| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * access_tracking_perf_test |
| * |
| * Copyright (C) 2021, Google, Inc. |
| * |
| * This test measures the performance effects of KVM's access tracking. |
| * Access tracking is driven by the MMU notifiers test_young, clear_young, and |
| * clear_flush_young. These notifiers do not have a direct userspace API, |
| * however the clear_young notifier can be triggered by marking a pages as idle |
| * in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to |
| * enable access tracking on guest memory. |
| * |
| * To measure performance this test runs a VM with a configurable number of |
| * vCPUs that each touch every page in disjoint regions of memory. Performance |
| * is measured in the time it takes all vCPUs to finish touching their |
| * predefined region. |
| * |
| * Note that a deterministic correctness test of access tracking is not possible |
| * by using page_idle as it exists today. This is for a few reasons: |
| * |
| * 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This |
| * means subsequent guest accesses are not guaranteed to see page table |
| * updates made by KVM until some time in the future. |
| * |
| * 2. page_idle only operates on LRU pages. Newly allocated pages are not |
| * immediately allocated to LRU lists. Instead they are held in a "pagevec", |
| * which is drained to LRU lists some time in the future. There is no |
| * userspace API to force this drain to occur. |
| * |
| * These limitations are worked around in this test by using a large enough |
| * region of memory for each vCPU such that the number of translations cached in |
| * the TLB and the number of pages held in pagevecs are a small fraction of the |
| * overall workload. And if either of those conditions are not true this test |
| * will fail rather than silently passing. |
| */ |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <pthread.h> |
| #include <sys/mman.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| |
| #include "kvm_util.h" |
| #include "test_util.h" |
| #include "perf_test_util.h" |
| #include "guest_modes.h" |
| |
| /* Global variable used to synchronize all of the vCPU threads. */ |
| static int iteration; |
| |
| /* Defines what vCPU threads should do during a given iteration. */ |
| static enum { |
| /* Run the vCPU to access all its memory. */ |
| ITERATION_ACCESS_MEMORY, |
| /* Mark the vCPU's memory idle in page_idle. */ |
| ITERATION_MARK_IDLE, |
| } iteration_work; |
| |
| /* Set to true when vCPU threads should exit. */ |
| static bool done; |
| |
| /* The iteration that was last completed by each vCPU. */ |
| static int vcpu_last_completed_iteration[KVM_MAX_VCPUS]; |
| |
| /* Whether to overlap the regions of memory vCPUs access. */ |
| static bool overlap_memory_access; |
| |
| struct test_params { |
| /* The backing source for the region of memory. */ |
| enum vm_mem_backing_src_type backing_src; |
| |
| /* The amount of memory to allocate for each vCPU. */ |
| uint64_t vcpu_memory_bytes; |
| |
| /* The number of vCPUs to create in the VM. */ |
| int vcpus; |
| }; |
| |
| static uint64_t pread_uint64(int fd, const char *filename, uint64_t index) |
| { |
| uint64_t value; |
| off_t offset = index * sizeof(value); |
| |
| TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value), |
| "pread from %s offset 0x%" PRIx64 " failed!", |
| filename, offset); |
| |
| return value; |
| |
| } |
| |
| #define PAGEMAP_PRESENT (1ULL << 63) |
| #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1) |
| |
| static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva) |
| { |
| uint64_t hva = (uint64_t) addr_gva2hva(vm, gva); |
| uint64_t entry; |
| uint64_t pfn; |
| |
| entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize()); |
| if (!(entry & PAGEMAP_PRESENT)) |
| return 0; |
| |
| pfn = entry & PAGEMAP_PFN_MASK; |
| if (!pfn) { |
| print_skip("Looking up PFNs requires CAP_SYS_ADMIN"); |
| exit(KSFT_SKIP); |
| } |
| |
| return pfn; |
| } |
| |
| static bool is_page_idle(int page_idle_fd, uint64_t pfn) |
