| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * cx18 ADEC audio functions |
| * |
| * Derived from cx25840-core.c |
| * |
| * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> |
| * Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net> |
| */ |
| |
| #include "cx18-driver.h" |
| #include "cx18-io.h" |
| #include "cx18-cards.h" |
| |
| int cx18_av_write(struct cx18 *cx, u16 addr, u8 value) |
| { |
| u32 reg = 0xc40000 + (addr & ~3); |
| u32 mask = 0xff; |
| int shift = (addr & 3) * 8; |
| u32 x = cx18_read_reg(cx, reg); |
| |
| x = (x & ~(mask << shift)) | ((u32)value << shift); |
| cx18_write_reg(cx, x, reg); |
| return 0; |
| } |
| |
| int cx18_av_write_expect(struct cx18 *cx, u16 addr, u8 value, u8 eval, u8 mask) |
| { |
| u32 reg = 0xc40000 + (addr & ~3); |
| int shift = (addr & 3) * 8; |
| u32 x = cx18_read_reg(cx, reg); |
| |
| x = (x & ~((u32)0xff << shift)) | ((u32)value << shift); |
| cx18_write_reg_expect(cx, x, reg, |
| ((u32)eval << shift), ((u32)mask << shift)); |
| return 0; |
| } |
| |
| int cx18_av_write4(struct cx18 *cx, u16 addr, u32 value) |
| { |
| cx18_write_reg(cx, value, 0xc40000 + addr); |
| return 0; |
| } |
| |
| int |
| cx18_av_write4_expect(struct cx18 *cx, u16 addr, u32 value, u32 eval, u32 mask) |
| { |
| cx18_write_reg_expect(cx, value, 0xc40000 + addr, eval, mask); |
| return 0; |
| } |
| |
| int cx18_av_write4_noretry(struct cx18 *cx, u16 addr, u32 value) |
| { |
| cx18_write_reg_noretry(cx, value, 0xc40000 + addr); |
| return 0; |
| } |
| |
| u8 cx18_av_read(struct cx18 *cx, u16 addr) |
| { |
| u32 x = cx18_read_reg(cx, 0xc40000 + (addr & ~3)); |
| int shift = (addr & 3) * 8; |
| |
| return (x >> shift) & 0xff; |
| } |
| |
| u32 cx18_av_read4(struct cx18 *cx, u16 addr) |
| { |
| return cx18_read_reg(cx, 0xc40000 + addr); |
| } |
| |
| int cx18_av_and_or(struct cx18 *cx, u16 addr, unsigned and_mask, |
| u8 or_value) |
| { |
| return cx18_av_write(cx, addr, |
| (cx18_av_read(cx, addr) & and_mask) | |
| or_value); |
| } |
| |
| int cx18_av_and_or4(struct cx18 *cx, u16 addr, u32 and_mask, |
| u32 or_value) |
| { |
| return cx18_av_write4(cx, addr, |
| (cx18_av_read4(cx, addr) & and_mask) | |
| or_value); |
| } |
| |
| static void cx18_av_init(struct cx18 *cx) |
| { |
| /* |
| * The crystal freq used in calculations in this driver will be |
| * 28.636360 MHz. |
| * Aim to run the PLLs' VCOs near 400 MHz to minimize errors. |
| */ |
| |
| /* |
| * VDCLK Integer = 0x0f, Post Divider = 0x04 |
| * AIMCLK Integer = 0x0e, Post Divider = 0x16 |
| */ |
| cx18_av_write4(cx, CXADEC_PLL_CTRL1, 0x160e040f); |
| |
| /* VDCLK Fraction = 0x2be2fe */ |
| /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz before post divide */ |
| cx18_av_write4(cx, CXADEC_VID_PLL_FRAC, 0x002be2fe); |
| |
| /* AIMCLK Fraction = 0x05227ad */ |
| /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz pre post-div*/ |
| cx18_av_write4(cx, CXADEC_AUX_PLL_FRAC, 0x005227ad); |
| |
| /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */ |
| cx18_av_write(cx, CXADEC_I2S_MCLK, 0x56); |
| } |
| |
| static void cx18_av_initialize(struct v4l2_subdev *sd) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| int default_volume; |
| u32 v; |
| |
| cx18_av_loadfw(cx); |
| /* Stop 8051 code execution */ |
| cx18_av_write4_expect(cx, CXADEC_DL_CTL, 0x03000000, |
| 0x03000000, 0x13000000); |
| |
| /* initialize the PLL by toggling sleep bit */ |
| v = cx18_av_read4(cx, CXADEC_HOST_REG1); |
| /* enable sleep mode - register appears to be read only... */ |
| cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v | 1, v, 0xfffe); |
| /* disable sleep mode */ |
| cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v & 0xfffe, |
| v & 0xfffe, 0xffff); |
| |
| /* initialize DLLs */ |
| v = cx18_av_read4(cx, CXADEC_DLL1_DIAG_CTRL) & 0xE1FFFEFF; |
| /* disable FLD */ |
| cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v); |
| /* enable FLD */ |
| cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v | 0x10000100); |
| |
| v = cx18_av_read4(cx, CXADEC_DLL2_DIAG_CTRL) & 0xE1FFFEFF; |
| /* disable FLD */ |
| cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v); |
| /* enable FLD */ |
| cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v | 0x06000100); |
| |
| /* set analog bias currents. Set Vreg to 1.20V. */ |
| cx18_av_write4(cx, CXADEC_AFE_DIAG_CTRL1, 0x000A1802); |
| |
| v = cx18_av_read4(cx, CXADEC_AFE_DIAG_CTRL3) | 1; |
| /* enable TUNE_FIL_RST */ |
| cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v, v, 0x03009F0F); |
| /* disable TUNE_FIL_RST */ |
| cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, |
| v & 0xFFFFFFFE, v & 0xFFFFFFFE, 0x03009F0F); |
| |
| /* enable 656 output */ |
| cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x040C00); |
| |
| /* video output drive strength */ |
| cx18_av_and_or4(cx, CXADEC_PIN_CTRL2, ~0, 0x2); |
| |
| /* reset video */ |
| cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0x8000); |
| cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0); |
| |
| /* |
| * Disable Video Auto-config of the Analog Front End and Video PLL. |
| * |
| * Since we only use BT.656 pixel mode, which works for both 525 and 625 |
| * line systems, it's just easier for us to set registers |
| * 0x102 (CXADEC_CHIP_CTRL), 0x104-0x106 (CXADEC_AFE_CTRL), |
