blob: 08e429a0692218780aefbdcbbc501d9806564092 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and
* synchronization devices.
*
* Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company.
*/
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/timekeeping.h>
#include <linux/string.h>
#include <linux/of.h>
#include <linux/mfd/rsmu.h>
#include <linux/mfd/idt8a340_reg.h>
#include <asm/unaligned.h>
#include "ptp_private.h"
#include "ptp_clockmatrix.h"
MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family");
MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL");
/*
* The name of the firmware file to be loaded
* over-rides any automatic selection
*/
static char *firmware;
module_param(firmware, charp, 0);
#define SETTIME_CORRECTION (0)
#define EXTTS_PERIOD_MS (95)
static int _idtcm_adjfine(struct idtcm_channel *channel, long scaled_ppm);
static inline int idtcm_read(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return regmap_bulk_read(idtcm->regmap, module + regaddr, buf, count);
}
static inline int idtcm_write(struct idtcm *idtcm,
u16 module,
u16 regaddr,
u8 *buf,
u16 count)
{
return regmap_bulk_write(idtcm->regmap, module + regaddr, buf, count);
}
static int contains_full_configuration(struct idtcm *idtcm,
const struct firmware *fw)
{
struct idtcm_fwrc *rec = (struct idtcm_fwrc *)fw->data;
u16 scratch = IDTCM_FW_REG(idtcm->fw_ver, V520, SCRATCH);
s32 full_count;
s32 count = 0;
u16 regaddr;
u8 loaddr;
s32 len;
/* 4 bytes skipped every 0x80 */
full_count = (scratch - GPIO_USER_CONTROL) -
((scratch >> 7) - (GPIO_USER_CONTROL >> 7)) * 4;
/* If the firmware contains 'full configuration' SM_RESET can be used
* to ensure proper configuration.
*
* Full configuration is defined as the number of programmable
* bytes within the configuration range minus page offset addr range.
*/
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
regaddr = rec->hiaddr << 8;
regaddr |= rec->loaddr;
loaddr = rec->loaddr;
rec++;
/* Top (status registers) and bottom are read-only */
if (regaddr < GPIO_USER_CONTROL || regaddr >= scratch)
continue;
/* Page size 128, last 4 bytes of page skipped */
if ((loaddr > 0x7b && loaddr <= 0x7f) || loaddr > 0xfb)
continue;
count++;
}
return (count >= full_count);
}
static int char_array_to_timespec(u8 *buf,
u8 count,
struct timespec64 *ts)
{
u8 i;
u64 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
/* Sub-nanoseconds are in buf[0]. */
nsec = buf[4];
for (i = 0; i < 3; i++) {
nsec <<= 8;
nsec |= buf[3 - i];
}
sec = buf[10];
for (i = 0; i < 5; i++) {
sec <<= 8;
sec |= buf[9 - i];
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
return 0;
}
static int timespec_to_char_array(struct timespec64 const *ts,
u8 *buf,
u8 count)
{
u8 i;
s32 nsec;
time64_t sec;
if (count < TOD_BYTE_COUNT)
return 1;
nsec = ts->tv_nsec;
sec = ts->tv_sec;
/* Sub-nanoseconds are in buf[0]. */
buf[0] = 0;
for (i = 1; i < 5; i++) {
buf[i] = nsec & 0xff;
nsec >>= 8;
}
for (i = 5; i < TOD_BYTE_COUNT; i++) {
buf[i] = sec & 0xff;
sec >>= 8;
}
return 0;
}
static int idtcm_strverscmp(const char *version1, const char *version2)
{
u8 ver1[3], ver2[3];
int i;
if (sscanf(version1, "%hhu.%hhu.%hhu",
&ver1[0], &ver1[1], &ver1[2]) != 3)
return -1;
if (sscanf(version2, "%hhu.%hhu.%hhu",
&ver2[0], &ver2[1], &ver2[2]) != 3)
return -1;
for (i = 0; i < 3; i++) {
if (ver1[i] > ver2[i])
return 1;
if (ver1[i] < ver2[i])
return -1;
}
return 0;
}
static enum fw_version idtcm_fw_version(const char *version)
{
enum fw_version ver = V_DEFAULT;
if (idtcm_strverscmp(version, "4.8.7") >= 0)
ver = V487;
if (idtcm_strverscmp(version, "5.2.0") >= 0)
ver = V520;
return ver;
}
static int clear_boot_status(struct idtcm *idtcm)
{
u8 buf[4] = {0};
return idtcm_write(idtcm, GENERAL_STATUS, BOOT_STATUS, buf, sizeof(buf));
}
static int read_boot_status(struct idtcm *idtcm, u32 *status)
{
int err;
u8 buf[4] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, BOOT_STATUS, buf, sizeof(buf));
*status = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
return err;
}
static int wait_for_boot_status_ready(struct idtcm *idtcm)
{
u32 status = 0;
u8 i = 30; /* 30 * 100ms = 3s */
int err;
do {
err = read_boot_status(idtcm, &status);
if (err)
return err;
if (status == 0xA0)
return 0;
msleep(100);
i--;
} while (i);
dev_warn(idtcm->dev, "%s timed out", __func__);
return -EBUSY;
}
static int _idtcm_set_scsr_read_trig(struct idtcm_channel *channel,
enum scsr_read_trig_sel trig, u8 ref)
{
struct idtcm *idtcm = channel->idtcm;
u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_PRIMARY_CMD);
u8 val;
int err;
if (trig == SCSR_TOD_READ_TRIG_SEL_REFCLK) {
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_SEL_CFG_0, &val, sizeof(val));
if (err)
return err;
val &= ~(WR_REF_INDEX_MASK << WR_REF_INDEX_SHIFT);
val |= (ref << WR_REF_INDEX_SHIFT);
err = idtcm_write(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY_SEL_CFG_0, &val, sizeof(val));
if (err)
return err;
}
err = idtcm_read(idtcm, channel->tod_read_primary,
tod_read_cmd, &val, sizeof(val));
if (err)
return err;
val &= ~(TOD_READ_TRIGGER_MASK << TOD_READ_TRIGGER_SHIFT);
val |= (trig << TOD_READ_TRIGGER_SHIFT);
val &= ~TOD_READ_TRIGGER_MODE; /* single shot */
err = idtcm_write(idtcm, channel->tod_read_primary,
tod_read_cmd, &val, sizeof(val));
return err;
}
static int idtcm_enable_extts(struct idtcm_channel *channel, u8 todn, u8 ref,
bool enable)
{
struct idtcm *idtcm = channel->idtcm;
u8 old_mask = idtcm->extts_mask;
u8 mask = 1 << todn;
int err = 0;
if (todn >= MAX_TOD)
return -EINVAL;
if (enable) {
if (ref > 0xF) /* E_REF_CLK15 */
return -EINVAL;
if (idtcm->extts_mask & mask)
return 0;
err = _idtcm_set_scsr_read_trig(&idtcm->channel[todn],
SCSR_TOD_READ_TRIG_SEL_REFCLK,
ref);
if (err == 0) {
idtcm->extts_mask |= mask;
idtcm->event_channel[todn] = channel;
idtcm->channel[todn].refn = ref;
}
} else
idtcm->extts_mask &= ~mask;
if (old_mask == 0 && idtcm->extts_mask)
schedule_delayed_work(&idtcm->extts_work,
msecs_to_jiffies(EXTTS_PERIOD_MS));
return err;
}
static int read_sys_apll_status(struct idtcm *idtcm, u8 *status)
{
return idtcm_read(idtcm, STATUS, DPLL_SYS_APLL_STATUS, status,
sizeof(u8));
}
static int read_sys_dpll_status(struct idtcm *idtcm, u8 *status)
{
return idtcm_read(idtcm, STATUS, DPLL_SYS_STATUS, status, sizeof(u8));
}
static int wait_for_sys_apll_dpll_lock(struct idtcm *idtcm)
{
unsigned long timeout = jiffies + msecs_to_jiffies(LOCK_TIMEOUT_MS);
u8 apll = 0;
u8 dpll = 0;
int err;
do {
err = read_sys_apll_status(idtcm, &apll);
