| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * spu_switch.c |
| * |
| * (C) Copyright IBM Corp. 2005 |
| * |
| * Author: Mark Nutter <mnutter@us.ibm.com> |
| * |
| * Host-side part of SPU context switch sequence outlined in |
| * Synergistic Processor Element, Book IV. |
| * |
| * A fully premptive switch of an SPE is very expensive in terms |
| * of time and system resources. SPE Book IV indicates that SPE |
| * allocation should follow a "serially reusable device" model, |
| * in which the SPE is assigned a task until it completes. When |
| * this is not possible, this sequence may be used to premptively |
| * save, and then later (optionally) restore the context of a |
| * program executing on an SPE. |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/errno.h> |
| #include <linux/hardirq.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/vmalloc.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| |
| #include <asm/io.h> |
| #include <asm/spu.h> |
| #include <asm/spu_priv1.h> |
| #include <asm/spu_csa.h> |
| #include <asm/mmu_context.h> |
| |
| #include "spufs.h" |
| |
| #include "spu_save_dump.h" |
| #include "spu_restore_dump.h" |
| |
| #if 0 |
| #define POLL_WHILE_TRUE(_c) { \ |
| do { \ |
| } while (_c); \ |
| } |
| #else |
| #define RELAX_SPIN_COUNT 1000 |
| #define POLL_WHILE_TRUE(_c) { \ |
| do { \ |
| int _i; \ |
| for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \ |
| cpu_relax(); \ |
| } \ |
| if (unlikely(_c)) yield(); \ |
| else break; \ |
| } while (_c); \ |
| } |
| #endif /* debug */ |
| |
| #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c)) |
| |
| static inline void acquire_spu_lock(struct spu *spu) |
| { |
| /* Save, Step 1: |
| * Restore, Step 1: |
| * Acquire SPU-specific mutual exclusion lock. |
| * TBD. |
| */ |
| } |
| |
| static inline void release_spu_lock(struct spu *spu) |
| { |
| /* Restore, Step 76: |
| * Release SPU-specific mutual exclusion lock. |
| * TBD. |
| */ |
| } |
| |
| static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| u32 isolate_state; |
| |
| /* Save, Step 2: |
| * Save, Step 6: |
| * If SPU_Status[E,L,IS] any field is '1', this |
| * SPU is in isolate state and cannot be context |
| * saved at this time. |
| */ |
| isolate_state = SPU_STATUS_ISOLATED_STATE | |
| SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS; |
| return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0; |
| } |
| |
| static inline void disable_interrupts(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 3: |
| * Restore, Step 2: |
| * Save INT_Mask_class0 in CSA. |
| * Write INT_MASK_class0 with value of 0. |
| * Save INT_Mask_class1 in CSA. |
| * Write INT_MASK_class1 with value of 0. |
| * Save INT_Mask_class2 in CSA. |
| * Write INT_MASK_class2 with value of 0. |
| * Synchronize all three interrupts to be sure |
| * we no longer execute a handler on another CPU. |
| */ |
| spin_lock_irq(&spu->register_lock); |
| if (csa) { |
| csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0); |
| csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1); |
| csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2); |
| } |
| spu_int_mask_set(spu, 0, 0ul); |
| spu_int_mask_set(spu, 1, 0ul); |
| spu_int_mask_set(spu, 2, 0ul); |
| eieio(); |
| spin_unlock_irq(&spu->register_lock); |
| |
| /* |
| * This flag needs to be set before calling synchronize_irq so |
| * that the update will be visible to the relevant handlers |
| * via a simple load. |
| */ |
| set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); |
| clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); |
| synchronize_irq(spu->irqs[0]); |
| synchronize_irq(spu->irqs[1]); |
| synchronize_irq(spu->irqs[2]); |
| } |
| |
| static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 4: |
| * Restore, Step 25. |
| * Set a software watchdog timer, which specifies the |
| * maximum allowable time for a context save sequence. |
| * |
| * For present, this implementation will not set a global |
| * watchdog timer, as virtualization & variable system load |
| * may cause unpredictable execution times. |
| */ |
| } |
| |
| static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 5: |
| * Restore, Step 3: |
| * Inhibit user-space access (if provided) to this |
| * SPU by unmapping the virtual pages assigned to |
| * the SPU memory-mapped I/O (MMIO) for problem |
| * state. TBD. |
| */ |
| } |
| |
| static inline void set_switch_pending(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 7: |
| * Restore, Step 5: |
| * Set a software context switch pending flag. |
| * Done above in Step 3 - disable_interrupts(). |
| */ |
| } |
| |
| static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 8: |
| * Suspend DMA and save MFC_CNTL. |
| */ |
| switch (in_be64(&priv2->mfc_control_RW) & |
| MFC_CNTL_SUSPEND_DMA_STATUS_MASK) { |
| case MFC_CNTL_SUSPEND_IN_PROGRESS: |
| POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == |
| MFC_CNTL_SUSPEND_COMPLETE); |
| fallthrough; |
| case MFC_CNTL_SUSPEND_COMPLETE: |
| if (csa) |
| csa->priv2.mfc_control_RW = |
| in_be64(&priv2->mfc_control_RW) | |
| MFC_CNTL_SUSPEND_DMA_QUEUE; |
| break; |
| case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION: |
| out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); |
| POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == |
| MFC_CNTL_SUSPEND_COMPLETE); |
| if (csa) |
| csa->priv2.mfc_control_RW = |
| in_be64(&priv2->mfc_control_RW) & |
| ~MFC_CNTL_SUSPEND_DMA_QUEUE & |
| ~MFC_CNTL_SUSPEND_MASK; |
| break; |
| } |
| } |
| |
| static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 9: |
| * Save SPU_Runcntl in the CSA. This value contains |
| * the "Application Desired State". |
| */ |
| csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW); |
| } |
| |
| static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 10: |
| * Save MFC_SR1 in the CSA. |
| */ |
| csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu); |
| } |
| |
| static inline void save_spu_status(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 11: |
| * Read SPU_Status[R], and save to CSA. |
| */ |
| if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) { |
| csa->prob.spu_status_R = in_be32(&prob->spu_status_R); |
| } else { |
| u32 stopped; |
| |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| stopped = |
| SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | |
| SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; |
| if ((in_be32(&prob->spu_status_R) & stopped) == 0) |
| csa->prob.spu_status_R = SPU_STATUS_RUNNING; |
| else |
| csa->prob.spu_status_R = in_be32(&prob->spu_status_R); |
| } |
| } |
| |
| static inline void save_mfc_stopped_status(struct spu_state *csa, |
| struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| const u64 mask = MFC_CNTL_DECREMENTER_RUNNING | |
| MFC_CNTL_DMA_QUEUES_EMPTY; |
| |
| /* Save, Step 12: |
| * Read MFC_CNTL[Ds]. Update saved copy of |
| * CSA.MFC_CNTL[Ds]. |
| * |
| * update: do the same with MFC_CNTL[Q]. |
| */ |
| csa->priv2.mfc_control_RW &= ~mask; |
| csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask; |
| } |
| |
| static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 13: |
| * Write MFC_CNTL[Dh] set to a '1' to halt |
| * the decrementer. |
| */ |
| out_be64(&priv2->mfc_control_RW, |
| MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK); |
| eieio(); |
| } |
| |
| static inline void save_timebase(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 14: |
| * Read PPE Timebase High and Timebase low registers |
| * and save in CSA. TBD. |
| */ |
| csa->suspend_time = get_cycles(); |