| * 0x108-0x109 (CXADEC_PLL_CTRL1), and 0x10c-0x10f (CXADEC_VID_PLL_FRAC) |
| * ourselves, than to run around cleaning up after the auto-config. |
| * |
| * (Note: my CX23418 chip doesn't seem to let the ACFG_DIS bit |
| * get set to 1, but OTOH, it doesn't seem to do AFE and VID PLL |
| * autoconfig either.) |
| * |
| * As a default, also turn off Dual mode for ADC2 and set ADC2 to CH3. |
| */ |
| cx18_av_and_or4(cx, CXADEC_CHIP_CTRL, 0xFFFBFFFF, 0x00120000); |
| |
| /* Setup the Video and and Aux/Audio PLLs */ |
| cx18_av_init(cx); |
| |
| /* set video to auto-detect */ |
| /* Clear bits 11-12 to enable slow locking mode. Set autodetect mode */ |
| /* set the comb notch = 1 */ |
| cx18_av_and_or4(cx, CXADEC_MODE_CTRL, 0xFFF7E7F0, 0x02040800); |
| |
| /* Enable wtw_en in CRUSH_CTRL (Set bit 22) */ |
| /* Enable maj_sel in CRUSH_CTRL (Set bit 20) */ |
| cx18_av_and_or4(cx, CXADEC_CRUSH_CTRL, ~0, 0x00500000); |
| |
| /* Set VGA_TRACK_RANGE to 0x20 */ |
| cx18_av_and_or4(cx, CXADEC_DFE_CTRL2, 0xFFFF00FF, 0x00002000); |
| |
| /* |
| * Initial VBI setup |
| * VIP-1.1, 10 bit mode, enable Raw, disable sliced, |
| * don't clamp raw samples when codes are in use, 1 byte user D-words, |
| * IDID0 has line #, RP code V bit transition on VBLANK, data during |
| * blanking intervals |
| */ |
| cx18_av_write4(cx, CXADEC_OUT_CTRL1, 0x4013252e); |
| |
| /* Set the video input. |
| The setting in MODE_CTRL gets lost when we do the above setup */ |
| /* EncSetSignalStd(dwDevNum, pEnc->dwSigStd); */ |
| /* EncSetVideoInput(dwDevNum, pEnc->VidIndSelection); */ |
| |
| /* |
| * Analog Front End (AFE) |
| * Default to luma on ch1/ADC1, chroma on ch2/ADC2, SIF on ch3/ADC2 |
| * bypass_ch[1-3] use filter |
| * droop_comp_ch[1-3] disable |
| * clamp_en_ch[1-3] disable |
| * aud_in_sel ADC2 |
| * luma_in_sel ADC1 |
| * chroma_in_sel ADC2 |
| * clamp_sel_ch[2-3] midcode |
| * clamp_sel_ch1 video decoder |
| * vga_sel_ch3 audio decoder |
| * vga_sel_ch[1-2] video decoder |
| * half_bw_ch[1-3] disable |
| * +12db_ch[1-3] disable |
| */ |
| cx18_av_and_or4(cx, CXADEC_AFE_CTRL, 0xFF000000, 0x00005D00); |
| |
| /* if(dwEnable && dw3DCombAvailable) { */ |
| /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x7728021F); */ |
| /* } else { */ |
| /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x6628021F); */ |
| /* } */ |
| cx18_av_write4(cx, CXADEC_SRC_COMB_CFG, 0x6628021F); |
| default_volume = cx18_av_read(cx, 0x8d4); |
| /* |
| * Enforce the legacy volume scale mapping limits to avoid |
| * -ERANGE errors when initializing the volume control |
| */ |
| if (default_volume > 228) { |
| /* Bottom out at -96 dB, v4l2 vol range 0x2e00-0x2fff */ |
| default_volume = 228; |
| cx18_av_write(cx, 0x8d4, 228); |
| } else if (default_volume < 20) { |
| /* Top out at + 8 dB, v4l2 vol range 0xfe00-0xffff */ |
| default_volume = 20; |
| cx18_av_write(cx, 0x8d4, 20); |
| } |
| default_volume = (((228 - default_volume) >> 1) + 23) << 9; |
| state->volume->cur.val = state->volume->default_value = default_volume; |
| v4l2_ctrl_handler_setup(&state->hdl); |
| } |
| |
| static int cx18_av_reset(struct v4l2_subdev *sd, u32 val) |
| { |
| cx18_av_initialize(sd); |
| return 0; |
| } |
| |
| static int cx18_av_load_fw(struct v4l2_subdev *sd) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| |
| if (!state->is_initialized) { |
| /* initialize on first use */ |
| state->is_initialized = 1; |
| cx18_av_initialize(sd); |
| } |
| return 0; |
| } |
| |
| void cx18_av_std_setup(struct cx18 *cx) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| struct v4l2_subdev *sd = &state->sd; |
| v4l2_std_id std = state->std; |
| |
| /* |
| * Video ADC crystal clock to pixel clock SRC decimation ratio |
| * 28.636360 MHz/13.5 Mpps * 256 = 0x21f.07b |
| */ |
| const int src_decimation = 0x21f; |
| |
| int hblank, hactive, burst, vblank, vactive, sc; |
| int vblank656; |
| int luma_lpf, uv_lpf, comb; |
| u32 pll_int, pll_frac, pll_post; |
| |
| /* datasheet startup, step 8d */ |
| if (std & ~V4L2_STD_NTSC) |
| cx18_av_write(cx, 0x49f, 0x11); |
| else |
| cx18_av_write(cx, 0x49f, 0x14); |
| |
| /* |
| * Note: At the end of a field, there are 3 sets of half line duration |
| * (double horizontal rate) pulses: |
| * |
| * 5 (625) or 6 (525) half-lines to blank for the vertical retrace |
| * 5 (625) or 6 (525) vertical sync pulses of half line duration |
| * 5 (625) or 6 (525) half-lines of equalization pulses |
| */ |
| if (std & V4L2_STD_625_50) { |
| /* |
| * The following relationships of half line counts should hold: |
| * 625 = vblank656 + vactive |
| * 10 = vblank656 - vblank = vsync pulses + equalization pulses |
| * |
| * vblank656: half lines after line 625/mid-313 of blanked video |
| * vblank: half lines, after line 5/317, of blanked video |
| * vactive: half lines of active video + |
| * 5 half lines after the end of active video |
| * |
| * As far as I can tell: |
| * vblank656 starts counting from the falling edge of the first |
| * vsync pulse (start of line 1 or mid-313) |
| * vblank starts counting from the after the 5 vsync pulses and |
| * 5 or 4 equalization pulses (start of line 6 or 318) |
| * |
| * For 625 line systems the driver will extract VBI information |
| * from lines 6-23 and lines 318-335 (but the slicer can only |
| * handle 17 lines, not the 18 in the vblank region). |
