lock_init(&node->els_ios_lock);
INIT_LIST_HEAD(&node->els_ios_list);
node->els_io_enabled = true;
rc = efc_cmd_node_alloc(efc, &node->rnode, port_id, nport);
if (rc) {
efc_log_err(efc, "efc_hw_node_alloc failed: %d\n", rc);
goto hw_alloc_fail;
}
node->rnode.node = node;
node->sm.app = node;
node->evtdepth = 0;
efc_node_update_display_name(node);
rc = xa_err(xa_store(&nport->lookup, port_id, node, GFP_ATOMIC));
if (rc) {
efc_log_err(efc, "Node lookup store failed: %d\n", rc);
goto xa_fail;
}
/* initialize refcount */
kref_init(&node->ref);
node->release = _efc_node_free;
kref_get(&nport->ref);
return node;
xa_fail:
efc_node_free_resources(efc, &node->rnode);
hw_alloc_fail:
dma_pool_free(efc->node_dma_pool, dma->virt, dma->phys);
dma_fail:
mempool_free(node, efc->node_pool);
return NULL;
}
void
efc_node_free(struct efc_node *node)
{
struct efc_nport *nport;
struct efc *efc;
int rc = 0;
struct efc_node *ns = NULL;
nport = node->nport;
efc = node->efc;
node_printf(node, "Free'd\n");
if (node->refound) {
/*
* Save the name server node. We will send fake RSCN event at
* the end to handle ignored RSCN event during node deletion
*/
ns = efc_node_find(node->nport, FC_FID_DIR_SERV);
}
if (!node->nport) {
efc_log_err(efc, "Node already Freed\n");
return;
}
/* Free HW resources */
rc = efc_node_free_resources(efc, &node->rnode);
if (rc < 0)
efc_log_err(efc, "efc_hw_node_free failed: %d\n", rc);
/* if the gidpt_delay_timer is still running, then delete it */
if (timer_pending(&node->gidpt_delay_timer))
del_timer(&node->gidpt_delay_timer);
xa_erase(&nport->lookup, node->rnode.fc_id);
/*
* If the node_list is empty,
* then post a ALL_CHILD_NODES_FREE event to the nport,
* after the lock is released.
* The nport may be free'd as a result of the event.
*/
if (xa_empty(&nport->lookup))
efc_sm_post_event(&nport->sm, EFC_EVT_ALL_CHILD_NODES_FREE,
NULL);
node->nport = NULL;
node->sm.current_state = NULL;
kref_put(&nport->ref, nport->release);
kref_put(&node->ref, node->release);
if (ns) {
/* sending fake RSCN event to name server node */
efc_node_post_event(ns, EFC_EVT_RSCN_RCVD, NULL);
}
}
static void
efc_dma_copy_in(struct efc_dma *dma, void *buffer, u32 buffer_length)
{
if (!dma || !buffer || !buffer_length)
return;
if (buffer_length > dma->size)
buffer_length = dma->size;
memcpy(dma->virt, buffer, buffer_length);
dma->len = buffer_length;
}
int
efc_node_attach(struct efc_node *node)
{
int rc = 0;
struct efc_nport *nport = node->nport;
struct efc_domain *domain = nport->domain;
struct efc *efc = node->efc;
if (!domain->attached) {
efc_log_err(efc, "Warning: unattached domain\n");
return -EIO;
}
/* Update node->wwpn/wwnn */
efc_node_build_eui_name(node->wwpn, sizeof(node->wwpn),
efc_node_get_wwpn(node));
efc_node_build_eui_name(node->wwnn, sizeof(node->wwnn),
efc_node_get_wwnn(node));
efc_dma_copy_in(&node->sparm_dma_buf, node->service_params + 4,
sizeof(node->service_params) - 4);