| { |
| uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64); |
| |
| return !!((bits >> (pfn % 64)) & 1); |
| } |
| |
| static void mark_page_idle(int page_idle_fd, uint64_t pfn) |
| { |
| uint64_t bits = 1ULL << (pfn % 64); |
| |
| TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8, |
| "Set page_idle bits for PFN 0x%" PRIx64, pfn); |
| } |
| |
| static void mark_vcpu_memory_idle(struct kvm_vm *vm, int vcpu_id) |
| { |
| uint64_t base_gva = perf_test_args.vcpu_args[vcpu_id].gva; |
| uint64_t pages = perf_test_args.vcpu_args[vcpu_id].pages; |
| uint64_t page; |
| uint64_t still_idle = 0; |
| uint64_t no_pfn = 0; |
| int page_idle_fd; |
| int pagemap_fd; |
| |
| /* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */ |
| if (overlap_memory_access && vcpu_id) |
| return; |
| |
| page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); |
| TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle."); |
| |
| pagemap_fd = open("/proc/self/pagemap", O_RDONLY); |
| TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap."); |
| |
| for (page = 0; page < pages; page++) { |
| uint64_t gva = base_gva + page * perf_test_args.guest_page_size; |
| uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva); |
| |
| if (!pfn) { |
| no_pfn++; |
| continue; |
| } |
| |
| if (is_page_idle(page_idle_fd, pfn)) { |
| still_idle++; |
| continue; |
| } |
| |
| mark_page_idle(page_idle_fd, pfn); |
| } |
| |
| /* |
| * Assumption: Less than 1% of pages are going to be swapped out from |
| * under us during this test. |
| */ |
| TEST_ASSERT(no_pfn < pages / 100, |
| "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.", |
| vcpu_id, no_pfn, pages); |
| |
| /* |
| * Test that at least 90% of memory has been marked idle (the rest might |
| * not be marked idle because the pages have not yet made it to an LRU |
| * list or the translations are still cached in the TLB). 90% is |
| * arbitrary; high enough that we ensure most memory access went through |
| * access tracking but low enough as to not make the test too brittle |
| * over time and across architectures. |
| */ |
| TEST_ASSERT(still_idle < pages / 10, |
| "vCPU%d: Too many pages still idle (%"PRIu64 " out of %" |
| PRIu64 ").\n", |
| vcpu_id, still_idle, pages); |
| |
| close(page_idle_fd); |
| close(pagemap_fd); |
| } |
| |
| static void assert_ucall(struct kvm_vm *vm, uint32_t vcpu_id, |
| uint64_t expected_ucall) |
| { |
| struct ucall uc; |
| uint64_t actual_ucall = get_ucall(vm, vcpu_id, &uc); |
| |
| TEST_ASSERT(expected_ucall == actual_ucall, |
| "Guest exited unexpectedly (expected ucall %" PRIu64 |
| ", got %" PRIu64 ")", |
| expected_ucall, actual_ucall); |
| } |
| |
| static bool spin_wait_for_next_iteration(int *current_iteration) |
| { |
| int last_iteration = *current_iteration; |
| |
| do { |
| if (READ_ONCE(done)) |
| return false; |
| |
| *current_iteration = READ_ONCE(iteration); |
| } while (last_iteration == *current_iteration); |
| |
| return true; |
| } |
| |
| static void vcpu_thread_main(struct perf_test_vcpu_args *vcpu_args) |
| { |
| struct kvm_vm *vm = perf_test_args.vm; |
| int vcpu_id = vcpu_args->vcpu_id; |
| int current_iteration = 0; |
| |
| while (spin_wait_for_next_iteration(¤t_iteration)) { |
| switch (READ_ONCE(iteration_work)) { |
| case ITERATION_ACCESS_MEMORY: |
| vcpu_run(vm, vcpu_id); |
| assert_ucall(vm, vcpu_id, UCALL_SYNC); |
| break; |
| case ITERATION_MARK_IDLE: |
| mark_vcpu_memory_idle(vm, vcpu_id); |
| break; |
| }; |
| |
| vcpu_last_completed_iteration[vcpu_id] = current_iteration; |
| } |
| } |
| |
| static void spin_wait_for_vcpu(int vcpu_id, int target_iteration) |
| { |
| while (READ_ONCE(vcpu_last_completed_iteration[vcpu_id]) != |
| target_iteration) { |
| continue; |
| } |
| } |
| |
| /* The type of memory accesses to perform in the VM. */ |
| enum access_type { |
| ACCESS_READ, |
| ACCESS_WRITE, |
| }; |
| |
| static void run_iteration(struct kvm_vm *vm, int vcpus, const char *description) |
| { |
| struct timespec ts_start; |