| * In addition, we need vblank656 and vblank to be one whole |
| * line longer, to cover line 24 and 336, so the SAV/EAV RP |
| * codes get generated such that the encoder can actually |
| * extract line 23 & 335 (WSS). We'll lose 1 line in each field |
| * at the top of the screen. |
| * |
| * It appears the 5 half lines that happen after active |
| * video must be included in vactive (579 instead of 574), |
| * otherwise the colors get badly displayed in various regions |
| * of the screen. I guess the chroma comb filter gets confused |
| * without them (at least when a PVR-350 is the PAL source). |
| */ |
| vblank656 = 48; /* lines 1 - 24 & 313 - 336 */ |
| vblank = 38; /* lines 6 - 24 & 318 - 336 */ |
| vactive = 579; /* lines 24 - 313 & 337 - 626 */ |
| |
| /* |
| * For a 13.5 Mpps clock and 15,625 Hz line rate, a line is |
| * is 864 pixels = 720 active + 144 blanking. ITU-R BT.601 |
| * specifies 12 luma clock periods or ~ 0.9 * 13.5 Mpps after |
| * the end of active video to start a horizontal line, so that |
| * leaves 132 pixels of hblank to ignore. |
| */ |
| hblank = 132; |
| hactive = 720; |
| |
| /* |
| * Burst gate delay (for 625 line systems) |
| * Hsync leading edge to color burst rise = 5.6 us |
| * Color burst width = 2.25 us |
| * Gate width = 4 pixel clocks |
| * (5.6 us + 2.25/2 us) * 13.5 Mpps + 4/2 clocks = 92.79 clocks |
| */ |
| burst = 93; |
| luma_lpf = 2; |
| if (std & V4L2_STD_PAL) { |
| uv_lpf = 1; |
| comb = 0x20; |
| /* sc = 4433618.75 * src_decimation/28636360 * 2^13 */ |
| sc = 688700; |
| } else if (std == V4L2_STD_PAL_Nc) { |
| uv_lpf = 1; |
| comb = 0x20; |
| /* sc = 3582056.25 * src_decimation/28636360 * 2^13 */ |
| sc = 556422; |
| } else { /* SECAM */ |
| uv_lpf = 0; |
| comb = 0; |
| /* (fr + fb)/2 = (4406260 + 4250000)/2 = 4328130 */ |
| /* sc = 4328130 * src_decimation/28636360 * 2^13 */ |
| sc = 672314; |
| } |
| } else { |
| /* |
| * The following relationships of half line counts should hold: |
| * 525 = prevsync + vblank656 + vactive |
| * 12 = vblank656 - vblank = vsync pulses + equalization pulses |
| * |
| * prevsync: 6 half-lines before the vsync pulses |
| * vblank656: half lines, after line 3/mid-266, of blanked video |
| * vblank: half lines, after line 9/272, of blanked video |
| * vactive: half lines of active video |
| * |
| * As far as I can tell: |
| * vblank656 starts counting from the falling edge of the first |
| * vsync pulse (start of line 4 or mid-266) |
| * vblank starts counting from the after the 6 vsync pulses and |
| * 6 or 5 equalization pulses (start of line 10 or 272) |
| * |
| * For 525 line systems the driver will extract VBI information |
| * from lines 10-21 and lines 273-284. |
| */ |
| vblank656 = 38; /* lines 4 - 22 & 266 - 284 */ |
| vblank = 26; /* lines 10 - 22 & 272 - 284 */ |
| vactive = 481; /* lines 23 - 263 & 285 - 525 */ |
| |
| /* |
| * For a 13.5 Mpps clock and 15,734.26 Hz line rate, a line is |
| * is 858 pixels = 720 active + 138 blanking. The Hsync leading |
| * edge should happen 1.2 us * 13.5 Mpps ~= 16 pixels after the |
| * end of active video, leaving 122 pixels of hblank to ignore |
| * before active video starts. |
| */ |
| hactive = 720; |
| hblank = 122; |
| luma_lpf = 1; |
| uv_lpf = 1; |
| |
| /* |
| * Burst gate delay (for 525 line systems) |
| * Hsync leading edge to color burst rise = 5.3 us |
| * Color burst width = 2.5 us |
| * Gate width = 4 pixel clocks |
| * (5.3 us + 2.5/2 us) * 13.5 Mpps + 4/2 clocks = 90.425 clocks |
| */ |
| if (std == V4L2_STD_PAL_60) { |
| burst = 90; |
| luma_lpf = 2; |
| comb = 0x20; |
| /* sc = 4433618.75 * src_decimation/28636360 * 2^13 */ |
| sc = 688700; |
| } else if (std == V4L2_STD_PAL_M) { |
| /* The 97 needs to be verified against PAL-M timings */ |
| burst = 97; |
| comb = 0x20; |
| /* sc = 3575611.49 * src_decimation/28636360 * 2^13 */ |
| sc = 555421; |
| } else { |
| burst = 90; |
| comb = 0x66; |
| /* sc = 3579545.45.. * src_decimation/28636360 * 2^13 */ |
| sc = 556032; |
| } |
| } |
| |
| /* DEBUG: Displays configured PLL frequency */ |
| pll_int = cx18_av_read(cx, 0x108); |
| pll_frac = cx18_av_read4(cx, 0x10c) & 0x1ffffff; |
| pll_post = cx18_av_read(cx, 0x109); |
| CX18_DEBUG_INFO_DEV(sd, "PLL regs = int: %u, frac: %u, post: %u\n", |
| pll_int, pll_frac, pll_post); |
| |
| if (pll_post) { |
| int fsc, pll; |
| u64 tmp; |
| |
| pll = (28636360L * ((((u64)pll_int) << 25) + pll_frac)) >> 25; |
| pll /= pll_post; |
| CX18_DEBUG_INFO_DEV(sd, "Video PLL = %d.%06d MHz\n", |
| pll / 1000000, pll % 1000000); |
| CX18_DEBUG_INFO_DEV(sd, "Pixel rate = %d.%06d Mpixel/sec\n", |
| pll / 8000000, (pll / 8) % 1000000); |
| |
| CX18_DEBUG_INFO_DEV(sd, "ADC XTAL/pixel clock decimation ratio = %d.%03d\n", |
| src_decimation / 256, |
| ((src_decimation % 256) * 1000) / 256); |
| |
| tmp = 28636360 * (u64) sc; |
| do_div(tmp, src_decimation); |
| fsc = tmp >> 13; |
| CX18_DEBUG_INFO_DEV(sd, |
| "Chroma sub-carrier initial freq = %d.%06d MHz\n", |
| fsc / 1000000, fsc % 1000000); |
| |
| CX18_DEBUG_INFO_DEV(sd, |
| "hblank %i, hactive %i, vblank %i, vactive %i, vblank656 %i, src_dec %i, burst 0x%02x, luma_lpf %i, uv_lpf %i, comb 0x%02x, sc 0x%06x\n", |
| hblank, hactive, vblank, vactive, vblank656, |
| src_decimation, burst, luma_lpf, uv_lpf, |
| comb, sc); |
| } |