if (err)
return err;
err = read_sys_dpll_status(idtcm, &dpll);
if (err)
return err;
apll &= SYS_APLL_LOSS_LOCK_LIVE_MASK;
dpll &= DPLL_SYS_STATE_MASK;
if (apll == SYS_APLL_LOSS_LOCK_LIVE_LOCKED &&
dpll == DPLL_STATE_LOCKED) {
return 0;
} else if (dpll == DPLL_STATE_FREERUN ||
dpll == DPLL_STATE_HOLDOVER ||
dpll == DPLL_STATE_OPEN_LOOP) {
dev_warn(idtcm->dev,
"No wait state: DPLL_SYS_STATE %d", dpll);
return -EPERM;
}
msleep(LOCK_POLL_INTERVAL_MS);
} while (time_is_after_jiffies(timeout));
dev_warn(idtcm->dev,
"%d ms lock timeout: SYS APLL Loss Lock %d SYS DPLL state %d",
LOCK_TIMEOUT_MS, apll, dpll);
return -ETIME;
}
static void wait_for_chip_ready(struct idtcm *idtcm)
{
if (wait_for_boot_status_ready(idtcm))
dev_warn(idtcm->dev, "BOOT_STATUS != 0xA0");
if (wait_for_sys_apll_dpll_lock(idtcm))
dev_warn(idtcm->dev,
"Continuing while SYS APLL/DPLL is not locked");
}
static int _idtcm_gettime(struct idtcm_channel *channel,
struct timespec64 *ts, u8 timeout)
{
struct idtcm *idtcm = channel->idtcm;
u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_PRIMARY_CMD);
u8 buf[TOD_BYTE_COUNT];
u8 trigger;
int err;
/* wait trigger to be 0 */
do {
if (timeout-- == 0)
return -EIO;
if (idtcm->calculate_overhead_flag)
idtcm->start_time = ktime_get_raw();
err = idtcm_read(idtcm, channel->tod_read_primary,
tod_read_cmd, &trigger,
sizeof(trigger));
if (err)
return err;
} while (trigger & TOD_READ_TRIGGER_MASK);
err = idtcm_read(idtcm, channel->tod_read_primary,
TOD_READ_PRIMARY, buf, sizeof(buf));
if (err)
return err;
err = char_array_to_timespec(buf, sizeof(buf), ts);
return err;
}
static int idtcm_extts_check_channel(struct idtcm *idtcm, u8 todn)
{
struct idtcm_channel *ptp_channel, *extts_channel;
struct ptp_clock_event event;
struct timespec64 ts;
u32 dco_delay = 0;
int err;
extts_channel = &idtcm->channel[todn];
ptp_channel = idtcm->event_channel[todn];
if (extts_channel == ptp_channel)
dco_delay = ptp_channel->dco_delay;
err = _idtcm_gettime(extts_channel, &ts, 1);
if (err == 0) {
event.type = PTP_CLOCK_EXTTS;
event.index = todn;
event.timestamp = timespec64_to_ns(&ts) - dco_delay;
ptp_clock_event(ptp_channel->ptp_clock, &event);
}
return err;
}
static u8 idtcm_enable_extts_mask(struct idtcm_channel *channel,
u8 extts_mask, bool enable)
{
struct idtcm *idtcm = channel->idtcm;
int i, err;
for (i = 0; i < MAX_TOD; i++) {
u8 mask = 1 << i;
u8 refn = idtcm->channel[i].refn;
if (extts_mask & mask) {
/* check extts before disabling it */
if (enable == false) {
err = idtcm_extts_check_channel(idtcm, i);
/* trigger happened so we won't re-enable it */
if (err == 0)
extts_mask &= ~mask;
}
(void)idtcm_enable_extts(channel, i, refn, enable);
}
}
return extts_mask;
}
static int _idtcm_gettime_immediate(struct idtcm_channel *channel,
struct timespec64 *ts)
{
struct idtcm *idtcm = channel->idtcm;
u8 extts_mask = 0;
int err;
/* Disable extts */
if (idtcm->extts_mask) {
extts_mask = idtcm_enable_extts_mask(channel, idtcm->extts_mask,
false);
}
err = _idtcm_set_scsr_read_trig(channel,
SCSR_TOD_READ_TRIG_SEL_IMMEDIATE, 0);
if (err == 0)
err = _idtcm_gettime(channel, ts, 10);
/* Re-enable extts */
if (extts_mask)
idtcm_enable_extts_mask(channel, extts_mask, true);
return err;
}
static int _sync_pll_output(struct idtcm *idtcm,
u8 pll,
u8 sync_src,
u8 qn,
u8 qn_plus_1)
{
int err;
u8 val;
u16 sync_ctrl0;
u16 sync_ctrl1;
u8 temp;
if (qn == 0 && qn_plus_1 == 0)
return 0;
switch (pll) {
case 0:
sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1;
break;
case 1:
sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1;
break;
case 2:
sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1;
break;
case 3:
sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1;
break;
case 4:
sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1;
break;
case 5:
sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1;
break;
case 6:
sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1;
break;
case 7:
sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0;
sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1;
break;
default:
return -EINVAL;
}
val = SYNCTRL1_MASTER_SYNC_RST;
/* Place master sync in reset */
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src));
if (err)
return err;
/* Set sync trigger mask */
val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG;
if (qn)
val |= SYNCTRL1_Q0_DIV_SYNC_TRIG;
if (qn_plus_1)
val |= SYNCTRL1_Q1_DIV_SYNC_TRIG;
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
if (err)
return err;
/* PLL5 can have OUT8 as second additional output. */
if (pll == 5 && qn_plus_1 != 0) {
err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp &= ~(Q9_TO_Q8_SYNC_TRIG);
err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp |= Q9_TO_Q8_SYNC_TRIG;
err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
}
/* PLL6 can have OUT11 as second additional output. */
if (pll == 6 && qn_plus_1 != 0) {
err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp &= ~(Q10_TO_Q11_SYNC_TRIG);
err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
temp |= Q10_TO_Q11_SYNC_TRIG;
err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
}
/* Place master sync out of reset */
val &= ~(SYNCTRL1_MASTER_SYNC_RST);
err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val));
return err;
}
static int idtcm_sync_pps_output(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
u8 pll;
u8 qn;
u8 qn_plus_1;
int err = 0;
u8 out8_mux = 0;
u8 out11_mux = 0;
u8 temp;
u16 output_mask = channel->output_mask;
err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
if ((temp & Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) ==
Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK)
out8_mux = 1;
err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE,
&temp, sizeof(temp));
if (err)
return err;
if ((temp & Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) ==
Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK)
out11_mux = 1;
for (pll = 0; pll < 8; pll++) {
qn = 0;
qn_plus_1 = 0;
if (pll < 4) {
/* First 4 pll has 2 outputs */
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
} else if (pll == 4) {
if (out8_mux == 0) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
}
} else if (pll == 5) {
if (out8_mux) {
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
}
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
} else if (pll == 6) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
if (out11_mux) {
qn_plus_1 = output_mask & 0x1;
output_mask = output_mask >> 1;
}