/* take lock to protect node->rnode.attached */
rc = efc_cmd_node_attach(efc, &node->rnode, &node->sparm_dma_buf);
if (rc < 0)
efc_log_debug(efc, "efc_hw_node_attach failed: %d\n", rc);
return rc;
}
void
efc_node_fcid_display(u32 fc_id, char *buffer, u32 buffer_length)
{
switch (fc_id) {
case FC_FID_FLOGI:
snprintf(buffer, buffer_length, "fabric");
break;
case FC_FID_FCTRL:
snprintf(buffer, buffer_length, "fabctl");
break;
case FC_FID_DIR_SERV:
snprintf(buffer, buffer_length, "nserve");
break;
default:
if (fc_id == FC_FID_DOM_MGR) {
snprintf(buffer, buffer_length, "dctl%02x",
(fc_id & 0x0000ff));
} else {
snprintf(buffer, buffer_length, "%06x", fc_id);
}
break;
}
}
void
efc_node_update_display_name(struct efc_node *node)
{
u32 port_id = node->rnode.fc_id;
struct efc_nport *nport = node->nport;
char portid_display[16];
efc_node_fcid_display(port_id, portid_display, sizeof(portid_display));
snprintf(node->display_name, sizeof(node->display_name), "%s.%s",
nport->display_name, portid_display);
}
void
efc_node_send_ls_io_cleanup(struct efc_node *node)
{
if (node->send_ls_acc != EFC_NODE_SEND_LS_ACC_NONE) {
efc_log_debug(node->efc, "[%s] cleaning up LS_ACC oxid=0x%x\n",
node->display_name, node->ls_acc_oxid);
node->send_ls_acc = EFC_NODE_SEND_LS_ACC_NONE;
node->ls_acc_io = NULL;
}
}
static void efc_node_handle_implicit_logo(struct efc_node *node)
{
int rc;
/*
* currently, only case for implicit logo is PLOGI
* recvd. Thus, node's ELS IO pending list won't be
* empty (PLOGI will be on it)
*/
WARN_ON(node->send_ls_acc != EFC_NODE_SEND_LS_ACC_PLOGI);
node_printf(node, "Reason: implicit logout, re-authenticate\n");
/* Re-attach node with the same HW node resources */
node->req_free = false;
rc = efc_node_attach(node);
efc_node_transition(node, __efc_d_wait_node_attach, NULL);
node->els_io_enabled = true;
if (rc < 0)
efc_node_post_event(node, EFC_EVT_NODE_ATTACH_FAIL, NULL);
}
static void efc_node_handle_explicit_logo(struct efc_node *node)
{
s8 pend_frames_empty;
unsigned long flags = 0;
/* cleanup any pending LS_ACC ELSs */
efc_node_send_ls_io_cleanup(node);
spin_lock_irqsave(&node->pend_frames_lock, flags);
pend_frames_empty = list_empty(&node->pend_frames);
spin_unlock_irqrestore(&node->pend_frames_lock, flags);
/*
* there are two scenarios where we want to keep
* this node alive:
* 1. there are pending frames that need to be
* processed or
* 2. we're an initiator and the remote node is
* a target and we need to re-authenticate
*/
node_printf(node, "Shutdown: explicit logo pend=%d ", !pend_frames_empty);
node_printf(node, "nport.ini=%d node.tgt=%d\n",
node->nport->enable_ini, node->targ);
if (!pend_frames_empty || (node->nport->enable_ini && node->targ)) {
u8 send_plogi = false;
if (node->nport->enable_ini && node->targ) {
/*
* we're an initiator and
* node shutting down is a target;
* we'll need to re-authenticate in
* initial state
*/
send_plogi = true;