| |
| /* Sets horizontal blanking delay and active lines */ |
| cx18_av_write(cx, 0x470, hblank); |
| cx18_av_write(cx, 0x471, |
| (((hblank >> 8) & 0x3) | (hactive << 4)) & 0xff); |
| cx18_av_write(cx, 0x472, hactive >> 4); |
| |
| /* Sets burst gate delay */ |
| cx18_av_write(cx, 0x473, burst); |
| |
| /* Sets vertical blanking delay and active duration */ |
| cx18_av_write(cx, 0x474, vblank); |
| cx18_av_write(cx, 0x475, |
| (((vblank >> 8) & 0x3) | (vactive << 4)) & 0xff); |
| cx18_av_write(cx, 0x476, vactive >> 4); |
| cx18_av_write(cx, 0x477, vblank656); |
| |
| /* Sets src decimation rate */ |
| cx18_av_write(cx, 0x478, src_decimation & 0xff); |
| cx18_av_write(cx, 0x479, (src_decimation >> 8) & 0xff); |
| |
| /* Sets Luma and UV Low pass filters */ |
| cx18_av_write(cx, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30)); |
| |
| /* Enables comb filters */ |
| cx18_av_write(cx, 0x47b, comb); |
| |
| /* Sets SC Step*/ |
| cx18_av_write(cx, 0x47c, sc); |
| cx18_av_write(cx, 0x47d, (sc >> 8) & 0xff); |
| cx18_av_write(cx, 0x47e, (sc >> 16) & 0xff); |
| |
| if (std & V4L2_STD_625_50) { |
| state->slicer_line_delay = 1; |
| state->slicer_line_offset = (6 + state->slicer_line_delay - 2); |
| } else { |
| state->slicer_line_delay = 0; |
| state->slicer_line_offset = (10 + state->slicer_line_delay - 2); |
| } |
| cx18_av_write(cx, 0x47f, state->slicer_line_delay); |
| } |
| |
| static void input_change(struct cx18 *cx) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| v4l2_std_id std = state->std; |
| u8 v; |
| |
| /* Follow step 8c and 8d of section 3.16 in the cx18_av datasheet */ |
| cx18_av_write(cx, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11); |
| cx18_av_and_or(cx, 0x401, ~0x60, 0); |
| cx18_av_and_or(cx, 0x401, ~0x60, 0x60); |
| |
| if (std & V4L2_STD_525_60) { |
| if (std == V4L2_STD_NTSC_M_JP) { |
| /* Japan uses EIAJ audio standard */ |
| cx18_av_write_expect(cx, 0x808, 0xf7, 0xf7, 0xff); |
| cx18_av_write_expect(cx, 0x80b, 0x02, 0x02, 0x3f); |
| } else if (std == V4L2_STD_NTSC_M_KR) { |
| /* South Korea uses A2 audio standard */ |
| cx18_av_write_expect(cx, 0x808, 0xf8, 0xf8, 0xff); |
| cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); |
| } else { |
| /* Others use the BTSC audio standard */ |
| cx18_av_write_expect(cx, 0x808, 0xf6, 0xf6, 0xff); |
| cx18_av_write_expect(cx, 0x80b, 0x01, 0x01, 0x3f); |
| } |
| } else if (std & V4L2_STD_PAL) { |
| /* Follow tuner change procedure for PAL */ |
| cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff); |
| cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); |
| } else if (std & V4L2_STD_SECAM) { |
| /* Select autodetect for SECAM */ |
| cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff); |
| cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f); |
| } |
| |
| v = cx18_av_read(cx, 0x803); |
| if (v & 0x10) { |
| /* restart audio decoder microcontroller */ |
| v &= ~0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| v |= 0x10; |
| cx18_av_write_expect(cx, 0x803, v, v, 0x1f); |
| } |
| } |
| |
| static int cx18_av_s_frequency(struct v4l2_subdev *sd, |
| const struct v4l2_frequency *freq) |
| { |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| input_change(cx); |
| return 0; |
| } |
| |
| static int set_input(struct cx18 *cx, enum cx18_av_video_input vid_input, |
| enum cx18_av_audio_input aud_input) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| struct v4l2_subdev *sd = &state->sd; |
| |
| enum analog_signal_type { |
| NONE, CVBS, Y, C, SIF, Pb, Pr |
| } ch[3] = {NONE, NONE, NONE}; |
| |
| u8 afe_mux_cfg; |
| u8 adc2_cfg; |
| u8 input_mode; |
| u32 afe_cfg; |
| int i; |
| |
| CX18_DEBUG_INFO_DEV(sd, "decoder set video input %d, audio input %d\n", |
| vid_input, aud_input); |
| |
| if (vid_input >= CX18_AV_COMPOSITE1 && |
| vid_input <= CX18_AV_COMPOSITE8) { |
| afe_mux_cfg = 0xf0 + (vid_input - CX18_AV_COMPOSITE1); |
| ch[0] = CVBS; |
| input_mode = 0x0; |
| } else if (vid_input >= CX18_AV_COMPONENT_LUMA1) { |
| int luma = vid_input & 0xf000; |
| int r_chroma = vid_input & 0xf0000; |
| int b_chroma = vid_input & 0xf00000; |
| |
| if ((vid_input & ~0xfff000) || |
| luma < CX18_AV_COMPONENT_LUMA1 || |
| luma > CX18_AV_COMPONENT_LUMA8 || |
| r_chroma < CX18_AV_COMPONENT_R_CHROMA4 || |
| r_chroma > CX18_AV_COMPONENT_R_CHROMA6 || |
| b_chroma < CX18_AV_COMPONENT_B_CHROMA7 || |
| b_chroma > CX18_AV_COMPONENT_B_CHROMA8) { |
| CX18_ERR_DEV(sd, "0x%06x is not a valid video input!\n", |
| vid_input); |
| return -EINVAL; |
| } |
| afe_mux_cfg = (luma - CX18_AV_COMPONENT_LUMA1) >> 12; |
| ch[0] = Y; |
| afe_mux_cfg |= (r_chroma - CX18_AV_COMPONENT_R_CHROMA4) >> 12; |
| ch[1] = Pr; |
| afe_mux_cfg |= (b_chroma - CX18_AV_COMPONENT_B_CHROMA7) >> 14; |
| ch[2] = Pb; |
| input_mode = 0x6; |
| } else { |
| int luma = vid_input & 0xf0; |
| int chroma = vid_input & 0xf00; |
| |
| if ((vid_input & ~0xff0) || |
| luma < CX18_AV_SVIDEO_LUMA1 || |
| luma > CX18_AV_SVIDEO_LUMA8 || |
| chroma < CX18_AV_SVIDEO_CHROMA4 || |
| chroma > CX18_AV_SVIDEO_CHROMA8) { |
| CX18_ERR_DEV(sd, "0x%06x is not a valid video input!\n", |
| vid_input); |
| return -EINVAL; |
| } |
| afe_mux_cfg = 0xf0 + ((luma - CX18_AV_SVIDEO_LUMA1) >> 4); |
| ch[0] = Y; |
| if (chroma >= CX18_AV_SVIDEO_CHROMA7) { |
| afe_mux_cfg &= 0x3f; |
| afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA7) >> 2; |
| ch[2] = C; |
| } else { |
| afe_mux_cfg &= 0xcf; |
| afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA4) >> 4; |
| ch[1] = C; |
| } |
| input_mode = 0x2; |
| } |
| |
| switch (aud_input) { |
| case CX18_AV_AUDIO_SERIAL1: |
| case CX18_AV_AUDIO_SERIAL2: |
| /* do nothing, use serial audio input */ |
| break; |
| case CX18_AV_AUDIO4: |
| afe_mux_cfg &= ~0x30; |
| ch[1] = SIF; |
| break; |
| case CX18_AV_AUDIO5: |
| afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x10; |
| ch[1] = SIF; |
| break; |
| case CX18_AV_AUDIO6: |
| afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x20; |
| ch[1] = SIF; |
| break; |
| case CX18_AV_AUDIO7: |
| afe_mux_cfg &= ~0xc0; |
| ch[2] = SIF; |
| break; |
| case CX18_AV_AUDIO8: |
| afe_mux_cfg = (afe_mux_cfg & ~0xc0) | 0x40; |
| ch[2] = SIF; |
| break; |
| |
| default: |
| CX18_ERR_DEV(sd, "0x%04x is not a valid audio input!\n", |
| aud_input); |
| return -EINVAL; |
| } |
| |
| /* Set up analog front end multiplexers */ |
| cx18_av_write_expect(cx, 0x103, afe_mux_cfg, afe_mux_cfg, 0xf7); |
| /* Set INPUT_MODE to Composite, S-Video, or Component */ |
| cx18_av_and_or(cx, 0x401, ~0x6, input_mode); |
| |
| /* Set CH_SEL_ADC2 to 1 if input comes from CH3 */ |
| adc2_cfg = cx18_av_read(cx, 0x102); |
| if (ch[2] == NONE) |
| adc2_cfg &= ~0x2; /* No sig on CH3, set ADC2 to CH2 for input */ |
| else |
| adc2_cfg |= 0x2; /* Signal on CH3, set ADC2 to CH3 for input */ |
| |
| /* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2 and CH3 */ |
| if (ch[1] != NONE && ch[2] != NONE) |
| adc2_cfg |= 0x4; /* Set dual mode */ |
| else |
| adc2_cfg &= ~0x4; /* Clear dual mode */ |
| cx18_av_write_expect(cx, 0x102, adc2_cfg, adc2_cfg, 0x17); |
| |
| /* Configure the analog front end */ |
| afe_cfg = cx18_av_read4(cx, CXADEC_AFE_CTRL); |
| afe_cfg &= 0xff000000; |
| afe_cfg |= 0x00005000; /* CHROMA_IN, AUD_IN: ADC2; LUMA_IN: ADC1 */ |
| if (ch[1] != NONE && ch[2] != NONE) |
| afe_cfg |= 0x00000030; /* half_bw_ch[2-3] since in dual mode */ |
| |
| for (i = 0; i < 3; i++) { |
| switch (ch[i]) { |
| default: |
| case NONE: |
| /* CLAMP_SEL = Fixed to midcode clamp level */ |
| afe_cfg |= (0x00000200 << i); |
| break; |
| case CVBS: |
| case Y: |
| if (i > 0) |
| afe_cfg |= 0x00002000; /* LUMA_IN_SEL: ADC2 */ |
| break; |
| case C: |
| case Pb: |
| case Pr: |
| /* CLAMP_SEL = Fixed to midcode clamp level */ |
| afe_cfg |= (0x00000200 << i); |
| if (i == 0 && ch[i] == C) |
| afe_cfg &= ~0x00001000; /* CHROMA_IN_SEL ADC1 */ |
| break; |
| case SIF: |
| /* |
| * VGA_GAIN_SEL = Audio Decoder |
| * CLAMP_SEL = Fixed to midcode clamp level |
| */ |
| afe_cfg |= (0x00000240 << i); |
| if (i == 0) |
| afe_cfg &= ~0x00004000; /* AUD_IN_SEL ADC1 */ |
| break; |
| } |
| } |
| |
| cx18_av_write4(cx, CXADEC_AFE_CTRL, afe_cfg); |
| |
| state->vid_input = vid_input; |
| state->aud_input = aud_input; |
| cx18_av_audio_set_path(cx); |
| input_change(cx); |
| return 0; |
| } |
| |
| static int cx18_av_s_video_routing(struct v4l2_subdev *sd, |
| u32 input, u32 output, u32 config) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| return set_input(cx, input, state->aud_input); |
| } |
| |
| static int cx18_av_s_audio_routing(struct v4l2_subdev *sd, |
| u32 input, u32 output, u32 config) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| return set_input(cx, state->vid_input, input); |
| } |
| |
| static int cx18_av_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| u8 vpres; |
| u8 mode; |
| int val = 0; |
| |
| if (state->radio) |
| return 0; |
| |
| vpres = cx18_av_read(cx, 0x40e) & 0x20; |
| vt->signal = vpres ? 0xffff : 0x0; |
| |
| vt->capability |= |
| V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 | |
| V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP; |
| |
| mode = cx18_av_read(cx, 0x804); |
| |
| /* get rxsubchans and audmode */ |
| if ((mode & 0xf) == 1) |
| val |= V4L2_TUNER_SUB_STEREO; |
| else |
| val |= V4L2_TUNER_SUB_MONO; |
| |
| if (mode == 2 || mode == 4) |
| val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2; |
| |
| if (mode & 0x10) |
| val |= V4L2_TUNER_SUB_SAP; |
| |
| vt->rxsubchans = val; |
| vt->audmode = state->audmode; |
| return 0; |
| } |
| |
| static int cx18_av_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *vt) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| u8 v; |
| |
| if (state->radio) |
| return 0; |
| |
| v = cx18_av_read(cx, 0x809); |
| v &= ~0xf; |
| |
| switch (vt->audmode) { |
| case V4L2_TUNER_MODE_MONO: |
| /* mono -> mono |
| stereo -> mono |
| bilingual -> lang1 */ |
| break; |
| case V4L2_TUNER_MODE_STEREO: |
| case V4L2_TUNER_MODE_LANG1: |
| /* mono -> mono |
| stereo -> stereo |
| bilingual -> lang1 */ |
| v |= 0x4; |
| break; |
| case V4L2_TUNER_MODE_LANG1_LANG2: |
| /* mono -> mono |
| stereo -> stereo |
| bilingual -> lang1/lang2 */ |
| v |= 0x7; |
| break; |
| case V4L2_TUNER_MODE_LANG2: |
| /* mono -> mono |
| stereo -> stereo |
| bilingual -> lang2 */ |
| v |= 0x1; |
| break; |
| default: |
| return -EINVAL; |
| } |
| cx18_av_write_expect(cx, 0x809, v, v, 0xff); |
| state->audmode = vt->audmode; |
| return 0; |
| } |
| |
| static int cx18_av_s_std(struct v4l2_subdev *sd, v4l2_std_id norm) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| |