} else if (pll == 7) {
if (out11_mux == 0) {
qn = output_mask & 0x1;
output_mask = output_mask >> 1;
}
}
if (qn != 0 || qn_plus_1 != 0)
err = _sync_pll_output(idtcm, pll, channel->sync_src,
qn, qn_plus_1);
if (err)
return err;
}
return err;
}
static int _idtcm_set_dpll_hw_tod(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum hw_tod_write_trig_sel wr_trig)
{
struct idtcm *idtcm = channel->idtcm;
u8 buf[TOD_BYTE_COUNT];
u8 cmd;
int err;
struct timespec64 local_ts = *ts;
s64 total_overhead_ns;
/* Configure HW TOD write trigger. */
err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
cmd &= ~(0x0f);
cmd |= wr_trig | 0x08;
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (err)
return err;
if (wr_trig != HW_TOD_WR_TRIG_SEL_MSB) {
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
}
/* ARM HW TOD write trigger. */
cmd &= ~(0x08);
err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1,
&cmd, sizeof(cmd));
if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) {
if (idtcm->calculate_overhead_flag) {
/* Assumption: I2C @ 400KHz */
ktime_t diff = ktime_sub(ktime_get_raw(),
idtcm->start_time);
total_overhead_ns = ktime_to_ns(diff)
+ idtcm->tod_write_overhead_ns
+ SETTIME_CORRECTION;
timespec64_add_ns(&local_ts, total_overhead_ns);
idtcm->calculate_overhead_flag = 0;
}
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
}
return err;
}
static int _idtcm_set_dpll_scsr_tod(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum scsr_tod_write_trig_sel wr_trig,
enum scsr_tod_write_type_sel wr_type)
{
struct idtcm *idtcm = channel->idtcm;
unsigned char buf[TOD_BYTE_COUNT], cmd;
struct timespec64 local_ts = *ts;
int err, count = 0;
timespec64_add_ns(&local_ts, SETTIME_CORRECTION);
err = timespec_to_char_array(&local_ts, buf, sizeof(buf));
if (err)
return err;
err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE,
buf, sizeof(buf));
if (err)
return err;
/* Trigger the write operation. */
err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD,
&cmd, sizeof(cmd));
if (err)
return err;
cmd &= ~(TOD_WRITE_SELECTION_MASK << TOD_WRITE_SELECTION_SHIFT);
cmd &= ~(TOD_WRITE_TYPE_MASK << TOD_WRITE_TYPE_SHIFT);
cmd |= (wr_trig << TOD_WRITE_SELECTION_SHIFT);
cmd |= (wr_type << TOD_WRITE_TYPE_SHIFT);
err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE_CMD,
&cmd, sizeof(cmd));
if (err)
return err;
/* Wait for the operation to complete. */
while (1) {
/* pps trigger takes up to 1 sec to complete */
if (wr_trig == SCSR_TOD_WR_TRIG_SEL_TODPPS)
msleep(50);
err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD,
&cmd, sizeof(cmd));
if (err)
return err;
if ((cmd & TOD_WRITE_SELECTION_MASK) == 0)
break;
if (++count > 20) {
dev_err(idtcm->dev,
"Timed out waiting for the write counter");
return -EIO;
}
}
return 0;
}
static int get_output_base_addr(enum fw_version ver, u8 outn)
{
int base;
switch (outn) {
case 0:
base = IDTCM_FW_REG(ver, V520, OUTPUT_0);
break;
case 1:
base = IDTCM_FW_REG(ver, V520, OUTPUT_1);
break;
case 2:
base = IDTCM_FW_REG(ver, V520, OUTPUT_2);
break;
case 3:
base = IDTCM_FW_REG(ver, V520, OUTPUT_3);
break;
case 4:
base = IDTCM_FW_REG(ver, V520, OUTPUT_4);
break;
case 5:
base = IDTCM_FW_REG(ver, V520, OUTPUT_5);
break;
case 6:
base = IDTCM_FW_REG(ver, V520, OUTPUT_6);
break;
case 7:
base = IDTCM_FW_REG(ver, V520, OUTPUT_7);
break;
case 8:
base = IDTCM_FW_REG(ver, V520, OUTPUT_8);
break;
case 9:
base = IDTCM_FW_REG(ver, V520, OUTPUT_9);
break;
case 10:
base = IDTCM_FW_REG(ver, V520, OUTPUT_10);
break;
case 11:
base = IDTCM_FW_REG(ver, V520, OUTPUT_11);
break;
default:
base = -EINVAL;
}
return base;
}
static int _idtcm_settime_deprecated(struct idtcm_channel *channel,
struct timespec64 const *ts)
{
struct idtcm *idtcm = channel->idtcm;
int err;
err = _idtcm_set_dpll_hw_tod(channel, ts, HW_TOD_WR_TRIG_SEL_MSB);
if (err) {
dev_err(idtcm->dev,
"%s: Set HW ToD failed", __func__);
return err;
}
return idtcm_sync_pps_output(channel);
}
static int _idtcm_settime(struct idtcm_channel *channel,
struct timespec64 const *ts,
enum scsr_tod_write_type_sel wr_type)
{
return _idtcm_set_dpll_scsr_tod(channel, ts,
SCSR_TOD_WR_TRIG_SEL_IMMEDIATE,
wr_type);
}
static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel,
s32 offset_ns)
{
int err;
int i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[4];
for (i = 0; i < 4; i++) {
buf[i] = 0xff & (offset_ns);
offset_ns >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET,
buf, sizeof(buf));
return err;
}
static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel,
u32 max_ffo_ppb)
{
int err;
u8 i;
struct idtcm *idtcm = channel->idtcm;
u8 buf[3];
if (max_ffo_ppb & 0xff000000)
max_ffo_ppb = 0;
for (i = 0; i < 3; i++) {
buf[i] = 0xff & (max_ffo_ppb);
max_ffo_ppb >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_SLOPE_LIMIT, buf, sizeof(buf));
return err;
}
static int idtcm_start_phase_pull_in(struct idtcm_channel *channel)
{
int err;
struct idtcm *idtcm = channel->idtcm;
u8 buf;
err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL,
&buf, sizeof(buf));
if (err)
return err;
if (buf == 0) {
buf = 0x01;
err = idtcm_write(idtcm, channel->dpll_phase_pull_in,
PULL_IN_CTRL, &buf, sizeof(buf));
} else {
err = -EBUSY;
}
return err;
}
static int do_phase_pull_in_fw(struct idtcm_channel *channel,
s32 offset_ns,
u32 max_ffo_ppb)
{
int err;
err = idtcm_set_phase_pull_in_offset(channel, -offset_ns);
if (err)
return err;
err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb);
if (err)
return err;
err = idtcm_start_phase_pull_in(channel);
return err;
}
static int set_tod_write_overhead(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
s64 current_ns = 0;
s64 lowest_ns = 0;
int err;
u8 i;
ktime_t start;
ktime_t stop;
ktime_t diff;
char buf[TOD_BYTE_COUNT] = {0};
/* Set page offset */
idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0,
buf, sizeof(buf));
for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) {
start = ktime_get_raw();
err = idtcm_write(idtcm, channel->hw_dpll_n,
HW_DPLL_TOD_OVR__0, buf, sizeof(buf));
if (err)
return err;
stop = ktime_get_raw();
diff = ktime_sub(stop, start);
current_ns = ktime_to_ns(diff);
if (i == 0) {
lowest_ns = current_ns;
} else {
if (current_ns < lowest_ns)
lowest_ns = current_ns;
}
}
idtcm->tod_write_overhead_ns = lowest_ns;
return err;
}
static int _idtcm_adjtime_deprecated(struct idtcm_channel *channel, s64 delta)
{
int err;
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts;
s64 now;
if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS_DEPRECATED) {