}
/*
* transition to __efc_d_init
* (will retain HW node resources)
*/
node->els_io_enabled = true;
node->req_free = false;
/*
* either pending frames exist or we are re-authenticating
* with PLOGI (or both); in either case, return to initial
* state
*/
efc_node_init_device(node, send_plogi);
}
/* else: let node shutdown occur */
}
static void
efc_node_purge_pending(struct efc_node *node)
{
struct efc *efc = node->efc;
struct efc_hw_sequence *frame, *next;
unsigned long flags = 0;
spin_lock_irqsave(&node->pend_frames_lock, flags);
list_for_each_entry_safe(frame, next, &node->pend_frames, list_entry) {
list_del(&frame->list_entry);
efc->tt.hw_seq_free(efc, frame);
}
spin_unlock_irqrestore(&node->pend_frames_lock, flags);
}
void
__efc_node_shutdown(struct efc_sm_ctx *ctx,
enum efc_sm_event evt, void *arg)
{
struct efc_node *node = ctx->app;
efc_node_evt_set(ctx, evt, __func__);
node_sm_trace();
switch (evt) {
case EFC_EVT_ENTER: {
efc_node_hold_frames(node);
WARN_ON(!efc_els_io_list_empty(node, &node->els_ios_list));
/* by default, we will be freeing node after we unwind */
node->req_free = true;
switch (node->shutdown_reason) {
case EFC_NODE_SHUTDOWN_IMPLICIT_LOGO:
/* Node shutdown b/c of PLOGI received when node
* already logged in. We have PLOGI service
* parameters, so submit node attach; we won't be
* freeing this node
*/
efc_node_handle_implicit_logo(node);
break;
case EFC_NODE_SHUTDOWN_EXPLICIT_LOGO:
efc_node_handle_explicit_logo(node);
break;
case EFC_NODE_SHUTDOWN_DEFAULT:
default: {
/*
* shutdown due to link down,
* node going away (xport event) or
* nport shutdown, purge pending and
* proceed to cleanup node
*/
/* cleanup any pending LS_ACC ELSs */
efc_node_send_ls_io_cleanup(node);
node_printf(node,
"Shutdown reason: default, purge pending\n");
efc_node_purge_pending(node);
break;
}
}
break;
}
case EFC_EVT_EXIT:
efc_node_accept_frames(node);
break;
default:
__efc_node_common(__func__, ctx, evt, arg);
}
}
static bool
efc_node_check_els_quiesced(struct efc_node *node)
{
/* check to see if ELS requests, completions are quiesced */
if (node->els_req_cnt == 0 && node->els_cmpl_cnt == 0 &&
efc_els_io_list_empty(node, &node->els_ios_list)) {
if (!node->attached) {
/* hw node detach already completed, proceed */
node_printf(node, "HW node not attached\n");
efc_node_transition(node,
__efc_node_wait_ios_shutdown,
NULL);
} else {
/*
* hw node detach hasn't completed,
* transition and wait
*/
node_printf(node, "HW node still attached\n");
efc_node_transition(node, __efc_node_wait_node_free,
NULL);
}
return true;
}
return false;
}
void
efc_node_initiate_cleanup(struct efc_node *node)
{
/*
* if ELS's have already been quiesced, will move to next state
* if ELS's have not been quiesced, abort them
*/
if (!efc_node_check_els_quiesced(node)) {
efc_node_hold_frames(node);
efc_node_transition(node, __efc_node_wait_els_shutdown, NULL);
}
}
void