| } |
| |
| static inline void remove_other_spu_access(struct spu_state *csa, |
| struct spu *spu) |
| { |
| /* Save, Step 15: |
| * Remove other SPU access to this SPU by unmapping |
| * this SPU's pages from their address space. TBD. |
| */ |
| } |
| |
| static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 16: |
| * Restore, Step 11. |
| * Write SPU_MSSync register. Poll SPU_MSSync[P] |
| * for a value of 0. |
| */ |
| out_be64(&prob->spc_mssync_RW, 1UL); |
| POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING); |
| } |
| |
| static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 17: |
| * Restore, Step 12. |
| * Restore, Step 48. |
| * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register. |
| * Then issue a PPE sync instruction. |
| */ |
| spu_tlb_invalidate(spu); |
| mb(); |
| } |
| |
| static inline void handle_pending_interrupts(struct spu_state *csa, |
| struct spu *spu) |
| { |
| /* Save, Step 18: |
| * Handle any pending interrupts from this SPU |
| * here. This is OS or hypervisor specific. One |
| * option is to re-enable interrupts to handle any |
| * pending interrupts, with the interrupt handlers |
| * recognizing the software Context Switch Pending |
| * flag, to ensure the SPU execution or MFC command |
| * queue is not restarted. TBD. |
| */ |
| } |
| |
| static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| int i; |
| |
| /* Save, Step 19: |
| * If MFC_Cntl[Se]=0 then save |
| * MFC command queues. |
| */ |
| if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) { |
| for (i = 0; i < 8; i++) { |
| csa->priv2.puq[i].mfc_cq_data0_RW = |
| in_be64(&priv2->puq[i].mfc_cq_data0_RW); |
| csa->priv2.puq[i].mfc_cq_data1_RW = |
| in_be64(&priv2->puq[i].mfc_cq_data1_RW); |
| csa->priv2.puq[i].mfc_cq_data2_RW = |
| in_be64(&priv2->puq[i].mfc_cq_data2_RW); |
| csa->priv2.puq[i].mfc_cq_data3_RW = |
| in_be64(&priv2->puq[i].mfc_cq_data3_RW); |
| } |
| for (i = 0; i < 16; i++) { |
| csa->priv2.spuq[i].mfc_cq_data0_RW = |
| in_be64(&priv2->spuq[i].mfc_cq_data0_RW); |
| csa->priv2.spuq[i].mfc_cq_data1_RW = |
| in_be64(&priv2->spuq[i].mfc_cq_data1_RW); |
| csa->priv2.spuq[i].mfc_cq_data2_RW = |
| in_be64(&priv2->spuq[i].mfc_cq_data2_RW); |
| csa->priv2.spuq[i].mfc_cq_data3_RW = |
| in_be64(&priv2->spuq[i].mfc_cq_data3_RW); |
| } |
| } |
| } |
| |
| static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 20: |
| * Save the PPU_QueryMask register |
| * in the CSA. |
| */ |
| csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW); |
| } |
| |
| static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 21: |
| * Save the PPU_QueryType register |
| * in the CSA. |
| */ |
| csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW); |
| } |
| |
| static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save the Prxy_TagStatus register in the CSA. |
| * |
| * It is unnecessary to restore dma_tagstatus_R, however, |
| * dma_tagstatus_R in the CSA is accessed via backing_ops, so |
| * we must save it. |
| */ |
| csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R); |
| } |
| |
| static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 22: |
| * Save the MFC_CSR_TSQ register |
| * in the LSCSA. |
| */ |
| csa->priv2.spu_tag_status_query_RW = |
| in_be64(&priv2->spu_tag_status_query_RW); |
| } |
| |
| static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 23: |
| * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2 |
| * registers in the CSA. |
| */ |
| csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW); |
| csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW); |
| } |
| |
| static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 24: |
| * Save the MFC_CSR_ATO register in |
| * the CSA. |
| */ |
| csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW); |
| } |
| |
| static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 25: |
| * Save the MFC_TCLASS_ID register in |
| * the CSA. |
| */ |
| csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu); |
| } |
| |
| static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 26: |
| * Restore, Step 23. |
| * Write the MFC_TCLASS_ID register with |
| * the value 0x10000000. |
| */ |
| spu_mfc_tclass_id_set(spu, 0x10000000); |
| eieio(); |
| } |
| |
| static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 27: |
| * Restore, Step 14. |
| * Write MFC_CNTL[Pc]=1 (purge queue). |
| */ |
| out_be64(&priv2->mfc_control_RW, |
| MFC_CNTL_PURGE_DMA_REQUEST | |
| MFC_CNTL_SUSPEND_MASK); |
| eieio(); |
| } |
| |
| static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 28: |
| * Poll MFC_CNTL[Ps] until value '11' is read |
| * (purge complete). |
| */ |
| POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| MFC_CNTL_PURGE_DMA_STATUS_MASK) == |
| MFC_CNTL_PURGE_DMA_COMPLETE); |
| } |
| |
| static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 30: |
| * Restore, Step 18: |
| * Write MFC_SR1 with MFC_SR1[D=0,S=1] and |
| * MFC_SR1[TL,R,Pr,T] set correctly for the |
| * OS specific environment. |
| * |
| * Implementation note: The SPU-side code |
| * for save/restore is privileged, so the |
| * MFC_SR1[Pr] bit is not set. |
| * |
| */ |
| spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK | |
| MFC_STATE1_RELOCATE_MASK | |
| MFC_STATE1_BUS_TLBIE_MASK)); |
| } |
| |
| static inline void save_spu_npc(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 31: |
| * Save SPU_NPC in the CSA. |
| */ |
| csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW); |
| } |
| |
| static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 32: |
| * Save SPU_PrivCntl in the CSA. |
| */ |
| csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW); |
| } |
| |
| static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 33: |
| * Restore, Step 16: |
| * Write SPU_PrivCntl[S,Le,A] fields reset to 0. |
| */ |
| out_be64(&priv2->spu_privcntl_RW, 0UL); |
| eieio(); |
| } |
| |
| static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 34: |
| * Save SPU_LSLR in the CSA. |
| */ |
| csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW); |
| } |
| |
| static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 35: |
| * Restore, Step 17. |
| * Reset SPU_LSLR. |
| */ |
| out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK); |
| eieio(); |
| } |
| |
| static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 36: |
| * Save SPU_Cfg in the CSA. |
| */ |
| csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW); |
| } |
| |
| static inline void save_pm_trace(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 37: |
| * Save PM_Trace_Tag_Wait_Mask in the CSA. |
| * Not performed by this implementation. |
| */ |
| } |
| |
| static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 38: |
| * Save RA_GROUP_ID register and the |
| * RA_ENABLE reigster in the CSA. |
| */ |
| csa->priv1.resource_allocation_groupID_RW = |
| spu_resource_allocation_groupID_get(spu); |
| csa->priv1.resource_allocation_enable_RW = |
| spu_resource_allocation_enable_get(spu); |
| } |
| |
| static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 39: |
| * Save MB_Stat register in the CSA. |
| */ |
| csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R); |
| } |
| |
| static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 40: |
| * Save the PPU_MB register in the CSA. |
| */ |
| csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R); |
| } |
| |
| static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 41: |
| * Save the PPUINT_MB register in the CSA. |
| */ |
| csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R); |
| } |
| |