| u8 fmt = 0; /* zero is autodetect */ |
| u8 pal_m = 0; |
| |
| if (state->radio == 0 && state->std == norm) |
| return 0; |
| |
| state->radio = 0; |
| state->std = norm; |
| |
| /* First tests should be against specific std */ |
| if (state->std == V4L2_STD_NTSC_M_JP) { |
| fmt = 0x2; |
| } else if (state->std == V4L2_STD_NTSC_443) { |
| fmt = 0x3; |
| } else if (state->std == V4L2_STD_PAL_M) { |
| pal_m = 1; |
| fmt = 0x5; |
| } else if (state->std == V4L2_STD_PAL_N) { |
| fmt = 0x6; |
| } else if (state->std == V4L2_STD_PAL_Nc) { |
| fmt = 0x7; |
| } else if (state->std == V4L2_STD_PAL_60) { |
| fmt = 0x8; |
| } else { |
| /* Then, test against generic ones */ |
| if (state->std & V4L2_STD_NTSC) |
| fmt = 0x1; |
| else if (state->std & V4L2_STD_PAL) |
| fmt = 0x4; |
| else if (state->std & V4L2_STD_SECAM) |
| fmt = 0xc; |
| } |
| |
| CX18_DEBUG_INFO_DEV(sd, "changing video std to fmt %i\n", fmt); |
| |
| /* Follow step 9 of section 3.16 in the cx18_av datasheet. |
| Without this PAL may display a vertical ghosting effect. |
| This happens for example with the Yuan MPC622. */ |
| if (fmt >= 4 && fmt < 8) { |
| /* Set format to NTSC-M */ |
| cx18_av_and_or(cx, 0x400, ~0xf, 1); |
| /* Turn off LCOMB */ |
| cx18_av_and_or(cx, 0x47b, ~6, 0); |
| } |
| cx18_av_and_or(cx, 0x400, ~0x2f, fmt | 0x20); |
| cx18_av_and_or(cx, 0x403, ~0x3, pal_m); |
| cx18_av_std_setup(cx); |
| input_change(cx); |
| return 0; |
| } |
| |
| static int cx18_av_s_radio(struct v4l2_subdev *sd) |
| { |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| state->radio = 1; |
| return 0; |
| } |
| |
| static int cx18_av_s_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct v4l2_subdev *sd = to_sd(ctrl); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| |
| switch (ctrl->id) { |
| case V4L2_CID_BRIGHTNESS: |
| cx18_av_write(cx, 0x414, ctrl->val - 128); |
| break; |
| |
| case V4L2_CID_CONTRAST: |
| cx18_av_write(cx, 0x415, ctrl->val << 1); |
| break; |
| |
| case V4L2_CID_SATURATION: |
| cx18_av_write(cx, 0x420, ctrl->val << 1); |
| cx18_av_write(cx, 0x421, ctrl->val << 1); |
| break; |
| |
| case V4L2_CID_HUE: |
| cx18_av_write(cx, 0x422, ctrl->val); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int cx18_av_set_fmt(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *format) |
| { |
| struct v4l2_mbus_framefmt *fmt = &format->format; |
| struct cx18_av_state *state = to_cx18_av_state(sd); |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| int HSC, VSC, Vsrc, Hsrc, filter, Vlines; |
| int is_50Hz = !(state->std & V4L2_STD_525_60); |
| |
| if (format->pad || fmt->code != MEDIA_BUS_FMT_FIXED) |
| return -EINVAL; |
| |
| fmt->field = V4L2_FIELD_INTERLACED; |
| fmt->colorspace = V4L2_COLORSPACE_SMPTE170M; |
| |
| Vsrc = (cx18_av_read(cx, 0x476) & 0x3f) << 4; |
| Vsrc |= (cx18_av_read(cx, 0x475) & 0xf0) >> 4; |
| |
| Hsrc = (cx18_av_read(cx, 0x472) & 0x3f) << 4; |
| Hsrc |= (cx18_av_read(cx, 0x471) & 0xf0) >> 4; |
| |
| /* |
| * This adjustment reflects the excess of vactive, set in |
| * cx18_av_std_setup(), above standard values: |
| * |
| * 480 + 1 for 60 Hz systems |
| * 576 + 3 for 50 Hz systems |
| */ |
| Vlines = fmt->height + (is_50Hz ? 3 : 1); |
| |
| /* |
| * Invalid height and width scaling requests are: |
| * 1. width less than 1/16 of the source width |
| * 2. width greater than the source width |
| * 3. height less than 1/8 of the source height |
| * 4. height greater than the source height |
| */ |
| if ((fmt->width * 16 < Hsrc) || (Hsrc < fmt->width) || |
| (Vlines * 8 < Vsrc) || (Vsrc < Vlines)) { |
| CX18_ERR_DEV(sd, "%dx%d is not a valid size!\n", |
| fmt->width, fmt->height); |
| return -ERANGE; |
| } |
| |
| if (format->which == V4L2_SUBDEV_FORMAT_TRY) |
| return 0; |
| |
| HSC = (Hsrc * (1 << 20)) / fmt->width - (1 << 20); |
| VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9)); |
| VSC &= 0x1fff; |
| |
| if (fmt->width >= 385) |
| filter = 0; |
| else if (fmt->width > 192) |
| filter = 1; |
| else if (fmt->width > 96) |
| filter = 2; |
| else |
| filter = 3; |
| |
| CX18_DEBUG_INFO_DEV(sd, |
| "decoder set size %dx%d -> scale %ux%u\n", |
| fmt->width, fmt->height, HSC, VSC); |
| |
| /* HSCALE=HSC */ |
| cx18_av_write(cx, 0x418, HSC & 0xff); |
| cx18_av_write(cx, 0x419, (HSC >> 8) & 0xff); |
| cx18_av_write(cx, 0x41a, HSC >> 16); |
| /* VSCALE=VSC */ |
| cx18_av_write(cx, 0x41c, VSC & 0xff); |
| cx18_av_write(cx, 0x41d, VSC >> 8); |
| /* VS_INTRLACE=1 VFILT=filter */ |
| cx18_av_write(cx, 0x41e, 0x8 | filter); |
| return 0; |
| } |
| |
| static int cx18_av_s_stream(struct v4l2_subdev *sd, int enable) |
| { |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| |
| CX18_DEBUG_INFO_DEV(sd, "%s output\n", enable ? "enable" : "disable"); |
| if (enable) { |
| cx18_av_write(cx, 0x115, 0x8c); |
| cx18_av_write(cx, 0x116, 0x07); |
| } else { |
| cx18_av_write(cx, 0x115, 0x00); |
| cx18_av_write(cx, 0x116, 0x00); |
| } |
| return 0; |
| } |
| |
| static void log_video_status(struct cx18 *cx) |
| { |
| static const char *const fmt_strs[] = { |
| "0x0", |
| "NTSC-M", "NTSC-J", "NTSC-4.43", |
| "PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60", |
| "0x9", "0xA", "0xB", |
| "SECAM", |
| "0xD", "0xE", "0xF" |
| }; |
| |
| struct cx18_av_state *state = &cx->av_state; |
| struct v4l2_subdev *sd = &state->sd; |