__efc_node_wait_els_shutdown(struct efc_sm_ctx *ctx,
enum efc_sm_event evt, void *arg)
{
bool check_quiesce = false;
struct efc_node *node = ctx->app;
efc_node_evt_set(ctx, evt, __func__);
node_sm_trace();
/* Node state machine: Wait for all ELSs to complete */
switch (evt) {
case EFC_EVT_ENTER:
efc_node_hold_frames(node);
if (efc_els_io_list_empty(node, &node->els_ios_list)) {
node_printf(node, "All ELS IOs complete\n");
check_quiesce = true;
}
break;
case EFC_EVT_EXIT:
efc_node_accept_frames(node);
break;
case EFC_EVT_SRRS_ELS_REQ_OK:
case EFC_EVT_SRRS_ELS_REQ_FAIL:
case EFC_EVT_SRRS_ELS_REQ_RJT:
case EFC_EVT_ELS_REQ_ABORTED:
if (WARN_ON(!node->els_req_cnt))
break;
node->els_req_cnt--;
check_quiesce = true;
break;
case EFC_EVT_SRRS_ELS_CMPL_OK:
case EFC_EVT_SRRS_ELS_CMPL_FAIL:
if (WARN_ON(!node->els_cmpl_cnt))
break;
node->els_cmpl_cnt--;
check_quiesce = true;
break;
case EFC_EVT_ALL_CHILD_NODES_FREE:
/* all ELS IO's complete */
node_printf(node, "All ELS IOs complete\n");
WARN_ON(!efc_els_io_list_empty(node, &node->els_ios_list));
check_quiesce = true;
break;
case EFC_EVT_NODE_ACTIVE_IO_LIST_EMPTY:
check_quiesce = true;
break;
case EFC_EVT_DOMAIN_ATTACH_OK:
/* don't care about domain_attach_ok */
break;
/* ignore shutdown events as we're already in shutdown path */
case EFC_EVT_SHUTDOWN:
/* have default shutdown event take precedence */
node->shutdown_reason = EFC_NODE_SHUTDOWN_DEFAULT;
fallthrough;
case EFC_EVT_SHUTDOWN_EXPLICIT_LOGO:
case EFC_EVT_SHUTDOWN_IMPLICIT_LOGO:
node_printf(node, "%s received\n", efc_sm_event_name(evt));
break;
default:
__efc_node_common(__func__, ctx, evt, arg);
}
if (check_quiesce)
efc_node_check_els_quiesced(node);
}
void
__efc_node_wait_node_free(struct efc_sm_ctx *ctx,
enum efc_sm_event evt, void *arg)
{
struct efc_node *node = ctx->app;
efc_node_evt_set(ctx, evt, __func__);
node_sm_trace();
switch (evt) {
case EFC_EVT_ENTER:
efc_node_hold_frames(node);
break;
case EFC_EVT_EXIT:
efc_node_accept_frames(node);
break;
case EFC_EVT_NODE_FREE_OK:
/* node is officially no longer attached */
node->attached = false;
efc_node_transition(node, __efc_node_wait_ios_shutdown, NULL);
break;
case EFC_EVT_ALL_CHILD_NODES_FREE:
case EFC_EVT_NODE_ACTIVE_IO_LIST_EMPTY:
/* As IOs and ELS IO's complete we expect to get these events */
break;
case EFC_EVT_DOMAIN_ATTACH_OK:
/* don't care about domain_attach_ok */
break;
/* ignore shutdown events as we're already in shutdown path */
case EFC_EVT_SHUTDOWN:
/* have default shutdown event take precedence */
node->shutdown_reason = EFC_NODE_SHUTDOWN_DEFAULT;
fallthrough;
case EFC_EVT_SHUTDOWN_EXPLICIT_LOGO:
case EFC_EVT_SHUTDOWN_IMPLICIT_LOGO:
node_printf(node, "%s received\n", efc_sm_event_name(evt));
break;
default:
__efc_node_common(__func__, ctx, evt, arg);
}
}
void
__efc_node_wait_ios_shutdown(struct efc_sm_ctx *ctx,
enum efc_sm_event evt, void *arg)
{
struct efc_node *node = ctx->app;
struct efc *efc = node->efc;
