| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * KVM dirty page logging test |
| * |
| * Copyright (C) 2018, Red Hat, Inc. |
| */ |
| |
| #define _GNU_SOURCE /* for program_invocation_name */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <pthread.h> |
| #include <semaphore.h> |
| #include <sys/types.h> |
| #include <signal.h> |
| #include <errno.h> |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/atomic.h> |
| |
| #include "kvm_util.h" |
| #include "test_util.h" |
| #include "guest_modes.h" |
| #include "processor.h" |
| |
| #define VCPU_ID 1 |
| |
| /* The memory slot index to track dirty pages */ |
| #define TEST_MEM_SLOT_INDEX 1 |
| |
| /* Default guest test virtual memory offset */ |
| #define DEFAULT_GUEST_TEST_MEM 0xc0000000 |
| |
| /* How many pages to dirty for each guest loop */ |
| #define TEST_PAGES_PER_LOOP 1024 |
| |
| /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */ |
| #define TEST_HOST_LOOP_N 32UL |
| |
| /* Interval for each host loop (ms) */ |
| #define TEST_HOST_LOOP_INTERVAL 10UL |
| |
| /* Dirty bitmaps are always little endian, so we need to swap on big endian */ |
| #if defined(__s390x__) |
| # define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) |
| # define test_bit_le(nr, addr) \ |
| test_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define set_bit_le(nr, addr) \ |
| set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define clear_bit_le(nr, addr) \ |
| clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define test_and_set_bit_le(nr, addr) \ |
| test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define test_and_clear_bit_le(nr, addr) \ |
| test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| #else |
| # define test_bit_le test_bit |
| # define set_bit_le set_bit |
| # define clear_bit_le clear_bit |
| # define test_and_set_bit_le test_and_set_bit |
| # define test_and_clear_bit_le test_and_clear_bit |
| #endif |
| |
| #define TEST_DIRTY_RING_COUNT 65536 |
| |
| #define SIG_IPI SIGUSR1 |
| |
| /* |
| * Guest/Host shared variables. Ensure addr_gva2hva() and/or |
| * sync_global_to/from_guest() are used when accessing from |
| * the host. READ/WRITE_ONCE() should also be used with anything |
| * that may change. |
| */ |
| static uint64_t host_page_size; |
| static uint64_t guest_page_size; |
| static uint64_t guest_num_pages; |
| static uint64_t random_array[TEST_PAGES_PER_LOOP]; |
| static uint64_t iteration; |
| |
| /* |
| * Guest physical memory offset of the testing memory slot. |
| * This will be set to the topmost valid physical address minus |
| * the test memory size. |
| */ |
| static uint64_t guest_test_phys_mem; |
| |
| /* |
| * Guest virtual memory offset of the testing memory slot. |
| * Must not conflict with identity mapped test code. |
| */ |
| static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; |
| |
| /* |
| * Continuously write to the first 8 bytes of a random pages within |
| * the testing memory region. |
| */ |
| static void guest_code(void) |
| { |
| uint64_t addr; |
| int i; |
| |
| /* |
| * On s390x, all pages of a 1M segment are initially marked as dirty |
| * when a page of the segment is written to for the very first time. |
| * To compensate this specialty in this test, we need to touch all |
| * pages during the first iteration. |
| */ |
| for (i = 0; i < guest_num_pages; i++) { |
| addr = guest_test_virt_mem + i * guest_page_size; |
| *(uint64_t *)addr = READ_ONCE(iteration); |
| } |
| |
| while (true) { |
| for (i = 0; i < TEST_PAGES_PER_LOOP; i++) { |
| addr = guest_test_virt_mem; |
| addr += (READ_ONCE(random_array[i]) % guest_num_pages) |
| * guest_page_size; |
| addr = align_down(addr, host_page_size); |