| u8 vidfmt_sel = cx18_av_read(cx, 0x400) & 0xf; |
| u8 gen_stat1 = cx18_av_read(cx, 0x40d); |
| u8 gen_stat2 = cx18_av_read(cx, 0x40e); |
| int vid_input = state->vid_input; |
| |
| CX18_INFO_DEV(sd, "Video signal: %spresent\n", |
| (gen_stat2 & 0x20) ? "" : "not "); |
| CX18_INFO_DEV(sd, "Detected format: %s\n", |
| fmt_strs[gen_stat1 & 0xf]); |
| |
| CX18_INFO_DEV(sd, "Specified standard: %s\n", |
| vidfmt_sel ? fmt_strs[vidfmt_sel] |
| : "automatic detection"); |
| |
| if (vid_input >= CX18_AV_COMPOSITE1 && |
| vid_input <= CX18_AV_COMPOSITE8) { |
| CX18_INFO_DEV(sd, "Specified video input: Composite %d\n", |
| vid_input - CX18_AV_COMPOSITE1 + 1); |
| } else { |
| CX18_INFO_DEV(sd, "Specified video input: S-Video (Luma In%d, Chroma In%d)\n", |
| (vid_input & 0xf0) >> 4, |
| (vid_input & 0xf00) >> 8); |
| } |
| |
| CX18_INFO_DEV(sd, "Specified audioclock freq: %d Hz\n", |
| state->audclk_freq); |
| } |
| |
| static void log_audio_status(struct cx18 *cx) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| struct v4l2_subdev *sd = &state->sd; |
| u8 download_ctl = cx18_av_read(cx, 0x803); |
| u8 mod_det_stat0 = cx18_av_read(cx, 0x804); |
| u8 mod_det_stat1 = cx18_av_read(cx, 0x805); |
| u8 audio_config = cx18_av_read(cx, 0x808); |
| u8 pref_mode = cx18_av_read(cx, 0x809); |
| u8 afc0 = cx18_av_read(cx, 0x80b); |
| u8 mute_ctl = cx18_av_read(cx, 0x8d3); |
| int aud_input = state->aud_input; |
| char *p; |
| |
| switch (mod_det_stat0) { |
| case 0x00: p = "mono"; break; |
| case 0x01: p = "stereo"; break; |
| case 0x02: p = "dual"; break; |
| case 0x04: p = "tri"; break; |
| case 0x10: p = "mono with SAP"; break; |
| case 0x11: p = "stereo with SAP"; break; |
| case 0x12: p = "dual with SAP"; break; |
| case 0x14: p = "tri with SAP"; break; |
| case 0xfe: p = "forced mode"; break; |
| default: p = "not defined"; break; |
| } |
| CX18_INFO_DEV(sd, "Detected audio mode: %s\n", p); |
| |
| switch (mod_det_stat1) { |
| case 0x00: p = "not defined"; break; |
| case 0x01: p = "EIAJ"; break; |
| case 0x02: p = "A2-M"; break; |
| case 0x03: p = "A2-BG"; break; |
| case 0x04: p = "A2-DK1"; break; |
| case 0x05: p = "A2-DK2"; break; |
| case 0x06: p = "A2-DK3"; break; |
| case 0x07: p = "A1 (6.0 MHz FM Mono)"; break; |
| case 0x08: p = "AM-L"; break; |
| case 0x09: p = "NICAM-BG"; break; |
| case 0x0a: p = "NICAM-DK"; break; |
| case 0x0b: p = "NICAM-I"; break; |
| case 0x0c: p = "NICAM-L"; break; |
| case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break; |
| case 0x0e: p = "IF FM Radio"; break; |
| case 0x0f: p = "BTSC"; break; |
| case 0x10: p = "detected chrominance"; break; |
| case 0xfd: p = "unknown audio standard"; break; |
| case 0xfe: p = "forced audio standard"; break; |
| case 0xff: p = "no detected audio standard"; break; |
| default: p = "not defined"; break; |
| } |
| CX18_INFO_DEV(sd, "Detected audio standard: %s\n", p); |
| CX18_INFO_DEV(sd, "Audio muted: %s\n", |
| (mute_ctl & 0x2) ? "yes" : "no"); |
| CX18_INFO_DEV(sd, "Audio microcontroller: %s\n", |
| (download_ctl & 0x10) ? "running" : "stopped"); |
| |
| switch (audio_config >> 4) { |
| case 0x00: p = "undefined"; break; |
| case 0x01: p = "BTSC"; break; |
| case 0x02: p = "EIAJ"; break; |
| case 0x03: p = "A2-M"; break; |
| case 0x04: p = "A2-BG"; break; |
| case 0x05: p = "A2-DK1"; break; |
| case 0x06: p = "A2-DK2"; break; |
| case 0x07: p = "A2-DK3"; break; |
| case 0x08: p = "A1 (6.0 MHz FM Mono)"; break; |
| case 0x09: p = "AM-L"; break; |
| case 0x0a: p = "NICAM-BG"; break; |
| case 0x0b: p = "NICAM-DK"; break; |
| case 0x0c: p = "NICAM-I"; break; |
| case 0x0d: p = "NICAM-L"; break; |
| case 0x0e: p = "FM radio"; break; |
| case 0x0f: p = "automatic detection"; break; |
| default: p = "undefined"; break; |
| } |
| CX18_INFO_DEV(sd, "Configured audio standard: %s\n", p); |
| |
| if ((audio_config >> 4) < 0xF) { |
| switch (audio_config & 0xF) { |
| case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break; |
| case 0x01: p = "MONO2 (LANGUAGE B)"; break; |
| case 0x02: p = "MONO3 (STEREO forced MONO)"; break; |
| case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break; |
| case 0x04: p = "STEREO"; break; |
| case 0x05: p = "DUAL1 (AC)"; break; |
| case 0x06: p = "DUAL2 (BC)"; break; |
| case 0x07: p = "DUAL3 (AB)"; break; |
| default: p = "undefined"; |
| } |
| CX18_INFO_DEV(sd, "Configured audio mode: %s\n", p); |
| } else { |
| switch (audio_config & 0xF) { |
| case 0x00: p = "BG"; break; |
| case 0x01: p = "DK1"; break; |
| case 0x02: p = "DK2"; break; |
| case 0x03: p = "DK3"; break; |
| case 0x04: p = "I"; break; |
| case 0x05: p = "L"; break; |
| case 0x06: p = "BTSC"; break; |
| case 0x07: p = "EIAJ"; break; |
| case 0x08: p = "A2-M"; break; |
| case 0x09: p = "FM Radio (4.5 MHz)"; break; |
| case 0x0a: p = "FM Radio (5.5 MHz)"; break; |
| case 0x0b: p = "S-Video"; break; |
| case 0x0f: p = "automatic standard and mode detection"; break; |
| default: p = "undefined"; break; |
| } |
| CX18_INFO_DEV(sd, "Configured audio system: %s\n", p); |
| } |
| |
| if (aud_input) |
| CX18_INFO_DEV(sd, "Specified audio input: Tuner (In%d)\n", |
| aud_input); |
| else |
| CX18_INFO_DEV(sd, "Specified audio input: External\n"); |
| |
| switch (pref_mode & 0xf) { |
| case 0: p = "mono/language A"; break; |
| case 1: p = "language B"; break; |