| struct timespec ts_elapsed; |
| int next_iteration; |
| int vcpu_id; |
| |
| /* Kick off the vCPUs by incrementing iteration. */ |
| next_iteration = ++iteration; |
| |
| clock_gettime(CLOCK_MONOTONIC, &ts_start); |
| |
| /* Wait for all vCPUs to finish the iteration. */ |
| for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++) |
| spin_wait_for_vcpu(vcpu_id, next_iteration); |
| |
| ts_elapsed = timespec_elapsed(ts_start); |
| pr_info("%-30s: %ld.%09lds\n", |
| description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec); |
| } |
| |
| static void access_memory(struct kvm_vm *vm, int vcpus, enum access_type access, |
| const char *description) |
| { |
| perf_test_set_wr_fract(vm, (access == ACCESS_READ) ? INT_MAX : 1); |
| iteration_work = ITERATION_ACCESS_MEMORY; |
| run_iteration(vm, vcpus, description); |
| } |
| |
| static void mark_memory_idle(struct kvm_vm *vm, int vcpus) |
| { |
| /* |
| * Even though this parallelizes the work across vCPUs, this is still a |
| * very slow operation because page_idle forces the test to mark one pfn |
| * at a time and the clear_young notifier serializes on the KVM MMU |
| * lock. |
| */ |
| pr_debug("Marking VM memory idle (slow)...\n"); |
| iteration_work = ITERATION_MARK_IDLE; |
| run_iteration(vm, vcpus, "Mark memory idle"); |
| } |
| |
| static void run_test(enum vm_guest_mode mode, void *arg) |
| { |
| struct test_params *params = arg; |
| struct kvm_vm *vm; |
| int vcpus = params->vcpus; |
| |
| vm = perf_test_create_vm(mode, vcpus, params->vcpu_memory_bytes, 1, |
| params->backing_src, !overlap_memory_access); |
| |
| perf_test_start_vcpu_threads(vcpus, vcpu_thread_main); |
| |
| pr_info("\n"); |
| access_memory(vm, vcpus, ACCESS_WRITE, "Populating memory"); |
| |
| /* As a control, read and write to the populated memory first. */ |
| access_memory(vm, vcpus, ACCESS_WRITE, "Writing to populated memory"); |
| access_memory(vm, vcpus, ACCESS_READ, "Reading from populated memory"); |
| |
| /* Repeat on memory that has been marked as idle. */ |
| mark_memory_idle(vm, vcpus); |
| access_memory(vm, vcpus, ACCESS_WRITE, "Writing to idle memory"); |
| mark_memory_idle(vm, vcpus); |
| access_memory(vm, vcpus, ACCESS_READ, "Reading from idle memory"); |
| |
| /* Set done to signal the vCPU threads to exit */ |
| done = true; |
| |
| perf_test_join_vcpu_threads(vcpus); |
| perf_test_destroy_vm(vm); |
| } |
| |
| static void help(char *name) |
| { |
| puts(""); |
| printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n", |
| name); |
| puts(""); |
| printf(" -h: Display this help message."); |
| guest_modes_help(); |
| printf(" -b: specify the size of the memory region which should be\n" |
| " dirtied by each vCPU. e.g. 10M or 3G.\n" |
| " (default: 1G)\n"); |
| printf(" -v: specify the number of vCPUs to run.\n"); |
| printf(" -o: Overlap guest memory accesses instead of partitioning\n" |
| " them into a separate region of memory for each vCPU.\n"); |
| backing_src_help("-s"); |
| puts(""); |
| exit(0); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct test_params params = { |
| .backing_src = DEFAULT_VM_MEM_SRC, |
| .vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE, |
| .vcpus = 1, |
| }; |
| int page_idle_fd; |
| int opt; |
| |
| guest_modes_append_default(); |
| |
| while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) { |
| switch (opt) { |
| case 'm': |
| guest_modes_cmdline(optarg); |
| break; |
| case 'b': |
| params.vcpu_memory_bytes = parse_size(optarg); |
| break; |
| case 'v': |
| params.vcpus = atoi(optarg); |
| break; |
| case 'o': |
| overlap_memory_access = true; |
| break; |
| case 's': |
| params.backing_src = parse_backing_src_type(optarg); |
| break; |
| case 'h': |
| default: |
| help(argv[0]); |
| break; |
| } |
| } |
| |
| page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); |
| if (page_idle_fd < 0) { |
| print_skip("CONFIG_IDLE_PAGE_TRACKING is not enabled"); |
| exit(KSFT_SKIP); |
| } |
| close(page_idle_fd); |
| |
| for_each_guest_mode(run_test, ¶ms); |
| |
| return 0; |
| } |