| *(uint64_t *)addr = READ_ONCE(iteration); |
| } |
| |
| /* Tell the host that we need more random numbers */ |
| GUEST_SYNC(1); |
| } |
| } |
| |
| /* Host variables */ |
| static bool host_quit; |
| |
| /* Points to the test VM memory region on which we track dirty logs */ |
| static void *host_test_mem; |
| static uint64_t host_num_pages; |
| |
| /* For statistics only */ |
| static uint64_t host_dirty_count; |
| static uint64_t host_clear_count; |
| static uint64_t host_track_next_count; |
| |
| /* Whether dirty ring reset is requested, or finished */ |
| static sem_t sem_vcpu_stop; |
| static sem_t sem_vcpu_cont; |
| /* |
| * This is only set by main thread, and only cleared by vcpu thread. It is |
| * used to request vcpu thread to stop at the next GUEST_SYNC, since GUEST_SYNC |
| * is the only place that we'll guarantee both "dirty bit" and "dirty data" |
| * will match. E.g., SIG_IPI won't guarantee that if the vcpu is interrupted |
| * after setting dirty bit but before the data is written. |
| */ |
| static atomic_t vcpu_sync_stop_requested; |
| /* |
| * This is updated by the vcpu thread to tell the host whether it's a |
| * ring-full event. It should only be read until a sem_wait() of |
| * sem_vcpu_stop and before vcpu continues to run. |
| */ |
| static bool dirty_ring_vcpu_ring_full; |
| /* |
| * This is only used for verifying the dirty pages. Dirty ring has a very |
| * tricky case when the ring just got full, kvm will do userspace exit due to |
| * ring full. When that happens, the very last PFN is set but actually the |
| * data is not changed (the guest WRITE is not really applied yet), because |
| * we found that the dirty ring is full, refused to continue the vcpu, and |
| * recorded the dirty gfn with the old contents. |
| * |
| * For this specific case, it's safe to skip checking this pfn for this |
| * bit, because it's a redundant bit, and when the write happens later the bit |
| * will be set again. We use this variable to always keep track of the latest |
| * dirty gfn we've collected, so that if a mismatch of data found later in the |
| * verifying process, we let it pass. |
| */ |
| static uint64_t dirty_ring_last_page; |
| |
| enum log_mode_t { |
| /* Only use KVM_GET_DIRTY_LOG for logging */ |
| LOG_MODE_DIRTY_LOG = 0, |
| |
| /* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */ |
| LOG_MODE_CLEAR_LOG = 1, |
| |
| /* Use dirty ring for logging */ |
| LOG_MODE_DIRTY_RING = 2, |
| |
| LOG_MODE_NUM, |
| |
| /* Run all supported modes */ |
| LOG_MODE_ALL = LOG_MODE_NUM, |
| }; |
| |
| /* Mode of logging to test. Default is to run all supported modes */ |
| static enum log_mode_t host_log_mode_option = LOG_MODE_ALL; |
| /* Logging mode for current run */ |
| static enum log_mode_t host_log_mode; |
| static pthread_t vcpu_thread; |
| static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT; |
| |
| static void vcpu_kick(void) |
| { |
| pthread_kill(vcpu_thread, SIG_IPI); |
| } |
| |
| /* |
| * In our test we do signal tricks, let's use a better version of |
| * sem_wait to avoid signal interrupts |
| */ |
| static void sem_wait_until(sem_t *sem) |
| { |
| int ret; |
| |
| do |
| ret = sem_wait(sem); |
| while (ret == -1 && errno == EINTR); |
| } |
| |
| static bool clear_log_supported(void) |
| { |
| return kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); |
| } |
| |
| static void clear_log_create_vm_done(struct kvm_vm *vm) |
| { |
| struct kvm_enable_cap cap = {}; |
| u64 manual_caps; |
| |
| manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); |
| TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!"); |
| manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | |
| KVM_DIRTY_LOG_INITIALLY_SET); |