| static inline void save_ch_part1(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; |
| int i; |
| |
| /* Save, Step 42: |
| */ |
| |
| /* Save CH 1, without channel count */ |
| out_be64(&priv2->spu_chnlcntptr_RW, 1); |
| csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW); |
| |
| /* Save the following CH: [0,3,4,24,25,27] */ |
| for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { |
| idx = ch_indices[i]; |
| out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| eieio(); |
| csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW); |
| csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW); |
| out_be64(&priv2->spu_chnldata_RW, 0UL); |
| out_be64(&priv2->spu_chnlcnt_RW, 0UL); |
| eieio(); |
| } |
| } |
| |
| static inline void save_spu_mb(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| int i; |
| |
| /* Save, Step 43: |
| * Save SPU Read Mailbox Channel. |
| */ |
| out_be64(&priv2->spu_chnlcntptr_RW, 29UL); |
| eieio(); |
| csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW); |
| for (i = 0; i < 4; i++) { |
| csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW); |
| } |
| out_be64(&priv2->spu_chnlcnt_RW, 0UL); |
| eieio(); |
| } |
| |
| static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 44: |
| * Save MFC_CMD Channel. |
| */ |
| out_be64(&priv2->spu_chnlcntptr_RW, 21UL); |
| eieio(); |
| csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW); |
| eieio(); |
| } |
| |
| static inline void reset_ch(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL }; |
| u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL }; |
| u64 idx; |
| int i; |
| |
| /* Save, Step 45: |
| * Reset the following CH: [21, 23, 28, 30] |
| */ |
| for (i = 0; i < 4; i++) { |
| idx = ch_indices[i]; |
| out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| eieio(); |
| out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); |
| eieio(); |
| } |
| } |
| |
| static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Save, Step 46: |
| * Restore, Step 25. |
| * Write MFC_CNTL[Sc]=0 (resume queue processing). |
| */ |
| out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE); |
| } |
| |
| static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu, |
| unsigned int *code, int code_size) |
| { |
| /* Save, Step 47: |
| * Restore, Step 30. |
| * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All |
| * register, then initialize SLB_VSID and SLB_ESID |
| * to provide access to SPU context save code and |
| * LSCSA. |
| * |
| * This implementation places both the context |
| * switch code and LSCSA in kernel address space. |
| * |
| * Further this implementation assumes that the |
| * MFC_SR1[R]=1 (in other words, assume that |
| * translation is desired by OS environment). |
| */ |
| spu_invalidate_slbs(spu); |
| spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size); |
| } |
| |
| static inline void set_switch_active(struct spu_state *csa, struct spu *spu) |
| { |
| /* Save, Step 48: |
| * Restore, Step 23. |
| * Change the software context switch pending flag |
| * to context switch active. This implementation does |
| * not uses a switch active flag. |
| * |
| * Now that we have saved the mfc in the csa, we can add in the |
| * restart command if an exception occurred. |
| */ |
| if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags)) |
| csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND; |
| clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); |
| mb(); |
| } |
| |
| static inline void enable_interrupts(struct spu_state *csa, struct spu *spu) |
| { |
| unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR | |
| CLASS1_ENABLE_STORAGE_FAULT_INTR; |
| |
| /* Save, Step 49: |
| * Restore, Step 22: |
| * Reset and then enable interrupts, as |
| * needed by OS. |
| * |
| * This implementation enables only class1 |
| * (translation) interrupts. |
| */ |
| spin_lock_irq(&spu->register_lock); |
| spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); |
| spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| spu_int_mask_set(spu, 0, 0ul); |
| spu_int_mask_set(spu, 1, class1_mask); |
| spu_int_mask_set(spu, 2, 0ul); |
| spin_unlock_irq(&spu->register_lock); |
| } |
| |
| static inline int send_mfc_dma(struct spu *spu, unsigned long ea, |
| unsigned int ls_offset, unsigned int size, |
| unsigned int tag, unsigned int rclass, |
| unsigned int cmd) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| union mfc_tag_size_class_cmd command; |
| unsigned int transfer_size; |
| volatile unsigned int status = 0x0; |
| |
| while (size > 0) { |
| transfer_size = |
| (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size; |
| command.u.mfc_size = transfer_size; |
| command.u.mfc_tag = tag; |
| command.u.mfc_rclassid = rclass; |
| command.u.mfc_cmd = cmd; |
| do { |
| out_be32(&prob->mfc_lsa_W, ls_offset); |
| out_be64(&prob->mfc_ea_W, ea); |
| out_be64(&prob->mfc_union_W.all64, command.all64); |
| status = |
| in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32); |
| if (unlikely(status & 0x2)) { |
| cpu_relax(); |
| } |
| } while (status & 0x3); |
| size -= transfer_size; |
| ea += transfer_size; |
| ls_offset += transfer_size; |
| } |
| return 0; |
| } |
| |
| static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu) |
| { |
| unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; |
| unsigned int ls_offset = 0x0; |
| unsigned int size = 16384; |
| unsigned int tag = 0; |
| unsigned int rclass = 0; |
| unsigned int cmd = MFC_PUT_CMD; |
| |
| /* Save, Step 50: |
| * Issue a DMA command to copy the first 16K bytes |
| * of local storage to the CSA. |
| */ |
| send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); |
| } |
| |
| static inline void set_spu_npc(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 51: |
| * Restore, Step 31. |
| * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry |
| * point address of context save code in local |
| * storage. |
| * |
| * This implementation uses SPU-side save/restore |
| * programs with entry points at LSA of 0. |
| */ |
| out_be32(&prob->spu_npc_RW, 0); |
| eieio(); |
| } |
| |
| static inline void set_signot1(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| union { |
| u64 ull; |
| u32 ui[2]; |
| } addr64; |
| |
| /* Save, Step 52: |
| * Restore, Step 32: |
| * Write SPU_Sig_Notify_1 register with upper 32-bits |
| * of the CSA.LSCSA effective address. |
| */ |
| addr64.ull = (u64) csa->lscsa; |
| out_be32(&prob->signal_notify1, addr64.ui[0]); |
| eieio(); |
| } |
| |
| static inline void set_signot2(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| union { |
| u64 ull; |
| u32 ui[2]; |
| } addr64; |
| |
| /* Save, Step 53: |
| * Restore, Step 33: |
| * Write SPU_Sig_Notify_2 register with lower 32-bits |
| * of the CSA.LSCSA effective address. |
| */ |
| addr64.ull = (u64) csa->lscsa; |
| out_be32(&prob->signal_notify2, addr64.ui[1]); |
| eieio(); |
| } |
| |
| static inline void send_save_code(struct spu_state *csa, struct spu *spu) |
| { |
| unsigned long addr = (unsigned long)&spu_save_code[0]; |
| unsigned int ls_offset = 0x0; |
| unsigned int size = sizeof(spu_save_code); |
| unsigned int tag = 0; |
| unsigned int rclass = 0; |
| unsigned int cmd = MFC_GETFS_CMD; |
| |
| /* Save, Step 54: |
| * Issue a DMA command to copy context save code |
| * to local storage and start SPU. |
| */ |
| send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); |
| } |
| |
| static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Save, Step 55: |
| * Restore, Step 38. |
| * Write PPU_QueryMask=1 (enable Tag Group 0) |