efc_node_evt_set(ctx, evt, __func__);
node_sm_trace();
switch (evt) {
case EFC_EVT_ENTER:
efc_node_hold_frames(node);
/* first check to see if no ELS IOs are outstanding */
if (efc_els_io_list_empty(node, &node->els_ios_list))
/* If there are any active IOS, Free them. */
efc_node_transition(node, __efc_node_shutdown, NULL);
break;
case EFC_EVT_NODE_ACTIVE_IO_LIST_EMPTY:
case EFC_EVT_ALL_CHILD_NODES_FREE:
if (efc_els_io_list_empty(node, &node->els_ios_list))
efc_node_transition(node, __efc_node_shutdown, NULL);
break;
case EFC_EVT_EXIT:
efc_node_accept_frames(node);
break;
case EFC_EVT_SRRS_ELS_REQ_FAIL:
/* Can happen as ELS IO IO's complete */
if (WARN_ON(!node->els_req_cnt))
break;
node->els_req_cnt--;
break;
/* ignore shutdown events as we're already in shutdown path */
case EFC_EVT_SHUTDOWN:
/* have default shutdown event take precedence */
node->shutdown_reason = EFC_NODE_SHUTDOWN_DEFAULT;
fallthrough;
case EFC_EVT_SHUTDOWN_EXPLICIT_LOGO:
case EFC_EVT_SHUTDOWN_IMPLICIT_LOGO:
efc_log_debug(efc, "[%s] %-20s\n", node->display_name,
efc_sm_event_name(evt));
break;
case EFC_EVT_DOMAIN_ATTACH_OK:
/* don't care about domain_attach_ok */
break;
default:
__efc_node_common(__func__, ctx, evt, arg);
}
}
void
__efc_node_common(const char *funcname, struct efc_sm_ctx *ctx,
enum efc_sm_event evt, void *arg)
{
struct efc_node *node = NULL;
struct efc *efc = NULL;
struct efc_node_cb *cbdata = arg;
node = ctx->app;
efc = node->efc;
switch (evt) {
case EFC_EVT_ENTER:
case EFC_EVT_REENTER:
case EFC_EVT_EXIT:
case EFC_EVT_NPORT_TOPOLOGY_NOTIFY:
case EFC_EVT_NODE_MISSING:
case EFC_EVT_FCP_CMD_RCVD:
break;
case EFC_EVT_NODE_REFOUND:
node->refound = true;
break;
/*
* node->attached must be set appropriately
* for all node attach/detach events
*/
case EFC_EVT_NODE_ATTACH_OK:
node->attached = true;
break;
case EFC_EVT_NODE_FREE_OK:
case EFC_EVT_NODE_ATTACH_FAIL:
node->attached = false;
break;
/*
* handle any ELS completions that
* other states either didn't care about
* or forgot about
*/
case EFC_EVT_SRRS_ELS_CMPL_OK:
case EFC_EVT_SRRS_ELS_CMPL_FAIL:
if (WARN_ON(!node->els_cmpl_cnt))
break;
node->els_cmpl_cnt--;
break;
/*
* handle any ELS request completions that
* other states either didn't care about
* or forgot about
*/
case EFC_EVT_SRRS_ELS_REQ_OK:
case EFC_EVT_SRRS_ELS_REQ_FAIL:
case EFC_EVT_SRRS_ELS_REQ_RJT:
case EFC_EVT_ELS_REQ_ABORTED:
if (WARN_ON(!node->els_req_cnt))
break;
node->els_req_cnt--;
break;
case EFC_EVT_ELS_RCVD: {
struct fc_frame_header *hdr = cbdata->header->dma.virt;
/*
* Unsupported ELS was received,
* send LS_RJT, command not supported
*/
efc_log_debug(efc,
"[%s] (%s) ELS x%02x, LS_RJT not supported\n",
node->display_name, funcname,
((u8 *)cbdata->payload->dma.virt)[0]);
efc_send_ls_rjt(node, be16_to_cpu(hdr->fh_ox_id),
ELS_RJT_UNSUP, ELS_EXPL_NONE, 0);
break;
}
case EFC_EVT_PLOGI_RCVD:
case EFC_EVT_FLOGI_RCVD:
case EFC_EVT_LOGO_RCVD:
case EFC_EVT_PRLI_RCVD:
case EFC_EVT_PRLO_RCVD:
case EFC_EVT_PDISC_RCVD:
case EFC_EVT_FDISC_RCVD:
case EFC_EVT_ADISC_RCVD:
case EFC_EVT_RSCN_RCVD:
case EFC_EVT_SCR_RCVD: {
struct fc_frame_header *hdr = cbdata->header->dma.virt;
/* sm: / send ELS_RJT */
efc_log_debug(efc, "[%s] (%s) %s sending ELS_RJT\n",
node->display_name, funcname,
efc_sm_event_name(evt));
/* if we didn't catch this in a state, send generic LS_RJT */
efc_send_ls_rjt(node, be16_to_cpu(hdr->fh_ox_id),
ELS_RJT_UNAB, ELS_EXPL_NONE, 0);
break;
}
case EFC_EVT_ABTS_RCVD: {
efc_log_debug(efc, "[%s] (%s) %s sending BA_ACC\n",
node->display_name, funcname,
efc_sm_event_name(evt));
/* sm: / send BA_ACC */
efc_send_bls_acc(node, cbdata->header->dma.virt);
break;
}
default:
efc_log_debug(node->efc, "[%s] %-20s %-20s not handled\n",
node->display_name, funcname,
efc_sm_event_name(evt));
}
}
void
efc_node_save_sparms(struct efc_node *node, void *payload)
{
memcpy(node->service_params, payload, sizeof(node->service_params));
}
void
efc_node_post_event(struct efc_node *node,
enum efc_sm_event evt, void *arg)
{
bool free_node = false;
node->evtdepth++;
efc_sm_post_event(&node->sm, evt, arg);
/* If our event call depth is one and
* we're not holding frames
* then we can dispatch any pending frames.
* We don't want to allow the efc_process_node_pending()
* call to recurse.
*/
if (!node->hold_frames && node->evtdepth == 1)
efc_process_node_pending(node);
node->evtdepth--;
/*
* Free the node object if so requested,
* and we're at an event call depth of zero
*/
if (node->evtdepth == 0 && node->req_free)
free_node = true;
if (free_node)
efc_node_free(node);
}
void
efc_node_transition(struct efc_node *node,
void (*state)(struct efc_sm_ctx *,
enum efc_sm_event, void *), void *data)
{
struct efc_sm_ctx *ctx = &node->sm;
if (ctx->current_state == state) {
efc_node_post_event(node, EFC_EVT_REENTER, data);
} else {
efc_node_post_event(node, EFC_EVT_EXIT, data);
ctx->current_state = state;
efc_node_post_event(node, EFC_EVT_ENTER, data);
}
}
void
efc_node_build_eui_name(char *buf, u32 buf_len, uint64_t eui_name)
{
memset(buf, 0, buf_len);
snprintf(buf, buf_len, "eui.%016llX", (unsigned long long)eui_name);
}
u64
efc_node_get_wwpn(struct efc_node *node)
{
struct fc_els_flogi *sp =
(struct fc_els_flogi *)node->service_params;
return be64_to_cpu(sp->fl_wwpn);
}
u64
efc_node_get_wwnn(struct efc_node *node)
{
struct fc_els_flogi *sp =
(struct fc_els_flogi *)node->service_params;
return be64_to_cpu(sp->fl_wwnn);
}
int
efc_node_check_els_req(struct efc_sm_ctx *ctx, enum efc_sm_event evt, void *arg,
u8 cmd, void (*efc_node_common_func)(const char *,
struct efc_sm_ctx *, enum efc_sm_event, void *),
const char *funcname)
{
return 0;
}
int
efc_node_check_ns_req(struct efc_sm_ctx *ctx, enum efc_sm_event evt, void *arg,
u16 cmd, void (*efc_node_common_func)(const char *,
struct efc_sm_ctx *, enum efc_sm_event, void *),
const char *funcname)