| cap.cap = KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2; |
| cap.args[0] = manual_caps; |
| vm_enable_cap(vm, &cap); |
| } |
| |
| static void dirty_log_collect_dirty_pages(struct kvm_vm *vm, int slot, |
| void *bitmap, uint32_t num_pages) |
| { |
| kvm_vm_get_dirty_log(vm, slot, bitmap); |
| } |
| |
| static void clear_log_collect_dirty_pages(struct kvm_vm *vm, int slot, |
| void *bitmap, uint32_t num_pages) |
| { |
| kvm_vm_get_dirty_log(vm, slot, bitmap); |
| kvm_vm_clear_dirty_log(vm, slot, bitmap, 0, num_pages); |
| } |
| |
| /* Should only be called after a GUEST_SYNC */ |
| static void vcpu_handle_sync_stop(void) |
| { |
| if (atomic_read(&vcpu_sync_stop_requested)) { |
| /* It means main thread is sleeping waiting */ |
| atomic_set(&vcpu_sync_stop_requested, false); |
| sem_post(&sem_vcpu_stop); |
| sem_wait_until(&sem_vcpu_cont); |
| } |
| } |
| |
| static void default_after_vcpu_run(struct kvm_vm *vm, int ret, int err) |
| { |
| struct kvm_run *run = vcpu_state(vm, VCPU_ID); |
| |
| TEST_ASSERT(ret == 0 || (ret == -1 && err == EINTR), |
| "vcpu run failed: errno=%d", err); |
| |
| TEST_ASSERT(get_ucall(vm, VCPU_ID, NULL) == UCALL_SYNC, |
| "Invalid guest sync status: exit_reason=%s\n", |
| exit_reason_str(run->exit_reason)); |
| |
| vcpu_handle_sync_stop(); |
| } |
| |
| static bool dirty_ring_supported(void) |
| { |
| return kvm_check_cap(KVM_CAP_DIRTY_LOG_RING); |
| } |
| |
| static void dirty_ring_create_vm_done(struct kvm_vm *vm) |
| { |
| /* |
| * Switch to dirty ring mode after VM creation but before any |
| * of the vcpu creation. |
| */ |
| vm_enable_dirty_ring(vm, test_dirty_ring_count * |
| sizeof(struct kvm_dirty_gfn)); |
| } |
| |
| static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) |
| { |
| return gfn->flags == KVM_DIRTY_GFN_F_DIRTY; |
| } |
| |
| static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) |
| { |
| gfn->flags = KVM_DIRTY_GFN_F_RESET; |
| } |
| |
| static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns, |
| int slot, void *bitmap, |
| uint32_t num_pages, uint32_t *fetch_index) |
| { |
| struct kvm_dirty_gfn *cur; |
| uint32_t count = 0; |
| |
| while (true) { |
| cur = &dirty_gfns[*fetch_index % test_dirty_ring_count]; |
| if (!dirty_gfn_is_dirtied(cur)) |
| break; |
| TEST_ASSERT(cur->slot == slot, "Slot number didn't match: " |
| "%u != %u", cur->slot, slot); |
| TEST_ASSERT(cur->offset < num_pages, "Offset overflow: " |
| "0x%llx >= 0x%x", cur->offset, num_pages); |
| //pr_info("fetch 0x%x page %llu\n", *fetch_index, cur->offset); |
| set_bit_le(cur->offset, bitmap); |
| dirty_ring_last_page = cur->offset; |
| dirty_gfn_set_collected(cur); |
| (*fetch_index)++; |
| count++; |
| } |
| |
| return count; |
| } |
| |
| static void dirty_ring_wait_vcpu(void) |
| { |
| /* This makes sure that hardware PML cache flushed */ |
| vcpu_kick(); |
| sem_wait_until(&sem_vcpu_stop); |
| } |
| |
| static void dirty_ring_continue_vcpu(void) |
| { |
| pr_info("Notifying vcpu to continue\n"); |
| sem_post(&sem_vcpu_cont); |
| } |
| |
| static void dirty_ring_collect_dirty_pages(struct kvm_vm *vm, int slot, |
| void *bitmap, uint32_t num_pages) |
| { |
| /* We only have one vcpu */ |
| static uint32_t fetch_index = 0; |
| uint32_t count = 0, cleared; |
| bool continued_vcpu = false; |
| |
| dirty_ring_wait_vcpu(); |
| |
| if (!dirty_ring_vcpu_ring_full) { |
| /* |
| * This is not a ring-full event, it's safe to allow |
| * vcpu to continue |
| */ |
| dirty_ring_continue_vcpu(); |
| continued_vcpu = true; |
| } |
| |
| /* Only have one vcpu */ |
| count = dirty_ring_collect_one(vcpu_map_dirty_ring(vm, VCPU_ID), |
| slot, bitmap, num_pages, &fetch_index); |
| |
| cleared = kvm_vm_reset_dirty_ring(vm); |
| |