| * and issue eieio instruction. |
| */ |
| out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0)); |
| eieio(); |
| } |
| |
| static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| u32 mask = MFC_TAGID_TO_TAGMASK(0); |
| unsigned long flags; |
| |
| /* Save, Step 56: |
| * Restore, Step 39. |
| * Restore, Step 39. |
| * Restore, Step 46. |
| * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete) |
| * or write PPU_QueryType[TS]=01 and wait for Tag Group |
| * Complete Interrupt. Write INT_Stat_Class0 or |
| * INT_Stat_Class2 with value of 'handled'. |
| */ |
| POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask); |
| |
| local_irq_save(flags); |
| spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| local_irq_restore(flags); |
| } |
| |
| static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| unsigned long flags; |
| |
| /* Save, Step 57: |
| * Restore, Step 40. |
| * Poll until SPU_Status[R]=0 or wait for SPU Class 0 |
| * or SPU Class 2 interrupt. Write INT_Stat_class0 |
| * or INT_Stat_class2 with value of handled. |
| */ |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); |
| |
| local_irq_save(flags); |
| spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| local_irq_restore(flags); |
| } |
| |
| static inline int check_save_status(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| u32 complete; |
| |
| /* Save, Step 54: |
| * If SPU_Status[P]=1 and SPU_Status[SC] = "success", |
| * context save succeeded, otherwise context save |
| * failed. |
| */ |
| complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) | |
| SPU_STATUS_STOPPED_BY_STOP); |
| return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; |
| } |
| |
| static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 4: |
| * If required, notify the "using application" that |
| * the SPU task has been terminated. TBD. |
| */ |
| } |
| |
| static inline void suspend_mfc_and_halt_decr(struct spu_state *csa, |
| struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 7: |
| * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend |
| * the queue and halt the decrementer. |
| */ |
| out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE | |
| MFC_CNTL_DECREMENTER_HALTED); |
| eieio(); |
| } |
| |
| static inline void wait_suspend_mfc_complete(struct spu_state *csa, |
| struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 8: |
| * Restore, Step 47. |
| * Poll MFC_CNTL[Ss] until 11 is returned. |
| */ |
| POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == |
| MFC_CNTL_SUSPEND_COMPLETE); |
| } |
| |
| static inline int suspend_spe(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Restore, Step 9: |
| * If SPU_Status[R]=1, stop SPU execution |
| * and wait for stop to complete. |
| * |
| * Returns 1 if SPU_Status[R]=1 on entry. |
| * 0 otherwise |
| */ |
| if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) { |
| if (in_be32(&prob->spu_status_R) & |
| SPU_STATUS_ISOLATED_EXIT_STATUS) { |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| } |
| if ((in_be32(&prob->spu_status_R) & |
| SPU_STATUS_ISOLATED_LOAD_STATUS) |
| || (in_be32(&prob->spu_status_R) & |
| SPU_STATUS_ISOLATED_STATE)) { |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| out_be32(&prob->spu_runcntl_RW, 0x2); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| } |
| if (in_be32(&prob->spu_status_R) & |
| SPU_STATUS_WAITING_FOR_CHANNEL) { |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline void clear_spu_status(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Restore, Step 10: |
| * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1, |
| * release SPU from isolate state. |
| */ |
| if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) { |
| if (in_be32(&prob->spu_status_R) & |
| SPU_STATUS_ISOLATED_EXIT_STATUS) { |
| spu_mfc_sr1_set(spu, |
| MFC_STATE1_MASTER_RUN_CONTROL_MASK); |
| eieio(); |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| } |
| if ((in_be32(&prob->spu_status_R) & |
| SPU_STATUS_ISOLATED_LOAD_STATUS) |
| || (in_be32(&prob->spu_status_R) & |
| SPU_STATUS_ISOLATED_STATE)) { |
| spu_mfc_sr1_set(spu, |
| MFC_STATE1_MASTER_RUN_CONTROL_MASK); |
| eieio(); |
| out_be32(&prob->spu_runcntl_RW, 0x2); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| } |
| } |
| } |
| |
| static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; |
| u64 idx; |
| int i; |
| |
| /* Restore, Step 20: |
| */ |
| |
| /* Reset CH 1 */ |
| out_be64(&priv2->spu_chnlcntptr_RW, 1); |
| out_be64(&priv2->spu_chnldata_RW, 0UL); |
| |
| /* Reset the following CH: [0,3,4,24,25,27] */ |
| for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { |
| idx = ch_indices[i]; |
| out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| eieio(); |
| out_be64(&priv2->spu_chnldata_RW, 0UL); |
| out_be64(&priv2->spu_chnlcnt_RW, 0UL); |
| eieio(); |
| } |
| } |
| |
| static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL }; |
| u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL }; |
| u64 idx; |
| int i; |
| |
| /* Restore, Step 21: |
| * Reset the following CH: [21, 23, 28, 29, 30] |
| */ |
| for (i = 0; i < 5; i++) { |
| idx = ch_indices[i]; |
| out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| eieio(); |
| out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); |
| eieio(); |
| } |
| } |
| |
| static inline void setup_spu_status_part1(struct spu_state *csa, |
| struct spu *spu) |
| { |
| u32 status_P = SPU_STATUS_STOPPED_BY_STOP; |
| u32 status_I = SPU_STATUS_INVALID_INSTR; |
| u32 status_H = SPU_STATUS_STOPPED_BY_HALT; |
| u32 status_S = SPU_STATUS_SINGLE_STEP; |
| u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR; |
| u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP; |
| u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP; |
| u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR; |
| u32 status_code; |
| |
| /* Restore, Step 27: |
| * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct |
| * instruction sequence to the end of the SPU based restore |
| * code (after the "context restored" stop and signal) to |
| * restore the correct SPU status. |
| * |
| * NOTE: Rather than modifying the SPU executable, we |
| * instead add a new 'stopped_status' field to the |
| * LSCSA. The SPU-side restore reads this field and |
| * takes the appropriate action when exiting. |
| */ |
| |
| status_code = |
| (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF; |
| if ((csa->prob.spu_status_R & status_P_I) == status_P_I) { |
| |
| /* SPU_Status[P,I]=1 - Illegal Instruction followed |
| * by Stop and Signal instruction, followed by 'br -4'. |
| * |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I; |
| csa->lscsa->stopped_status.slot[1] = status_code; |
| |
| } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) { |
| |
| /* SPU_Status[P,H]=1 - Halt Conditional, followed |
| * by Stop and Signal instruction, followed by |
| * 'br -4'. |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H; |
| csa->lscsa->stopped_status.slot[1] = status_code; |
| |
| } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) { |
| |
| /* SPU_Status[S,P]=1 - Stop and Signal instruction |
| * followed by 'br -4'. |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P; |
| csa->lscsa->stopped_status.slot[1] = status_code; |
| |
| } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) { |
| |
| /* SPU_Status[S,I]=1 - Illegal instruction followed |
| * by 'br -4'. |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I; |
| csa->lscsa->stopped_status.slot[1] = status_code; |
| |
| } else if ((csa->prob.spu_status_R & status_P) == status_P) { |
| |