err = channel->do_phase_pull_in(channel, delta, 0);
} else {
idtcm->calculate_overhead_flag = 1;
err = set_tod_write_overhead(channel);
if (err)
return err;
err = _idtcm_gettime_immediate(channel, &ts);
if (err)
return err;
now = timespec64_to_ns(&ts);
now += delta;
ts = ns_to_timespec64(now);
err = _idtcm_settime_deprecated(channel, &ts);
}
return err;
}
static int idtcm_state_machine_reset(struct idtcm *idtcm)
{
u8 byte = SM_RESET_CMD;
u32 status = 0;
int err;
u8 i;
clear_boot_status(idtcm);
err = idtcm_write(idtcm, RESET_CTRL,
IDTCM_FW_REG(idtcm->fw_ver, V520, SM_RESET),
&byte, sizeof(byte));
if (!err) {
for (i = 0; i < 30; i++) {
msleep_interruptible(100);
read_boot_status(idtcm, &status);
if (status == 0xA0) {
dev_dbg(idtcm->dev,
"SM_RESET completed in %d ms", i * 100);
break;
}
}
if (!status)
dev_err(idtcm->dev,
"Timed out waiting for CM_RESET to complete");
}
return err;
}
static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id)
{
return idtcm_read(idtcm, HW_REVISION, REV_ID, hw_rev_id, sizeof(u8));
}
static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id)
{
int err;
u8 buf[2] = {0};
err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf));
*product_id = (buf[1] << 8) | buf[0];
return err;
}
static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major)
{
int err;
u8 buf = 0;
err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf));
*major = buf >> 1;
return err;
}
static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor)
{
return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8));
}
static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix)
{
return idtcm_read(idtcm,
GENERAL_STATUS,
HOTFIX_REL,
hotfix,
sizeof(u8));
}
static int idtcm_read_otp_scsr_config_select(struct idtcm *idtcm,
u8 *config_select)
{
return idtcm_read(idtcm, GENERAL_STATUS, OTP_SCSR_CONFIG_SELECT,
config_select, sizeof(u8));
}
static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val)
{
int err = 0;
switch (addr) {
case TOD0_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[0].output_mask, val);
break;
case TOD0_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[0].output_mask, val);
break;
case TOD1_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[1].output_mask, val);
break;
case TOD1_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[1].output_mask, val);
break;
case TOD2_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[2].output_mask, val);
break;
case TOD2_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[2].output_mask, val);
break;
case TOD3_OUT_ALIGN_MASK_ADDR:
SET_U16_LSB(idtcm->channel[3].output_mask, val);
break;
case TOD3_OUT_ALIGN_MASK_ADDR + 1:
SET_U16_MSB(idtcm->channel[3].output_mask, val);
break;
default:
err = -EFAULT; /* Bad address */;
break;
}
return err;
}
static int set_tod_ptp_pll(struct idtcm *idtcm, u8 index, u8 pll)
{
if (index >= MAX_TOD) {
dev_err(idtcm->dev, "ToD%d not supported", index);
return -EINVAL;
}
if (pll >= MAX_PLL) {
dev_err(idtcm->dev, "Pll%d not supported", pll);
return -EINVAL;
}
idtcm->channel[index].pll = pll;
return 0;
}
static int check_and_set_masks(struct idtcm *idtcm,
u16 regaddr,
u8 val)
{
int err = 0;
switch (regaddr) {
case TOD_MASK_ADDR:
if ((val & 0xf0) || !(val & 0x0f)) {
dev_err(idtcm->dev, "Invalid TOD mask 0x%02x", val);
err = -EINVAL;
} else {
idtcm->tod_mask = val;
}
break;
case TOD0_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 0, val);
break;
case TOD1_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 1, val);
break;
case TOD2_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 2, val);
break;
case TOD3_PTP_PLL_ADDR:
err = set_tod_ptp_pll(idtcm, 3, val);
break;
default:
err = set_pll_output_mask(idtcm, regaddr, val);
break;
}
return err;
}
static void display_pll_and_masks(struct idtcm *idtcm)
{
u8 i;
u8 mask;
dev_dbg(idtcm->dev, "tod_mask = 0x%02x", idtcm->tod_mask);
for (i = 0; i < MAX_TOD; i++) {
mask = 1 << i;
if (mask & idtcm->tod_mask)
dev_dbg(idtcm->dev,
"TOD%d pll = %d output_mask = 0x%04x",
i, idtcm->channel[i].pll,
idtcm->channel[i].output_mask);
}
}
static int idtcm_load_firmware(struct idtcm *idtcm,
struct device *dev)
{
u16 scratch = IDTCM_FW_REG(idtcm->fw_ver, V520, SCRATCH);
char fname[128] = FW_FILENAME;
const struct firmware *fw;
struct idtcm_fwrc *rec;
u32 regaddr;
int err;
s32 len;
u8 val;
u8 loaddr;
if (firmware) /* module parameter */
snprintf(fname, sizeof(fname), "%s", firmware);
dev_info(idtcm->dev, "requesting firmware '%s'", fname);
err = request_firmware(&fw, fname, dev);
if (err) {
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
return err;
}
dev_dbg(idtcm->dev, "firmware size %zu bytes", fw->size);
rec = (struct idtcm_fwrc *) fw->data;
if (contains_full_configuration(idtcm, fw))
idtcm_state_machine_reset(idtcm);
for (len = fw->size; len > 0; len -= sizeof(*rec)) {
if (rec->reserved) {
dev_err(idtcm->dev,
"bad firmware, reserved field non-zero");
err = -EINVAL;
} else {
regaddr = rec->hiaddr << 8;
regaddr |= rec->loaddr;
val = rec->value;
loaddr = rec->loaddr;
rec++;
err = check_and_set_masks(idtcm, regaddr, val);
}
if (err != -EINVAL) {
err = 0;
/* Top (status registers) and bottom are read-only */
if (regaddr < GPIO_USER_CONTROL || regaddr >= scratch)
continue;
/* Page size 128, last 4 bytes of page skipped */
if ((loaddr > 0x7b && loaddr <= 0x7f) || loaddr > 0xfb)
continue;
err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val));
}
if (err)
goto out;
}
display_pll_and_masks(idtcm);
out:
release_firmware(fw);
return err;
}
static int idtcm_output_enable(struct idtcm_channel *channel,
bool enable, unsigned int outn)
{
struct idtcm *idtcm = channel->idtcm;
int base;
int err;
u8 val;
base = get_output_base_addr(idtcm->fw_ver, outn);
if (!(base > 0)) {
dev_err(idtcm->dev,
"%s - Unsupported out%d", __func__, outn);
return base;
}
err = idtcm_read(idtcm, (u16)base, OUT_CTRL_1, &val, sizeof(val));
if (err)
return err;
if (enable)
val |= SQUELCH_DISABLE;
else
val &= ~SQUELCH_DISABLE;
return idtcm_write(idtcm, (u16)base, OUT_CTRL_1, &val, sizeof(val));
}
static int idtcm_output_mask_enable(struct idtcm_channel *channel,
bool enable)
{
u16 mask;
int err;
u8 outn;
mask = channel->output_mask;
outn = 0;
while (mask) {
if (mask & 0x1) {
err = idtcm_output_enable(channel, enable, outn);
if (err)
return err;
}
mask >>= 0x1;
outn++;
}
return 0;
}
static int idtcm_perout_enable(struct idtcm_channel *channel,
struct ptp_perout_request *perout,
bool enable)
{
struct idtcm *idtcm = channel->idtcm;