| case 2: p = "language C"; break; |
| case 3: p = "analog fallback"; break; |
| case 4: p = "stereo"; break; |
| case 5: p = "language AC"; break; |
| case 6: p = "language BC"; break; |
| case 7: p = "language AB"; break; |
| default: p = "undefined"; break; |
| } |
| CX18_INFO_DEV(sd, "Preferred audio mode: %s\n", p); |
| |
| if ((audio_config & 0xf) == 0xf) { |
| switch ((afc0 >> 3) & 0x1) { |
| case 0: p = "system DK"; break; |
| case 1: p = "system L"; break; |
| } |
| CX18_INFO_DEV(sd, "Selected 65 MHz format: %s\n", p); |
| |
| switch (afc0 & 0x7) { |
| case 0: p = "Chroma"; break; |
| case 1: p = "BTSC"; break; |
| case 2: p = "EIAJ"; break; |
| case 3: p = "A2-M"; break; |
| case 4: p = "autodetect"; break; |
| default: p = "undefined"; break; |
| } |
| CX18_INFO_DEV(sd, "Selected 45 MHz format: %s\n", p); |
| } |
| } |
| |
| static int cx18_av_log_status(struct v4l2_subdev *sd) |
| { |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| log_video_status(cx); |
| log_audio_status(cx); |
| return 0; |
| } |
| |
| #ifdef CONFIG_VIDEO_ADV_DEBUG |
| static int cx18_av_g_register(struct v4l2_subdev *sd, |
| struct v4l2_dbg_register *reg) |
| { |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| |
| if ((reg->reg & 0x3) != 0) |
| return -EINVAL; |
| reg->size = 4; |
| reg->val = cx18_av_read4(cx, reg->reg & 0x00000ffc); |
| return 0; |
| } |
| |
| static int cx18_av_s_register(struct v4l2_subdev *sd, |
| const struct v4l2_dbg_register *reg) |
| { |
| struct cx18 *cx = v4l2_get_subdevdata(sd); |
| |
| if ((reg->reg & 0x3) != 0) |
| return -EINVAL; |
| cx18_av_write4(cx, reg->reg & 0x00000ffc, reg->val); |
| return 0; |
| } |
| #endif |
| |
| static const struct v4l2_ctrl_ops cx18_av_ctrl_ops = { |
| .s_ctrl = cx18_av_s_ctrl, |
| }; |
| |
| static const struct v4l2_subdev_core_ops cx18_av_general_ops = { |
| .log_status = cx18_av_log_status, |
| .load_fw = cx18_av_load_fw, |
| .reset = cx18_av_reset, |
| #ifdef CONFIG_VIDEO_ADV_DEBUG |
| .g_register = cx18_av_g_register, |
| .s_register = cx18_av_s_register, |
| #endif |
| }; |
| |
| static const struct v4l2_subdev_tuner_ops cx18_av_tuner_ops = { |
| .s_radio = cx18_av_s_radio, |
| .s_frequency = cx18_av_s_frequency, |
| .g_tuner = cx18_av_g_tuner, |
| .s_tuner = cx18_av_s_tuner, |
| }; |
| |
| static const struct v4l2_subdev_audio_ops cx18_av_audio_ops = { |
| .s_clock_freq = cx18_av_s_clock_freq, |
| .s_routing = cx18_av_s_audio_routing, |
| }; |
| |
| static const struct v4l2_subdev_video_ops cx18_av_video_ops = { |
| .s_std = cx18_av_s_std, |
| .s_routing = cx18_av_s_video_routing, |
| .s_stream = cx18_av_s_stream, |
| }; |
| |
| static const struct v4l2_subdev_vbi_ops cx18_av_vbi_ops = { |
| .decode_vbi_line = cx18_av_decode_vbi_line, |
| .g_sliced_fmt = cx18_av_g_sliced_fmt, |
| .s_sliced_fmt = cx18_av_s_sliced_fmt, |
| .s_raw_fmt = cx18_av_s_raw_fmt, |
| }; |
| |
| static const struct v4l2_subdev_pad_ops cx18_av_pad_ops = { |
| .set_fmt = cx18_av_set_fmt, |
| }; |
| |
| static const struct v4l2_subdev_ops cx18_av_ops = { |
| .core = &cx18_av_general_ops, |
| .tuner = &cx18_av_tuner_ops, |
| .audio = &cx18_av_audio_ops, |
| .video = &cx18_av_video_ops, |
| .vbi = &cx18_av_vbi_ops, |
| .pad = &cx18_av_pad_ops, |
| }; |
| |
| int cx18_av_probe(struct cx18 *cx) |
| { |
| struct cx18_av_state *state = &cx->av_state; |
| struct v4l2_subdev *sd; |
| int err; |
| |
| state->rev = cx18_av_read4(cx, CXADEC_CHIP_CTRL) & 0xffff; |
| |
| state->vid_input = CX18_AV_COMPOSITE7; |
| state->aud_input = CX18_AV_AUDIO8; |
| state->audclk_freq = 48000; |
| state->audmode = V4L2_TUNER_MODE_LANG1; |
| state->slicer_line_delay = 0; |
| state->slicer_line_offset = (10 + state->slicer_line_delay - 2); |
| |
| sd = &state->sd; |
| v4l2_subdev_init(sd, &cx18_av_ops); |
| v4l2_set_subdevdata(sd, cx); |
| snprintf(sd->name, sizeof(sd->name), |
| "%s %03x", cx->v4l2_dev.name, (state->rev >> 4)); |
| sd->grp_id = CX18_HW_418_AV; |
| v4l2_ctrl_handler_init(&state->hdl, 9); |
| v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, |
| V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); |
| v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, |
| V4L2_CID_CONTRAST, 0, 127, 1, 64); |
| v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, |
| V4L2_CID_SATURATION, 0, 127, 1, 64); |
| v4l2_ctrl_new_std(&state->hdl, &cx18_av_ctrl_ops, |
| V4L2_CID_HUE, -128, 127, 1, 0); |
| |
| state->volume = v4l2_ctrl_new_std(&state->hdl, |
| &cx18_av_audio_ctrl_ops, V4L2_CID_AUDIO_VOLUME, |
| 0, 65535, 65535 / 100, 0); |
| v4l2_ctrl_new_std(&state->hdl, |
| &cx18_av_audio_ctrl_ops, V4L2_CID_AUDIO_MUTE, |
| 0, 1, 1, 0); |
| v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, |
| V4L2_CID_AUDIO_BALANCE, |
| 0, 65535, 65535 / 100, 32768); |
| v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, |
| V4L2_CID_AUDIO_BASS, |
| 0, 65535, 65535 / 100, 32768); |
| v4l2_ctrl_new_std(&state->hdl, &cx18_av_audio_ctrl_ops, |
| V4L2_CID_AUDIO_TREBLE, |
| 0, 65535, 65535 / 100, 32768); |
| sd->ctrl_handler = &state->hdl; |
| if (state->hdl.error) { |
| int err = state->hdl.error; |
| |
| v4l2_ctrl_handler_free(&state->hdl); |
| return err; |
| } |
| err = v4l2_device_register_subdev(&cx->v4l2_dev, sd); |
| if (err) |
| v4l2_ctrl_handler_free(&state->hdl); |
| else |
| cx18_av_init(cx); |
| return err; |
| } |