| /* SPU_Status[P]=1 - Stop and Signal instruction |
| * followed by 'br -4'. |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P; |
| csa->lscsa->stopped_status.slot[1] = status_code; |
| |
| } else if ((csa->prob.spu_status_R & status_H) == status_H) { |
| |
| /* SPU_Status[H]=1 - Halt Conditional, followed |
| * by 'br -4'. |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H; |
| |
| } else if ((csa->prob.spu_status_R & status_S) == status_S) { |
| |
| /* SPU_Status[S]=1 - Two nop instructions. |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S; |
| |
| } else if ((csa->prob.spu_status_R & status_I) == status_I) { |
| |
| /* SPU_Status[I]=1 - Illegal instruction followed |
| * by 'br -4'. |
| */ |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I; |
| |
| } |
| } |
| |
| static inline void setup_spu_status_part2(struct spu_state *csa, |
| struct spu *spu) |
| { |
| u32 mask; |
| |
| /* Restore, Step 28: |
| * If the CSA.SPU_Status[I,S,H,P,R]=0 then |
| * add a 'br *' instruction to the end of |
| * the SPU based restore code. |
| * |
| * NOTE: Rather than modifying the SPU executable, we |
| * instead add a new 'stopped_status' field to the |
| * LSCSA. The SPU-side restore reads this field and |
| * takes the appropriate action when exiting. |
| */ |
| mask = SPU_STATUS_INVALID_INSTR | |
| SPU_STATUS_SINGLE_STEP | |
| SPU_STATUS_STOPPED_BY_HALT | |
| SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; |
| if (!(csa->prob.spu_status_R & mask)) { |
| csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R; |
| } |
| } |
| |
| static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 29: |
| * Restore RA_GROUP_ID register and the |
| * RA_ENABLE reigster from the CSA. |
| */ |
| spu_resource_allocation_groupID_set(spu, |
| csa->priv1.resource_allocation_groupID_RW); |
| spu_resource_allocation_enable_set(spu, |
| csa->priv1.resource_allocation_enable_RW); |
| } |
| |
| static inline void send_restore_code(struct spu_state *csa, struct spu *spu) |
| { |
| unsigned long addr = (unsigned long)&spu_restore_code[0]; |
| unsigned int ls_offset = 0x0; |
| unsigned int size = sizeof(spu_restore_code); |
| unsigned int tag = 0; |
| unsigned int rclass = 0; |
| unsigned int cmd = MFC_GETFS_CMD; |
| |
| /* Restore, Step 37: |
| * Issue MFC DMA command to copy context |
| * restore code to local storage. |
| */ |
| send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); |
| } |
| |
| static inline void setup_decr(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 34: |
| * If CSA.MFC_CNTL[Ds]=1 (decrementer was |
| * running) then adjust decrementer, set |
| * decrementer running status in LSCSA, |
| * and set decrementer "wrapped" status |
| * in LSCSA. |
| */ |
| if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) { |
| cycles_t resume_time = get_cycles(); |
| cycles_t delta_time = resume_time - csa->suspend_time; |
| |
| csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING; |
| if (csa->lscsa->decr.slot[0] < delta_time) { |
| csa->lscsa->decr_status.slot[0] |= |
| SPU_DECR_STATUS_WRAPPED; |
| } |
| |
| csa->lscsa->decr.slot[0] -= delta_time; |
| } else { |
| csa->lscsa->decr_status.slot[0] = 0; |
| } |
| } |
| |
| static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 35: |
| * Copy the CSA.PU_MB data into the LSCSA. |
| */ |
| csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R; |
| } |
| |
| static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 36: |
| * Copy the CSA.PUINT_MB data into the LSCSA. |
| */ |
| csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R; |
| } |
| |
| static inline int check_restore_status(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| u32 complete; |
| |
| /* Restore, Step 40: |
| * If SPU_Status[P]=1 and SPU_Status[SC] = "success", |
| * context restore succeeded, otherwise context restore |
| * failed. |
| */ |
| complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) | |
| SPU_STATUS_STOPPED_BY_STOP); |
| return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; |
| } |
| |
| static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 41: |
| * Restore SPU_PrivCntl from the CSA. |
| */ |
| out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW); |
| eieio(); |
| } |
| |
| static inline void restore_status_part1(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| u32 mask; |
| |
| /* Restore, Step 42: |
| * If any CSA.SPU_Status[I,S,H,P]=1, then |
| * restore the error or single step state. |
| */ |
| mask = SPU_STATUS_INVALID_INSTR | |
| SPU_STATUS_SINGLE_STEP | |
| SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; |
| if (csa->prob.spu_status_R & mask) { |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| } |
| } |
| |
| static inline void restore_status_part2(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| u32 mask; |
| |
| /* Restore, Step 43: |
| * If all CSA.SPU_Status[I,S,H,P,R]=0 then write |
| * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1, |
| * then write '00' to SPU_RunCntl[R0R1] and wait |
| * for SPU_Status[R]=0. |
| */ |
| mask = SPU_STATUS_INVALID_INSTR | |
| SPU_STATUS_SINGLE_STEP | |
| SPU_STATUS_STOPPED_BY_HALT | |
| SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; |
| if (!(csa->prob.spu_status_R & mask)) { |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| eieio(); |
| POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| eieio(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| SPU_STATUS_RUNNING); |
| } |
| } |
| |
| static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu) |
| { |
| unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; |
| unsigned int ls_offset = 0x0; |
| unsigned int size = 16384; |
| unsigned int tag = 0; |
| unsigned int rclass = 0; |
| unsigned int cmd = MFC_GET_CMD; |
| |
| /* Restore, Step 44: |
| * Issue a DMA command to restore the first |
| * 16kb of local storage from CSA. |
| */ |
| send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); |
| } |
| |
| static inline void suspend_mfc(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 47. |
| * Write MFC_Cntl[Sc,Sm]='1','0' to suspend |
| * the queue. |
| */ |
| out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); |
| eieio(); |
| } |
| |
| static inline void clear_interrupts(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 49: |
| * Write INT_MASK_class0 with value of 0. |
| * Write INT_MASK_class1 with value of 0. |
| * Write INT_MASK_class2 with value of 0. |
| * Write INT_STAT_class0 with value of -1. |
| * Write INT_STAT_class1 with value of -1. |
| * Write INT_STAT_class2 with value of -1. |
| */ |
| spin_lock_irq(&spu->register_lock); |
| spu_int_mask_set(spu, 0, 0ul); |
| spu_int_mask_set(spu, 1, 0ul); |
| spu_int_mask_set(spu, 2, 0ul); |
| spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); |
| spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| spin_unlock_irq(&spu->register_lock); |
| } |
| |
| static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| int i; |
| |
| /* Restore, Step 50: |
| * If MFC_Cntl[Se]!=0 then restore |
| * MFC command queues. |
| */ |
| if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) { |
| for (i = 0; i < 8; i++) { |
| out_be64(&priv2->puq[i].mfc_cq_data0_RW, |
| csa->priv2.puq[i].mfc_cq_data0_RW); |
| out_be64(&priv2->puq[i].mfc_cq_data1_RW, |
| csa->priv2.puq[i].mfc_cq_data1_RW); |
| out_be64(&priv2->puq[i].mfc_cq_data2_RW, |
| csa->priv2.puq[i].mfc_cq_data2_RW); |
| out_be64(&priv2->puq[i].mfc_cq_data3_RW, |
| csa->priv2.puq[i].mfc_cq_data3_RW); |
| } |
| for (i = 0; i < 16; i++) { |
| out_be64(&priv2->spuq[i].mfc_cq_data0_RW, |