unsigned int flags = perout->flags;
struct timespec64 ts = {0, 0};
int err;
if (flags == PEROUT_ENABLE_OUTPUT_MASK)
err = idtcm_output_mask_enable(channel, enable);
else
err = idtcm_output_enable(channel, enable, perout->index);
if (err) {
dev_err(idtcm->dev, "Unable to set output enable");
return err;
}
/* Align output to internal 1 PPS */
return _idtcm_settime(channel, &ts, SCSR_TOD_WR_TYPE_SEL_DELTA_PLUS);
}
static int idtcm_get_pll_mode(struct idtcm_channel *channel,
enum pll_mode *mode)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 dpll_mode;
err = idtcm_read(idtcm, channel->dpll_n,
IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE),
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
*mode = (dpll_mode >> PLL_MODE_SHIFT) & PLL_MODE_MASK;
return 0;
}
static int idtcm_set_pll_mode(struct idtcm_channel *channel,
enum pll_mode mode)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 dpll_mode;
err = idtcm_read(idtcm, channel->dpll_n,
IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE),
&dpll_mode, sizeof(dpll_mode));
if (err)
return err;
dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
dpll_mode |= (mode << PLL_MODE_SHIFT);
err = idtcm_write(idtcm, channel->dpll_n,
IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE),
&dpll_mode, sizeof(dpll_mode));
return err;
}
static int idtcm_get_manual_reference(struct idtcm_channel *channel,
enum manual_reference *ref)
{
struct idtcm *idtcm = channel->idtcm;
u8 dpll_manu_ref_cfg;
int err;
err = idtcm_read(idtcm, channel->dpll_ctrl_n,
DPLL_CTRL_DPLL_MANU_REF_CFG,
&dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg));
if (err)
return err;
dpll_manu_ref_cfg &= (MANUAL_REFERENCE_MASK << MANUAL_REFERENCE_SHIFT);
*ref = dpll_manu_ref_cfg >> MANUAL_REFERENCE_SHIFT;
return 0;
}
static int idtcm_set_manual_reference(struct idtcm_channel *channel,
enum manual_reference ref)
{
struct idtcm *idtcm = channel->idtcm;
u8 dpll_manu_ref_cfg;
int err;
err = idtcm_read(idtcm, channel->dpll_ctrl_n,
DPLL_CTRL_DPLL_MANU_REF_CFG,
&dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg));
if (err)
return err;
dpll_manu_ref_cfg &= ~(MANUAL_REFERENCE_MASK << MANUAL_REFERENCE_SHIFT);
dpll_manu_ref_cfg |= (ref << MANUAL_REFERENCE_SHIFT);
err = idtcm_write(idtcm, channel->dpll_ctrl_n,
DPLL_CTRL_DPLL_MANU_REF_CFG,
&dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg));
return err;
}
static int configure_dpll_mode_write_frequency(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
int err;
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY);
if (err)
dev_err(idtcm->dev, "Failed to set pll mode to write frequency");
else
channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY;
return err;
}
static int configure_dpll_mode_write_phase(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
int err;
err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_PHASE);
if (err)
dev_err(idtcm->dev, "Failed to set pll mode to write phase");
else
channel->mode = PTP_PLL_MODE_WRITE_PHASE;
return err;
}
static int configure_manual_reference_write_frequency(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
int err;
err = idtcm_set_manual_reference(channel, MANU_REF_WRITE_FREQUENCY);
if (err)
dev_err(idtcm->dev, "Failed to set manual reference to write frequency");
else
channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY;
return err;
}
static int configure_manual_reference_write_phase(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
int err;
err = idtcm_set_manual_reference(channel, MANU_REF_WRITE_PHASE);
if (err)
dev_err(idtcm->dev, "Failed to set manual reference to write phase");
else
channel->mode = PTP_PLL_MODE_WRITE_PHASE;
return err;
}
static int idtcm_stop_phase_pull_in(struct idtcm_channel *channel)
{
int err;
err = _idtcm_adjfine(channel, channel->current_freq_scaled_ppm);
if (err)
return err;
channel->phase_pull_in = false;
return 0;
}
static long idtcm_work_handler(struct ptp_clock_info *ptp)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
mutex_lock(idtcm->lock);
(void)idtcm_stop_phase_pull_in(channel);
mutex_unlock(idtcm->lock);
/* Return a negative value here to not reschedule */
return -1;
}
static s32 phase_pull_in_scaled_ppm(s32 current_ppm, s32 phase_pull_in_ppb)
{
/* ppb = scaled_ppm * 125 / 2^13 */
/* scaled_ppm = ppb * 2^13 / 125 */
s64 max_scaled_ppm = div_s64((s64)PHASE_PULL_IN_MAX_PPB << 13, 125);
s64 scaled_ppm = div_s64((s64)phase_pull_in_ppb << 13, 125);
current_ppm += scaled_ppm;
if (current_ppm > max_scaled_ppm)
current_ppm = max_scaled_ppm;
else if (current_ppm < -max_scaled_ppm)
current_ppm = -max_scaled_ppm;
return current_ppm;
}
static int do_phase_pull_in_sw(struct idtcm_channel *channel,
s32 delta_ns,
u32 max_ffo_ppb)
{
s32 current_ppm = channel->current_freq_scaled_ppm;
u32 duration_ms = MSEC_PER_SEC;
s32 delta_ppm;
s32 ppb;
int err;
/* If the ToD correction is less than PHASE_PULL_IN_MIN_THRESHOLD_NS,
* skip. The error introduced by the ToD adjustment procedure would
* be bigger than the required ToD correction
*/
if (abs(delta_ns) < PHASE_PULL_IN_MIN_THRESHOLD_NS)
return 0;
if (max_ffo_ppb == 0)
max_ffo_ppb = PHASE_PULL_IN_MAX_PPB;
/* For most cases, keep phase pull-in duration 1 second */
ppb = delta_ns;
while (abs(ppb) > max_ffo_ppb) {
duration_ms *= 2;
ppb /= 2;
}
delta_ppm = phase_pull_in_scaled_ppm(current_ppm, ppb);
err = _idtcm_adjfine(channel, delta_ppm);
if (err)
return err;
/* schedule the worker to cancel phase pull-in */
ptp_schedule_worker(channel->ptp_clock,
msecs_to_jiffies(duration_ms) - 1);
channel->phase_pull_in = true;
return 0;
}
static int initialize_operating_mode_with_manual_reference(struct idtcm_channel *channel,
enum manual_reference ref)
{
struct idtcm *idtcm = channel->idtcm;
channel->mode = PTP_PLL_MODE_UNSUPPORTED;
channel->configure_write_frequency = configure_manual_reference_write_frequency;
channel->configure_write_phase = configure_manual_reference_write_phase;
channel->do_phase_pull_in = do_phase_pull_in_sw;
switch (ref) {
case MANU_REF_WRITE_PHASE:
channel->mode = PTP_PLL_MODE_WRITE_PHASE;
break;
case MANU_REF_WRITE_FREQUENCY:
channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY;
break;
default:
dev_warn(idtcm->dev,
"Unsupported MANUAL_REFERENCE: 0x%02x", ref);
}
return 0;
}
static int initialize_operating_mode_with_pll_mode(struct idtcm_channel *channel,
enum pll_mode mode)
{
struct idtcm *idtcm = channel->idtcm;
int err = 0;
channel->mode = PTP_PLL_MODE_UNSUPPORTED;
channel->configure_write_frequency = configure_dpll_mode_write_frequency;