{
return 0;
}
int
efc_els_io_list_empty(struct efc_node *node, struct list_head *list)
{
int empty;
unsigned long flags = 0;
spin_lock_irqsave(&node->els_ios_lock, flags);
empty = list_empty(list);
spin_unlock_irqrestore(&node->els_ios_lock, flags);
return empty;
}
void
efc_node_pause(struct efc_node *node,
void (*state)(struct efc_sm_ctx *,
enum efc_sm_event, void *))
{
node->nodedb_state = state;
efc_node_transition(node, __efc_node_paused, NULL);
}
void
__efc_node_paused(struct efc_sm_ctx *ctx,
enum efc_sm_event evt, void *arg)
{
struct efc_node *node = ctx->app;
efc_node_evt_set(ctx, evt, __func__);
node_sm_trace();
/*
* This state is entered when a state is "paused". When resumed, the
* node is transitioned to a previously saved state (node->ndoedb_state)
*/
switch (evt) {
case EFC_EVT_ENTER:
node_printf(node, "Paused\n");
break;
case EFC_EVT_RESUME: {
void (*pf)(struct efc_sm_ctx *ctx,
enum efc_sm_event evt, void *arg);
pf = node->nodedb_state;
node->nodedb_state = NULL;
efc_node_transition(node, pf, NULL);
break;
}
case EFC_EVT_DOMAIN_ATTACH_OK:
break;
case EFC_EVT_SHUTDOWN:
node->req_free = true;
break;
default:
__efc_node_common(__func__, ctx, evt, arg);
}
}
void
efc_node_recv_els_frame(struct efc_node *node,
struct efc_hw_sequence *seq)
{
u32 prli_size = sizeof(struct fc_els_prli) + sizeof(struct fc_els_spp);
struct {
u32 cmd;
enum efc_sm_event evt;
u32 payload_size;
} els_cmd_list[] = {
{ELS_PLOGI, EFC_EVT_PLOGI_RCVD, sizeof(struct fc_els_flogi)},
{ELS_FLOGI, EFC_EVT_FLOGI_RCVD, sizeof(struct fc_els_flogi)},
{ELS_LOGO, EFC_EVT_LOGO_RCVD, sizeof(struct fc_els_ls_acc)},
{ELS_PRLI, EFC_EVT_PRLI_RCVD, prli_size},
{ELS_PRLO, EFC_EVT_PRLO_RCVD, prli_size},
{ELS_PDISC, EFC_EVT_PDISC_RCVD, MAX_ACC_REJECT_PAYLOAD},
{ELS_FDISC, EFC_EVT_FDISC_RCVD, MAX_ACC_REJECT_PAYLOAD},
{ELS_ADISC, EFC_EVT_ADISC_RCVD, sizeof(struct fc_els_adisc)},
{ELS_RSCN, EFC_EVT_RSCN_RCVD, MAX_ACC_REJECT_PAYLOAD},
{ELS_SCR, EFC_EVT_SCR_RCVD, MAX_ACC_REJECT_PAYLOAD},
};
struct efc_node_cb cbdata;
u8 *buf = seq->payload->dma.virt;
enum efc_sm_event evt = EFC_EVT_ELS_RCVD;
u32 i;
memset(&cbdata, 0, sizeof(cbdata));
cbdata.header = seq->header;
cbdata.payload = seq->payload;
/* find a matching event for the ELS command */
for (i = 0; i < ARRAY_SIZE(els_cmd_list); i++) {
if (els_cmd_list[i].cmd == buf[0]) {
evt = els_cmd_list[i].evt;
break;
}
}
efc_node_post_event(node, evt, &cbdata);
}
void
efc_node_recv_ct_frame(struct efc_node *node,
struct efc_hw_sequence *seq)
{
struct fc_ct_hdr *iu = seq->payload->dma.virt;
struct fc_frame_header *hdr = seq->header->dma.virt;
struct efc *efc = node->efc;
u16 gscmd = be16_to_cpu(iu->ct_cmd);
efc_log_err(efc, "[%s] Received cmd :%x sending CT_REJECT\n",
node->display_name, gscmd);
efc_send_ct_rsp(efc, node, be16_to_cpu(hdr->fh_ox_id), iu,
FC_FS_RJT, FC_FS_RJT_UNSUP, 0);
}
void
efc_node_recv_fcp_cmd(struct efc_node *node, struct efc_hw_sequence *seq)