| csa->priv2.spuq[i].mfc_cq_data0_RW); |
| out_be64(&priv2->spuq[i].mfc_cq_data1_RW, |
| csa->priv2.spuq[i].mfc_cq_data1_RW); |
| out_be64(&priv2->spuq[i].mfc_cq_data2_RW, |
| csa->priv2.spuq[i].mfc_cq_data2_RW); |
| out_be64(&priv2->spuq[i].mfc_cq_data3_RW, |
| csa->priv2.spuq[i].mfc_cq_data3_RW); |
| } |
| } |
| eieio(); |
| } |
| |
| static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Restore, Step 51: |
| * Restore the PPU_QueryMask register from CSA. |
| */ |
| out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW); |
| eieio(); |
| } |
| |
| static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Restore, Step 52: |
| * Restore the PPU_QueryType register from CSA. |
| */ |
| out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW); |
| eieio(); |
| } |
| |
| static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 53: |
| * Restore the MFC_CSR_TSQ register from CSA. |
| */ |
| out_be64(&priv2->spu_tag_status_query_RW, |
| csa->priv2.spu_tag_status_query_RW); |
| eieio(); |
| } |
| |
| static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 54: |
| * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2 |
| * registers from CSA. |
| */ |
| out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW); |
| out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW); |
| eieio(); |
| } |
| |
| static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 55: |
| * Restore the MFC_CSR_ATO register from CSA. |
| */ |
| out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW); |
| } |
| |
| static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 56: |
| * Restore the MFC_TCLASS_ID register from CSA. |
| */ |
| spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW); |
| eieio(); |
| } |
| |
| static inline void set_llr_event(struct spu_state *csa, struct spu *spu) |
| { |
| u64 ch0_cnt, ch0_data; |
| u64 ch1_data; |
| |
| /* Restore, Step 57: |
| * Set the Lock Line Reservation Lost Event by: |
| * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1. |
| * 2. If CSA.SPU_Channel_0_Count=0 and |
| * CSA.SPU_Wr_Event_Mask[Lr]=1 and |
| * CSA.SPU_Event_Status[Lr]=0 then set |
| * CSA.SPU_Event_Status_Count=1. |
| */ |
| ch0_cnt = csa->spu_chnlcnt_RW[0]; |
| ch0_data = csa->spu_chnldata_RW[0]; |
| ch1_data = csa->spu_chnldata_RW[1]; |
| csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT; |
| if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) && |
| (ch1_data & MFC_LLR_LOST_EVENT)) { |
| csa->spu_chnlcnt_RW[0] = 1; |
| } |
| } |
| |
| static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 58: |
| * If the status of the CSA software decrementer |
| * "wrapped" flag is set, OR in a '1' to |
| * CSA.SPU_Event_Status[Tm]. |
| */ |
| if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED)) |
| return; |
| |
| if ((csa->spu_chnlcnt_RW[0] == 0) && |
| (csa->spu_chnldata_RW[1] & 0x20) && |
| !(csa->spu_chnldata_RW[0] & 0x20)) |
| csa->spu_chnlcnt_RW[0] = 1; |
| |
| csa->spu_chnldata_RW[0] |= 0x20; |
| } |
| |
| static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; |
| int i; |
| |
| /* Restore, Step 59: |
| * Restore the following CH: [0,3,4,24,25,27] |
| */ |
| for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { |
| idx = ch_indices[i]; |
| out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| eieio(); |
| out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]); |
| out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]); |
| eieio(); |
| } |
| } |
| |
| static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| u64 ch_indices[3] = { 9UL, 21UL, 23UL }; |
| u64 ch_counts[3] = { 1UL, 16UL, 1UL }; |
| u64 idx; |
| int i; |
| |
| /* Restore, Step 60: |
| * Restore the following CH: [9,21,23]. |
| */ |
| ch_counts[0] = 1UL; |
| ch_counts[1] = csa->spu_chnlcnt_RW[21]; |
| ch_counts[2] = 1UL; |
| for (i = 0; i < 3; i++) { |
| idx = ch_indices[i]; |
| out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| eieio(); |
| out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); |
| eieio(); |
| } |
| } |
| |
| static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 61: |
| * Restore the SPU_LSLR register from CSA. |
| */ |
| out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW); |
| eieio(); |
| } |
| |
| static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 62: |
| * Restore the SPU_Cfg register from CSA. |
| */ |
| out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW); |
| eieio(); |
| } |
| |
| static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 63: |
| * Restore PM_Trace_Tag_Wait_Mask from CSA. |
| * Not performed by this implementation. |
| */ |
| } |
| |
| static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Restore, Step 64: |
| * Restore SPU_NPC from CSA. |
| */ |
| out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW); |
| eieio(); |
| } |
| |
| static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| int i; |
| |
| /* Restore, Step 65: |
| * Restore MFC_RdSPU_MB from CSA. |
| */ |
| out_be64(&priv2->spu_chnlcntptr_RW, 29UL); |
| eieio(); |
| out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]); |
| for (i = 0; i < 4; i++) { |
| out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]); |
| } |
| eieio(); |
| } |
| |
| static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Restore, Step 66: |
| * If CSA.MB_Stat[P]=0 (mailbox empty) then |
| * read from the PPU_MB register. |
| */ |
| if ((csa->prob.mb_stat_R & 0xFF) == 0) { |
| in_be32(&prob->pu_mb_R); |
| eieio(); |
| } |
| } |
| |
| static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 66: |
| * If CSA.MB_Stat[I]=0 (mailbox empty) then |
| * read from the PPUINT_MB register. |
| */ |
| if ((csa->prob.mb_stat_R & 0xFF0000) == 0) { |
| in_be64(&priv2->puint_mb_R); |
| eieio(); |
| spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR); |
| eieio(); |
| } |
| } |
| |
| static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 69: |
| * Restore the MFC_SR1 register from CSA. |
| */ |
| spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW); |
| eieio(); |
| } |
| |
| static inline void set_int_route(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_context *ctx = spu->ctx; |
| |
| spu_cpu_affinity_set(spu, ctx->last_ran); |
| } |
| |
| static inline void restore_other_spu_access(struct spu_state *csa, |
| struct spu *spu) |
| { |
| /* Restore, Step 70: |
| * Restore other SPU mappings to this SPU. TBD. |
| */ |
| } |
| |
| static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| /* Restore, Step 71: |
| * If CSA.SPU_Status[R]=1 then write |
| * SPU_RunCntl[R0R1]='01'. |
| */ |
| if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) { |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| eieio(); |
| } |
| } |
| |
| static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Restore, Step 72: |
| * Restore the MFC_CNTL register for the CSA. |
| */ |
| out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW); |
| eieio(); |
| |
| /* |
| * The queue is put back into the same state that was evident prior to |
| * the context switch. The suspend flag is added to the saved state in |
| * the csa, if the operational state was suspending or suspended. In |
| * this case, the code that suspended the mfc is responsible for |
| * continuing it. Note that SPE faults do not change the operational |
| * state of the spu. |
| */ |
| } |
| |
| static inline void enable_user_access(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 73: |
| * Enable user-space access (if provided) to this |
| * SPU by mapping the virtual pages assigned to |
| * the SPU memory-mapped I/O (MMIO) for problem |