channel->configure_write_phase = configure_dpll_mode_write_phase;
channel->do_phase_pull_in = do_phase_pull_in_fw;
switch (mode) {
case PLL_MODE_WRITE_PHASE:
channel->mode = PTP_PLL_MODE_WRITE_PHASE;
break;
case PLL_MODE_WRITE_FREQUENCY:
channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY;
break;
default:
dev_err(idtcm->dev,
"Unsupported PLL_MODE: 0x%02x", mode);
err = -EINVAL;
}
return err;
}
static int initialize_dco_operating_mode(struct idtcm_channel *channel)
{
enum manual_reference ref = MANU_REF_XO_DPLL;
enum pll_mode mode = PLL_MODE_DISABLED;
struct idtcm *idtcm = channel->idtcm;
int err;
channel->mode = PTP_PLL_MODE_UNSUPPORTED;
err = idtcm_get_pll_mode(channel, &mode);
if (err) {
dev_err(idtcm->dev, "Unable to read pll mode!");
return err;
}
if (mode == PLL_MODE_PLL) {
err = idtcm_get_manual_reference(channel, &ref);
if (err) {
dev_err(idtcm->dev, "Unable to read manual reference!");
return err;
}
err = initialize_operating_mode_with_manual_reference(channel, ref);
} else {
err = initialize_operating_mode_with_pll_mode(channel, mode);
}
if (channel->mode == PTP_PLL_MODE_WRITE_PHASE)
channel->configure_write_frequency(channel);
return err;
}
/* PTP Hardware Clock interface */
/*
* Maximum absolute value for write phase offset in picoseconds
*
* Destination signed register is 32-bit register in resolution of 50ps
*
* 0x7fffffff * 50 = 2147483647 * 50 = 107374182350
*/
static int _idtcm_adjphase(struct idtcm_channel *channel, s32 delta_ns)
{
struct idtcm *idtcm = channel->idtcm;
int err;
u8 i;
u8 buf[4] = {0};
s32 phase_50ps;
s64 offset_ps;
if (channel->mode != PTP_PLL_MODE_WRITE_PHASE) {
err = channel->configure_write_phase(channel);
if (err)
return err;
}
offset_ps = (s64)delta_ns * 1000;
/*
* Check for 32-bit signed max * 50:
*
* 0x7fffffff * 50 = 2147483647 * 50 = 107374182350
*/
if (offset_ps > MAX_ABS_WRITE_PHASE_PICOSECONDS)
offset_ps = MAX_ABS_WRITE_PHASE_PICOSECONDS;
else if (offset_ps < -MAX_ABS_WRITE_PHASE_PICOSECONDS)
offset_ps = -MAX_ABS_WRITE_PHASE_PICOSECONDS;
phase_50ps = div_s64(offset_ps, 50);
for (i = 0; i < 4; i++) {
buf[i] = phase_50ps & 0xff;
phase_50ps >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_phase, DPLL_WR_PHASE,
buf, sizeof(buf));
return err;
}
static int _idtcm_adjfine(struct idtcm_channel *channel, long scaled_ppm)
{
struct idtcm *idtcm = channel->idtcm;
u8 i;
int err;
u8 buf[6] = {0};
s64 fcw;
if (channel->mode != PTP_PLL_MODE_WRITE_FREQUENCY) {
err = channel->configure_write_frequency(channel);
if (err)
return err;
}
/*
* Frequency Control Word unit is: 1.11 * 10^-10 ppm
*
* adjfreq:
* ppb * 10^9
* FCW = ----------
* 111
*
* adjfine:
* ppm_16 * 5^12
* FCW = -------------
* 111 * 2^4
*/
/* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */
fcw = scaled_ppm * 244140625ULL;
fcw = div_s64(fcw, 1776);
for (i = 0; i < 6; i++) {
buf[i] = fcw & 0xff;
fcw >>= 8;
}
err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ,
buf, sizeof(buf));
return err;
}
static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(idtcm->lock);
err = _idtcm_gettime_immediate(channel, ts);
mutex_unlock(idtcm->lock);
if (err)
dev_err(idtcm->dev, "Failed at line %d in %s!",
__LINE__, __func__);
return err;
}
static int idtcm_settime_deprecated(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(idtcm->lock);
err = _idtcm_settime_deprecated(channel, ts);
mutex_unlock(idtcm->lock);
if (err)
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
return err;
}
static int idtcm_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(idtcm->lock);
err = _idtcm_settime(channel, ts, SCSR_TOD_WR_TYPE_SEL_ABSOLUTE);
mutex_unlock(idtcm->lock);
if (err)
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
return err;
}
static int idtcm_adjtime_deprecated(struct ptp_clock_info *ptp, s64 delta)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(idtcm->lock);
err = _idtcm_adjtime_deprecated(channel, delta);
mutex_unlock(idtcm->lock);
if (err)
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
return err;
}
static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts;
enum scsr_tod_write_type_sel type;
int err;
if (channel->phase_pull_in == true)
return 0;
mutex_lock(idtcm->lock);
if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) {
err = channel->do_phase_pull_in(channel, delta, 0);
} else {
if (delta >= 0) {
ts = ns_to_timespec64(delta);
type = SCSR_TOD_WR_TYPE_SEL_DELTA_PLUS;
} else {
ts = ns_to_timespec64(-delta);
type = SCSR_TOD_WR_TYPE_SEL_DELTA_MINUS;
}
err = _idtcm_settime(channel, &ts, type);
}
mutex_unlock(idtcm->lock);
if (err)
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
return err;
}
static int idtcm_adjphase(struct ptp_clock_info *ptp, s32 delta)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
mutex_lock(idtcm->lock);
err = _idtcm_adjphase(channel, delta);
mutex_unlock(idtcm->lock);
if (err)
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
return err;
}
static int idtcm_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err;
if (channel->phase_pull_in == true)
return 0;
if (scaled_ppm == channel->current_freq_scaled_ppm)
return 0;
mutex_lock(idtcm->lock);
err = _idtcm_adjfine(channel, scaled_ppm);
mutex_unlock(idtcm->lock);
if (err)
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
else
channel->current_freq_scaled_ppm = scaled_ppm;
return err;
}
static int idtcm_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps);
struct idtcm *idtcm = channel->idtcm;
int err = -EOPNOTSUPP;
mutex_lock(idtcm->lock);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
if (!on)
err = idtcm_perout_enable(channel, &rq->perout, false);
/* Only accept a 1-PPS aligned to the second. */
else if (rq->perout.start.nsec || rq->perout.period.sec != 1 ||
rq->perout.period.nsec)
err = -ERANGE;
else
err = idtcm_perout_enable(channel, &rq->perout, true);
break;
case PTP_CLK_REQ_EXTTS:
err = idtcm_enable_extts(channel, rq->extts.index,
rq->extts.rsv[0], on);
break;
default:
break;
}
mutex_unlock(idtcm->lock);
if (err)
dev_err(channel->idtcm->dev,
"Failed in %s with err %d!", __func__, err);
return err;
}
static int idtcm_enable_tod(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
struct timespec64 ts = {0, 0};
u16 tod_cfg = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_CFG);
u8 cfg;
int err;
/* STEELAI-366 - Temporary workaround for ts2phc compatibility */
if (0) {
err = idtcm_output_mask_enable(channel, false);
if (err)
return err;
}
/*
* Start the TOD clock ticking.