{
struct efc_node_cb cbdata;
memset(&cbdata, 0, sizeof(cbdata));
cbdata.header = seq->header;
cbdata.payload = seq->payload;
efc_node_post_event(node, EFC_EVT_FCP_CMD_RCVD, &cbdata);
}
void
efc_process_node_pending(struct efc_node *node)
{
struct efc *efc = node->efc;
struct efc_hw_sequence *seq = NULL;
u32 pend_frames_processed = 0;
unsigned long flags = 0;
for (;;) {
/* need to check for hold frames condition after each frame
* processed because any given frame could cause a transition
* to a state that holds frames
*/
if (node->hold_frames)
break;
seq = NULL;
/* Get next frame/sequence */
spin_lock_irqsave(&node->pend_frames_lock, flags);
if (!list_empty(&node->pend_frames)) {
seq = list_first_entry(&node->pend_frames,
struct efc_hw_sequence, list_entry);
list_del(&seq->list_entry);
}
spin_unlock_irqrestore(&node->pend_frames_lock, flags);
if (!seq) {
pend_frames_processed = node->pend_frames_processed;
node->pend_frames_processed = 0;
break;
}
node->pend_frames_processed++;
/* now dispatch frame(s) to dispatch function */
efc_node_dispatch_frame(node, seq);
efc->tt.hw_seq_free(efc, seq);
}
if (pend_frames_processed != 0)
efc_log_debug(efc, "%u node frames held and processed\n",
pend_frames_processed);
}
void
efc_scsi_sess_reg_complete(struct efc_node *node, u32 status)
{
unsigned long flags = 0;
enum efc_sm_event evt = EFC_EVT_NODE_SESS_REG_OK;
struct efc *efc = node->efc;
if (status)
evt = EFC_EVT_NODE_SESS_REG_FAIL;
spin_lock_irqsave(&efc->lock, flags);
/* Notify the node to resume */
efc_node_post_event(node, evt, NULL);
spin_unlock_irqrestore(&efc->lock, flags);
}
void
efc_scsi_del_initiator_complete(struct efc *efc, struct efc_node *node)
{
unsigned long flags = 0;
spin_lock_irqsave(&efc->lock, flags);
/* Notify the node to resume */
efc_node_post_event(node, EFC_EVT_NODE_DEL_INI_COMPLETE, NULL);
spin_unlock_irqrestore(&efc->lock, flags);
}
void
efc_scsi_del_target_complete(struct efc *efc, struct efc_node *node)
{
unsigned long flags = 0;
spin_lock_irqsave(&efc->lock, flags);
/* Notify the node to resume */
efc_node_post_event(node, EFC_EVT_NODE_DEL_TGT_COMPLETE, NULL);
spin_unlock_irqrestore(&efc->lock, flags);
}
void
efc_scsi_io_list_empty(struct efc *efc, struct efc_node *node)
{
unsigned long flags = 0;
spin_lock_irqsave(&efc->lock, flags);
efc_node_post_event(node, EFC_EVT_NODE_ACTIVE_IO_LIST_EMPTY, NULL);
spin_unlock_irqrestore(&efc->lock, flags);
}
void efc_node_post_els_resp(struct efc_node *node, u32 evt, void *arg)
{
struct efc *efc = node->efc;
unsigned long flags = 0;
spin_lock_irqsave(&efc->lock, flags);
efc_node_post_event(node, evt, arg);
spin_unlock_irqrestore(&efc->lock, flags);
}
void efc_node_post_shutdown(struct efc_node *node, void *arg)
{
unsigned long flags = 0;
struct efc *efc = node->efc;
spin_lock_irqsave(&efc->lock, flags);
efc_node_post_event(node, EFC_EVT_SHUTDOWN, arg);
spin_unlock_irqrestore(&efc->lock, flags);
}