| * state. TBD. |
| */ |
| } |
| |
| static inline void reset_switch_active(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 74: |
| * Reset the "context switch active" flag. |
| * Not performed by this implementation. |
| */ |
| } |
| |
| static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu) |
| { |
| /* Restore, Step 75: |
| * Re-enable SPU interrupts. |
| */ |
| spin_lock_irq(&spu->register_lock); |
| spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW); |
| spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW); |
| spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW); |
| spin_unlock_irq(&spu->register_lock); |
| } |
| |
| static int quiece_spu(struct spu_state *prev, struct spu *spu) |
| { |
| /* |
| * Combined steps 2-18 of SPU context save sequence, which |
| * quiesce the SPU state (disable SPU execution, MFC command |
| * queues, decrementer, SPU interrupts, etc.). |
| * |
| * Returns 0 on success. |
| * 2 if failed step 2. |
| * 6 if failed step 6. |
| */ |
| |
| if (check_spu_isolate(prev, spu)) { /* Step 2. */ |
| return 2; |
| } |
| disable_interrupts(prev, spu); /* Step 3. */ |
| set_watchdog_timer(prev, spu); /* Step 4. */ |
| inhibit_user_access(prev, spu); /* Step 5. */ |
| if (check_spu_isolate(prev, spu)) { /* Step 6. */ |
| return 6; |
| } |
| set_switch_pending(prev, spu); /* Step 7. */ |
| save_mfc_cntl(prev, spu); /* Step 8. */ |
| save_spu_runcntl(prev, spu); /* Step 9. */ |
| save_mfc_sr1(prev, spu); /* Step 10. */ |
| save_spu_status(prev, spu); /* Step 11. */ |
| save_mfc_stopped_status(prev, spu); /* Step 12. */ |
| halt_mfc_decr(prev, spu); /* Step 13. */ |
| save_timebase(prev, spu); /* Step 14. */ |
| remove_other_spu_access(prev, spu); /* Step 15. */ |
| do_mfc_mssync(prev, spu); /* Step 16. */ |
| issue_mfc_tlbie(prev, spu); /* Step 17. */ |
| handle_pending_interrupts(prev, spu); /* Step 18. */ |
| |
| return 0; |
| } |
| |
| static void save_csa(struct spu_state *prev, struct spu *spu) |
| { |
| /* |
| * Combine steps 19-44 of SPU context save sequence, which |
| * save regions of the privileged & problem state areas. |
| */ |
| |
| save_mfc_queues(prev, spu); /* Step 19. */ |
| save_ppu_querymask(prev, spu); /* Step 20. */ |
| save_ppu_querytype(prev, spu); /* Step 21. */ |
| save_ppu_tagstatus(prev, spu); /* NEW. */ |
| save_mfc_csr_tsq(prev, spu); /* Step 22. */ |
| save_mfc_csr_cmd(prev, spu); /* Step 23. */ |
| save_mfc_csr_ato(prev, spu); /* Step 24. */ |
| save_mfc_tclass_id(prev, spu); /* Step 25. */ |
| set_mfc_tclass_id(prev, spu); /* Step 26. */ |
| save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */ |
| purge_mfc_queue(prev, spu); /* Step 27. */ |
| wait_purge_complete(prev, spu); /* Step 28. */ |
| setup_mfc_sr1(prev, spu); /* Step 30. */ |
| save_spu_npc(prev, spu); /* Step 31. */ |
| save_spu_privcntl(prev, spu); /* Step 32. */ |
| reset_spu_privcntl(prev, spu); /* Step 33. */ |
| save_spu_lslr(prev, spu); /* Step 34. */ |
| reset_spu_lslr(prev, spu); /* Step 35. */ |
| save_spu_cfg(prev, spu); /* Step 36. */ |
| save_pm_trace(prev, spu); /* Step 37. */ |
| save_mfc_rag(prev, spu); /* Step 38. */ |
| save_ppu_mb_stat(prev, spu); /* Step 39. */ |
| save_ppu_mb(prev, spu); /* Step 40. */ |
| save_ppuint_mb(prev, spu); /* Step 41. */ |
| save_ch_part1(prev, spu); /* Step 42. */ |
| save_spu_mb(prev, spu); /* Step 43. */ |
| reset_ch(prev, spu); /* Step 45. */ |
| } |
| |
| static void save_lscsa(struct spu_state *prev, struct spu *spu) |
| { |
| /* |
| * Perform steps 46-57 of SPU context save sequence, |
| * which save regions of the local store and register |
| * file. |
| */ |
| |
| resume_mfc_queue(prev, spu); /* Step 46. */ |
| /* Step 47. */ |
| setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code)); |
| set_switch_active(prev, spu); /* Step 48. */ |
| enable_interrupts(prev, spu); /* Step 49. */ |
| save_ls_16kb(prev, spu); /* Step 50. */ |
| set_spu_npc(prev, spu); /* Step 51. */ |
| set_signot1(prev, spu); /* Step 52. */ |
| set_signot2(prev, spu); /* Step 53. */ |
| send_save_code(prev, spu); /* Step 54. */ |
| set_ppu_querymask(prev, spu); /* Step 55. */ |
| wait_tag_complete(prev, spu); /* Step 56. */ |
| wait_spu_stopped(prev, spu); /* Step 57. */ |
| } |
| |
| static void force_spu_isolate_exit(struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| /* Stop SPE execution and wait for completion. */ |
| out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| iobarrier_rw(); |
| POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); |
| |
| /* Restart SPE master runcntl. */ |
| spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); |
| iobarrier_w(); |
| |
| /* Initiate isolate exit request and wait for completion. */ |
| out_be64(&priv2->spu_privcntl_RW, 4LL); |
| iobarrier_w(); |
| out_be32(&prob->spu_runcntl_RW, 2); |
| iobarrier_rw(); |
| POLL_WHILE_FALSE((in_be32(&prob->spu_status_R) |
| & SPU_STATUS_STOPPED_BY_STOP)); |
| |
| /* Reset load request to normal. */ |
| out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL); |
| iobarrier_w(); |
| } |
| |
| /** |
| * stop_spu_isolate |
| * Check SPU run-control state and force isolated |
| * exit function as necessary. |
| */ |
| static void stop_spu_isolate(struct spu *spu) |
| { |
| struct spu_problem __iomem *prob = spu->problem; |
| |
| if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) { |
| /* The SPU is in isolated state; the only way |
| * to get it out is to perform an isolated |
| * exit (clean) operation. |
| */ |
| force_spu_isolate_exit(spu); |
| } |
| } |
| |
| static void harvest(struct spu_state *prev, struct spu *spu) |
| { |
| /* |
| * Perform steps 2-25 of SPU context restore sequence, |
| * which resets an SPU either after a failed save, or |
| * when using SPU for first time. |
| */ |
| |
| disable_interrupts(prev, spu); /* Step 2. */ |
| inhibit_user_access(prev, spu); /* Step 3. */ |
| terminate_spu_app(prev, spu); /* Step 4. */ |
| set_switch_pending(prev, spu); /* Step 5. */ |
| stop_spu_isolate(spu); /* NEW. */ |
| remove_other_spu_access(prev, spu); /* Step 6. */ |
| suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */ |
| wait_suspend_mfc_complete(prev, spu); /* Step 8. */ |
| if (!suspend_spe(prev, spu)) /* Step 9. */ |
| clear_spu_status(prev, spu); /* Step 10. */ |
| do_mfc_mssync(prev, spu); /* Step 11. */ |
| issue_mfc_tlbie(prev, spu); /* Step 12. */ |
| handle_pending_interrupts(prev, spu); /* Step 13. */ |
| purge_mfc_queue(prev, spu); /* Step 14. */ |
| wait_purge_complete(prev, spu); /* Step 15. */ |
| reset_spu_privcntl(prev, spu); /* Step 16. */ |
| reset_spu_lslr(prev, spu); /* Step 17. */ |
| setup_mfc_sr1(prev, spu); /* Step 18. */ |
| spu_invalidate_slbs(spu); /* Step 19. */ |
| reset_ch_part1(prev, spu); /* Step 20. */ |
| reset_ch_part2(prev, spu); /* Step 21. */ |
| enable_interrupts(prev, spu); /* Step 22. */ |
| set_switch_active(prev, spu); /* Step 23. */ |
| set_mfc_tclass_id(prev, spu); /* Step 24. */ |
| resume_mfc_queue(prev, spu); /* Step 25. */ |
| } |
| |
| static void restore_lscsa(struct spu_state *next, struct spu *spu) |
| { |
| /* |
| * Perform steps 26-40 of SPU context restore sequence, |
| * which restores regions of the local store and register |
| * file. |
| */ |
| |
| set_watchdog_timer(next, spu); /* Step 26. */ |
| setup_spu_status_part1(next, spu); /* Step 27. */ |
| setup_spu_status_part2(next, spu); /* Step 28. */ |
| restore_mfc_rag(next, spu); /* Step 29. */ |
| /* Step 30. */ |
| setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code)); |
| set_spu_npc(next, spu); /* Step 31. */ |