*/
err = idtcm_read(idtcm, channel->tod_n, tod_cfg, &cfg, sizeof(cfg));
if (err)
return err;
cfg |= TOD_ENABLE;
err = idtcm_write(idtcm, channel->tod_n, tod_cfg, &cfg, sizeof(cfg));
if (err)
return err;
if (idtcm->fw_ver < V487)
return _idtcm_settime_deprecated(channel, &ts);
else
return _idtcm_settime(channel, &ts,
SCSR_TOD_WR_TYPE_SEL_ABSOLUTE);
}
static void idtcm_set_version_info(struct idtcm *idtcm)
{
u8 major;
u8 minor;
u8 hotfix;
u16 product_id;
u8 hw_rev_id;
u8 config_select;
idtcm_read_major_release(idtcm, &major);
idtcm_read_minor_release(idtcm, &minor);
idtcm_read_hotfix_release(idtcm, &hotfix);
idtcm_read_product_id(idtcm, &product_id);
idtcm_read_hw_rev_id(idtcm, &hw_rev_id);
idtcm_read_otp_scsr_config_select(idtcm, &config_select);
snprintf(idtcm->version, sizeof(idtcm->version), "%u.%u.%u",
major, minor, hotfix);
idtcm->fw_ver = idtcm_fw_version(idtcm->version);
dev_info(idtcm->dev,
"%d.%d.%d, Id: 0x%04x HW Rev: %d OTP Config Select: %d",
major, minor, hotfix,
product_id, hw_rev_id, config_select);
}
static const struct ptp_clock_info idtcm_caps = {
.owner = THIS_MODULE,
.max_adj = 244000,
.n_per_out = 12,
.n_ext_ts = MAX_TOD,
.adjphase = &idtcm_adjphase,
.adjfine = &idtcm_adjfine,
.adjtime = &idtcm_adjtime,
.gettime64 = &idtcm_gettime,
.settime64 = &idtcm_settime,
.enable = &idtcm_enable,
.do_aux_work = &idtcm_work_handler,
};
static const struct ptp_clock_info idtcm_caps_deprecated = {
.owner = THIS_MODULE,
.max_adj = 244000,
.n_per_out = 12,
.n_ext_ts = MAX_TOD,
.adjphase = &idtcm_adjphase,
.adjfine = &idtcm_adjfine,
.adjtime = &idtcm_adjtime_deprecated,
.gettime64 = &idtcm_gettime,
.settime64 = &idtcm_settime_deprecated,
.enable = &idtcm_enable,
.do_aux_work = &idtcm_work_handler,
};
static int configure_channel_pll(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
int err = 0;
switch (channel->pll) {
case 0:
channel->dpll_freq = DPLL_FREQ_0;
channel->dpll_n = DPLL_0;
channel->hw_dpll_n = HW_DPLL_0;
channel->dpll_phase = DPLL_PHASE_0;
channel->dpll_ctrl_n = DPLL_CTRL_0;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0;
break;
case 1:
channel->dpll_freq = DPLL_FREQ_1;
channel->dpll_n = DPLL_1;
channel->hw_dpll_n = HW_DPLL_1;
channel->dpll_phase = DPLL_PHASE_1;
channel->dpll_ctrl_n = DPLL_CTRL_1;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1;
break;
case 2:
channel->dpll_freq = DPLL_FREQ_2;
channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_2);
channel->hw_dpll_n = HW_DPLL_2;
channel->dpll_phase = DPLL_PHASE_2;
channel->dpll_ctrl_n = DPLL_CTRL_2;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2;
break;
case 3:
channel->dpll_freq = DPLL_FREQ_3;
channel->dpll_n = DPLL_3;
channel->hw_dpll_n = HW_DPLL_3;
channel->dpll_phase = DPLL_PHASE_3;
channel->dpll_ctrl_n = DPLL_CTRL_3;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3;
break;
case 4:
channel->dpll_freq = DPLL_FREQ_4;
channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_4);
channel->hw_dpll_n = HW_DPLL_4;
channel->dpll_phase = DPLL_PHASE_4;
channel->dpll_ctrl_n = DPLL_CTRL_4;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_4;
break;
case 5:
channel->dpll_freq = DPLL_FREQ_5;
channel->dpll_n = DPLL_5;
channel->hw_dpll_n = HW_DPLL_5;
channel->dpll_phase = DPLL_PHASE_5;
channel->dpll_ctrl_n = DPLL_CTRL_5;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_5;
break;
case 6:
channel->dpll_freq = DPLL_FREQ_6;
channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_6);
channel->hw_dpll_n = HW_DPLL_6;
channel->dpll_phase = DPLL_PHASE_6;
channel->dpll_ctrl_n = DPLL_CTRL_6;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_6;
break;
case 7:
channel->dpll_freq = DPLL_FREQ_7;
channel->dpll_n = DPLL_7;
channel->hw_dpll_n = HW_DPLL_7;
channel->dpll_phase = DPLL_PHASE_7;
channel->dpll_ctrl_n = DPLL_CTRL_7;
channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_7;
break;
default:
err = -EINVAL;
}
return err;
}
/*
* Compensate for the PTP DCO input-to-output delay.
* This delay is 18 FOD cycles.