| set_signot1(next, spu); /* Step 32. */ |
| set_signot2(next, spu); /* Step 33. */ |
| setup_decr(next, spu); /* Step 34. */ |
| setup_ppu_mb(next, spu); /* Step 35. */ |
| setup_ppuint_mb(next, spu); /* Step 36. */ |
| send_restore_code(next, spu); /* Step 37. */ |
| set_ppu_querymask(next, spu); /* Step 38. */ |
| wait_tag_complete(next, spu); /* Step 39. */ |
| wait_spu_stopped(next, spu); /* Step 40. */ |
| } |
| |
| static void restore_csa(struct spu_state *next, struct spu *spu) |
| { |
| /* |
| * Combine steps 41-76 of SPU context restore sequence, which |
| * restore regions of the privileged & problem state areas. |
| */ |
| |
| restore_spu_privcntl(next, spu); /* Step 41. */ |
| restore_status_part1(next, spu); /* Step 42. */ |
| restore_status_part2(next, spu); /* Step 43. */ |
| restore_ls_16kb(next, spu); /* Step 44. */ |
| wait_tag_complete(next, spu); /* Step 45. */ |
| suspend_mfc(next, spu); /* Step 46. */ |
| wait_suspend_mfc_complete(next, spu); /* Step 47. */ |
| issue_mfc_tlbie(next, spu); /* Step 48. */ |
| clear_interrupts(next, spu); /* Step 49. */ |
| restore_mfc_queues(next, spu); /* Step 50. */ |
| restore_ppu_querymask(next, spu); /* Step 51. */ |
| restore_ppu_querytype(next, spu); /* Step 52. */ |
| restore_mfc_csr_tsq(next, spu); /* Step 53. */ |
| restore_mfc_csr_cmd(next, spu); /* Step 54. */ |
| restore_mfc_csr_ato(next, spu); /* Step 55. */ |
| restore_mfc_tclass_id(next, spu); /* Step 56. */ |
| set_llr_event(next, spu); /* Step 57. */ |
| restore_decr_wrapped(next, spu); /* Step 58. */ |
| restore_ch_part1(next, spu); /* Step 59. */ |
| restore_ch_part2(next, spu); /* Step 60. */ |
| restore_spu_lslr(next, spu); /* Step 61. */ |
| restore_spu_cfg(next, spu); /* Step 62. */ |
| restore_pm_trace(next, spu); /* Step 63. */ |
| restore_spu_npc(next, spu); /* Step 64. */ |
| restore_spu_mb(next, spu); /* Step 65. */ |
| check_ppu_mb_stat(next, spu); /* Step 66. */ |
| check_ppuint_mb_stat(next, spu); /* Step 67. */ |
| spu_invalidate_slbs(spu); /* Modified Step 68. */ |
| restore_mfc_sr1(next, spu); /* Step 69. */ |
| set_int_route(next, spu); /* NEW */ |
| restore_other_spu_access(next, spu); /* Step 70. */ |
| restore_spu_runcntl(next, spu); /* Step 71. */ |
| restore_mfc_cntl(next, spu); /* Step 72. */ |
| enable_user_access(next, spu); /* Step 73. */ |
| reset_switch_active(next, spu); /* Step 74. */ |
| reenable_interrupts(next, spu); /* Step 75. */ |
| } |
| |
| static int __do_spu_save(struct spu_state *prev, struct spu *spu) |
| { |
| int rc; |
| |
| /* |
| * SPU context save can be broken into three phases: |
| * |
| * (a) quiesce [steps 2-16]. |
| * (b) save of CSA, performed by PPE [steps 17-42] |
| * (c) save of LSCSA, mostly performed by SPU [steps 43-52]. |
| * |
| * Returns 0 on success. |
| * 2,6 if failed to quiece SPU |
| * 53 if SPU-side of save failed. |
| */ |
| |
| rc = quiece_spu(prev, spu); /* Steps 2-16. */ |
| switch (rc) { |
| default: |
| case 2: |
| case 6: |
| harvest(prev, spu); |
| return rc; |
| break; |
| case 0: |
| break; |
| } |
| save_csa(prev, spu); /* Steps 17-43. */ |
| save_lscsa(prev, spu); /* Steps 44-53. */ |
| return check_save_status(prev, spu); /* Step 54. */ |
| } |
| |
| static int __do_spu_restore(struct spu_state *next, struct spu *spu) |
| { |
| int rc; |
| |
| /* |
| * SPU context restore can be broken into three phases: |
| * |
| * (a) harvest (or reset) SPU [steps 2-24]. |
| * (b) restore LSCSA [steps 25-40], mostly performed by SPU. |
| * (c) restore CSA [steps 41-76], performed by PPE. |
| * |
| * The 'harvest' step is not performed here, but rather |
| * as needed below. |
| */ |
| |
| restore_lscsa(next, spu); /* Steps 24-39. */ |
| rc = check_restore_status(next, spu); /* Step 40. */ |
| switch (rc) { |
| default: |
| /* Failed. Return now. */ |
| return rc; |
| break; |
| case 0: |
| /* Fall through to next step. */ |
| break; |
| } |
| restore_csa(next, spu); |
| |
| return 0; |
| } |
| |
| /** |
| * spu_save - SPU context save, with locking. |
| * @prev: pointer to SPU context save area, to be saved. |
| * @spu: pointer to SPU iomem structure. |
| * |
| * Acquire locks, perform the save operation then return. |
| */ |
| int spu_save(struct spu_state *prev, struct spu *spu) |
| { |
| int rc; |
| |
| acquire_spu_lock(spu); /* Step 1. */ |
| rc = __do_spu_save(prev, spu); /* Steps 2-53. */ |
| release_spu_lock(spu); |
| if (rc != 0 && rc != 2 && rc != 6) { |
| panic("%s failed on SPU[%d], rc=%d.\n", |
| __func__, spu->number, rc); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spu_save); |
| |
| /** |
| * spu_restore - SPU context restore, with harvest and locking. |
| * @new: pointer to SPU context save area, to be restored. |
| * @spu: pointer to SPU iomem structure. |
| * |
| * Perform harvest + restore, as we may not be coming |
| * from a previous successful save operation, and the |
| * hardware state is unknown. |
| */ |
| int spu_restore(struct spu_state *new, struct spu *spu) |
| { |
| int rc; |
| |
| acquire_spu_lock(spu); |
| harvest(NULL, spu); |
| spu->slb_replace = 0; |
| rc = __do_spu_restore(new, spu); |
| release_spu_lock(spu); |
| if (rc) { |
| panic("%s failed on SPU[%d] rc=%d.\n", |
| __func__, spu->number, rc); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(spu_restore); |
| |
| static void init_prob(struct spu_state *csa) |
| { |
| csa->spu_chnlcnt_RW[9] = 1; |
| csa->spu_chnlcnt_RW[21] = 16; |
| csa->spu_chnlcnt_RW[23] = 1; |
| csa->spu_chnlcnt_RW[28] = 1; |
| csa->spu_chnlcnt_RW[30] = 1; |
| csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP; |
| csa->prob.mb_stat_R = 0x000400; |
| } |
| |
| static void init_priv1(struct spu_state *csa) |
| { |
| /* Enable decode, relocate, tlbie response, master runcntl. */ |
| csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK | |
| MFC_STATE1_MASTER_RUN_CONTROL_MASK | |
| MFC_STATE1_PROBLEM_STATE_MASK | |
| MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK; |
| |
| /* Enable OS-specific set of interrupts. */ |
| csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR | |
| CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR | |
| CLASS0_ENABLE_SPU_ERROR_INTR; |
| csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR | |
| CLASS1_ENABLE_STORAGE_FAULT_INTR; |
| csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR | |
| CLASS2_ENABLE_SPU_HALT_INTR | |
| CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR; |
| } |
| |
| static void init_priv2(struct spu_state *csa) |
| { |
| csa->priv2.spu_lslr_RW = LS_ADDR_MASK; |
| csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE | |
| MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION | |
| MFC_CNTL_DMA_QUEUES_EMPTY_MASK; |
| } |
| |
| /** |
| * spu_alloc_csa - allocate and initialize an SPU context save area. |
| * |
| * Allocate and initialize the contents of an SPU context save area. |
| * This includes enabling address translation, interrupt masks, etc., |
| * as appropriate for the given OS environment. |
| * |
| * Note that storage for the 'lscsa' is allocated separately, |
| * as it is by far the largest of the context save regions, |
| * and may need to be pinned or otherwise specially aligned. |
| */ |
| int spu_init_csa(struct spu_state *csa) |
| { |
| int rc; |
| |
| if (!csa) |
| return -EINVAL; |
| memset(csa, 0, sizeof(struct spu_state)); |
| |
| rc = spu_alloc_lscsa(csa); |
| if (rc) |
| return rc; |
| |
| spin_lock_init(&csa->register_lock); |
| |
| init_prob(csa); |
| init_priv1(csa); |
| init_priv2(csa); |
| |
| return 0; |
| } |
| |
| void spu_fini_csa(struct spu_state *csa) |
| { |
| spu_free_lscsa(csa); |
| } |