*/
static u32 idtcm_get_dco_delay(struct idtcm_channel *channel)
{
struct idtcm *idtcm = channel->idtcm;
u8 mbuf[8] = {0};
u8 nbuf[2] = {0};
u32 fodFreq;
int err;
u64 m;
u16 n;
err = idtcm_read(idtcm, channel->dpll_ctrl_n,
DPLL_CTRL_DPLL_FOD_FREQ, mbuf, 6);
if (err)
return 0;
err = idtcm_read(idtcm, channel->dpll_ctrl_n,
DPLL_CTRL_DPLL_FOD_FREQ + 6, nbuf, 2);
if (err)
return 0;
m = get_unaligned_le64(mbuf);
n = get_unaligned_le16(nbuf);
if (n == 0)
n = 1;
fodFreq = (u32)div_u64(m, n);
if (fodFreq >= 500000000)
return 18 * (u32)div_u64(NSEC_PER_SEC, fodFreq);
return 0;
}
static int configure_channel_tod(struct idtcm_channel *channel, u32 index)
{
enum fw_version fw_ver = channel->idtcm->fw_ver;
/* Set tod addresses */
switch (index) {
case 0:
channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_0);
channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_0);
channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_0);
channel->sync_src = SYNC_SOURCE_DPLL0_TOD_PPS;
break;
case 1:
channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_1);
channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_1);
channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_1);
channel->sync_src = SYNC_SOURCE_DPLL1_TOD_PPS;
break;
case 2:
channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_2);
channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_2);
channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_2);
channel->sync_src = SYNC_SOURCE_DPLL2_TOD_PPS;
break;
case 3:
channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_3);
channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_3);
channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_3);
channel->sync_src = SYNC_SOURCE_DPLL3_TOD_PPS;
break;
default:
return -EINVAL;
}
return 0;
}
static int idtcm_enable_channel(struct idtcm *idtcm, u32 index)
{
struct idtcm_channel *channel;
int err;
if (!(index < MAX_TOD))
return -EINVAL;
channel = &idtcm->channel[index];
channel->idtcm = idtcm;
channel->current_freq_scaled_ppm = 0;
/* Set pll addresses */
err = configure_channel_pll(channel);
if (err)
return err;
/* Set tod addresses */
err = configure_channel_tod(channel, index);
if (err)
return err;
if (idtcm->fw_ver < V487)
channel->caps = idtcm_caps_deprecated;
else
channel->caps = idtcm_caps;
snprintf(channel->caps.name, sizeof(channel->caps.name),
"IDT CM TOD%u", index);
err = initialize_dco_operating_mode(channel);
if (err)
return err;
err = idtcm_enable_tod(channel);
if (err) {
dev_err(idtcm->dev,
"Failed at line %d in %s!", __LINE__, __func__);
return err;
}
channel->dco_delay = idtcm_get_dco_delay(channel);
channel->ptp_clock = ptp_clock_register(&channel->caps, NULL);
if (IS_ERR(channel->ptp_clock)) {
err = PTR_ERR(channel->ptp_clock);
channel->ptp_clock = NULL;
return err;
}
if (!channel->ptp_clock)
return -ENOTSUPP;
dev_info(idtcm->dev, "PLL%d registered as ptp%d",
index, channel->ptp_clock->index);
return 0;
}
static int idtcm_enable_extts_channel(struct idtcm *idtcm, u32 index)
{
struct idtcm_channel *channel;
int err;
if (!(index < MAX_TOD))
return -EINVAL;
channel = &idtcm->channel[index];
channel->idtcm = idtcm;
/* Set tod addresses */
err = configure_channel_tod(channel, index);
if (err)
return err;
channel->idtcm = idtcm;
return 0;
}
static void idtcm_extts_check(struct work_struct *work)
{
struct idtcm *idtcm = container_of(work, struct idtcm, extts_work.work);
int err, i;
if (idtcm->extts_mask == 0)
return;
mutex_lock(idtcm->lock);
for (i = 0; i < MAX_TOD; i++) {
u8 mask = 1 << i;
if (idtcm->extts_mask & mask) {
err = idtcm_extts_check_channel(idtcm, i);
/* trigger clears itself, so clear the mask */
if (err == 0)
idtcm->extts_mask &= ~mask;
}
}
if (idtcm->extts_mask)
schedule_delayed_work(&idtcm->extts_work,
msecs_to_jiffies(EXTTS_PERIOD_MS));
mutex_unlock(idtcm->lock);
}
static void ptp_clock_unregister_all(struct idtcm *idtcm)
{
u8 i;
struct idtcm_channel *channel;
for (i = 0; i < MAX_TOD; i++) {
channel = &idtcm->channel[i];
if (channel->ptp_clock)
ptp_clock_unregister(channel->ptp_clock);
}
}
static void set_default_masks(struct idtcm *idtcm)
{
idtcm->tod_mask = DEFAULT_TOD_MASK;
idtcm->extts_mask = 0;
idtcm->channel[0].pll = DEFAULT_TOD0_PTP_PLL;
idtcm->channel[1].pll = DEFAULT_TOD1_PTP_PLL;
idtcm->channel[2].pll = DEFAULT_TOD2_PTP_PLL;
idtcm->channel[3].pll = DEFAULT_TOD3_PTP_PLL;
idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0;
idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1;
idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2;
idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3;
}
static int idtcm_probe(struct platform_device *pdev)
{
struct rsmu_ddata *ddata = dev_get_drvdata(pdev->dev.parent);
struct idtcm *idtcm;
int err;
u8 i;
idtcm = devm_kzalloc(&pdev->dev, sizeof(struct idtcm), GFP_KERNEL);
if (!idtcm)
return -ENOMEM;
idtcm->dev = &pdev->dev;
idtcm->mfd = pdev->dev.parent;
idtcm->lock = &ddata->lock;
idtcm->regmap = ddata->regmap;
idtcm->calculate_overhead_flag = 0;
INIT_DELAYED_WORK(&idtcm->extts_work, idtcm_extts_check);
set_default_masks(idtcm);
mutex_lock(idtcm->lock);
idtcm_set_version_info(idtcm);
err = idtcm_load_firmware(idtcm, &pdev->dev);
if (err)
dev_warn(idtcm->dev, "loading firmware failed with %d", err);
wait_for_chip_ready(idtcm);
if (idtcm->tod_mask) {
for (i = 0; i < MAX_TOD; i++) {
if (idtcm->tod_mask & (1 << i))
err = idtcm_enable_channel(idtcm, i);
else
err = idtcm_enable_extts_channel(idtcm, i);
if (err) {
dev_err(idtcm->dev,
"idtcm_enable_channel %d failed!", i);
break;
}
}
} else {
dev_err(idtcm->dev,
"no PLLs flagged as PHCs, nothing to do");
err = -ENODEV;
}
mutex_unlock(idtcm->lock);
if (err) {
ptp_clock_unregister_all(idtcm);
return err;
}
platform_set_drvdata(pdev, idtcm);
return 0;
}
static int idtcm_remove(struct platform_device *pdev)
{
struct idtcm *idtcm = platform_get_drvdata(pdev);
ptp_clock_unregister_all(idtcm);
cancel_delayed_work_sync(&idtcm->extts_work);
return 0;
}
static struct platform_driver idtcm_driver = {
.driver = {
.name = "8a3400x-phc",
},
.probe = idtcm_probe,
.remove = idtcm_remove,
};
module_platform_driver(idtcm_driver);