| /* Cleared pages should be the same as collected */ |
| TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch " |
| "with collected (%u)", cleared, count); |
| |
| if (!continued_vcpu) { |
| TEST_ASSERT(dirty_ring_vcpu_ring_full, |
| "Didn't continue vcpu even without ring full"); |
| dirty_ring_continue_vcpu(); |
| } |
| |
| pr_info("Iteration %ld collected %u pages\n", iteration, count); |
| } |
| |
| static void dirty_ring_after_vcpu_run(struct kvm_vm *vm, int ret, int err) |
| { |
| struct kvm_run *run = vcpu_state(vm, VCPU_ID); |
| |
| /* A ucall-sync or ring-full event is allowed */ |
| if (get_ucall(vm, VCPU_ID, NULL) == UCALL_SYNC) { |
| /* We should allow this to continue */ |
| ; |
| } else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL || |
| (ret == -1 && err == EINTR)) { |
| /* Update the flag first before pause */ |
| WRITE_ONCE(dirty_ring_vcpu_ring_full, |
| run->exit_reason == KVM_EXIT_DIRTY_RING_FULL); |
| sem_post(&sem_vcpu_stop); |
| pr_info("vcpu stops because %s...\n", |
| dirty_ring_vcpu_ring_full ? |
| "dirty ring is full" : "vcpu is kicked out"); |
| sem_wait_until(&sem_vcpu_cont); |
| pr_info("vcpu continues now.\n"); |
| } else { |
| TEST_ASSERT(false, "Invalid guest sync status: " |
| "exit_reason=%s\n", |
| exit_reason_str(run->exit_reason)); |
| } |
| } |
| |
| static void dirty_ring_before_vcpu_join(void) |
| { |
| /* Kick another round of vcpu just to make sure it will quit */ |
| sem_post(&sem_vcpu_cont); |
| } |
| |
| struct log_mode { |
| const char *name; |
| /* Return true if this mode is supported, otherwise false */ |
| bool (*supported)(void); |
| /* Hook when the vm creation is done (before vcpu creation) */ |
| void (*create_vm_done)(struct kvm_vm *vm); |
| /* Hook to collect the dirty pages into the bitmap provided */ |
| void (*collect_dirty_pages) (struct kvm_vm *vm, int slot, |
| void *bitmap, uint32_t num_pages); |
| /* Hook to call when after each vcpu run */ |
| void (*after_vcpu_run)(struct kvm_vm *vm, int ret, int err); |
| void (*before_vcpu_join) (void); |
| } log_modes[LOG_MODE_NUM] = { |
| { |
| .name = "dirty-log", |
| .collect_dirty_pages = dirty_log_collect_dirty_pages, |
| .after_vcpu_run = default_after_vcpu_run, |
| }, |
| { |
| .name = "clear-log", |
| .supported = clear_log_supported, |
| .create_vm_done = clear_log_create_vm_done, |
| .collect_dirty_pages = clear_log_collect_dirty_pages, |
| .after_vcpu_run = default_after_vcpu_run, |
| }, |
| { |
| .name = "dirty-ring", |
| .supported = dirty_ring_supported, |
| .create_vm_done = dirty_ring_create_vm_done, |
| .collect_dirty_pages = dirty_ring_collect_dirty_pages, |
| .before_vcpu_join = dirty_ring_before_vcpu_join, |
| .after_vcpu_run = dirty_ring_after_vcpu_run, |
| }, |
| }; |
| |
| /* |
| * We use this bitmap to track some pages that should have its dirty |
| * bit set in the _next_ iteration. For example, if we detected the |
| * page value changed to current iteration but at the same time the |
| * page bit is cleared in the latest bitmap, then the system must |
| * report that write in the next get dirty log call. |
| */ |
| static unsigned long *host_bmap_track; |
| |
| static void log_modes_dump(void) |
| { |
| int i; |
| |
| printf("all"); |
| for (i = 0; i < LOG_MODE_NUM; i++) |
| printf(", %s", log_modes[i].name); |
| printf("\n"); |
| } |
| |
| static bool log_mode_supported(void) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| if (mode->supported) |
| return mode->supported(); |
| |
| return true; |
| } |
| |
| static void log_mode_create_vm_done(struct kvm_vm *vm) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| if (mode->create_vm_done) |
| mode->create_vm_done(vm); |
| } |
| |
| static void log_mode_collect_dirty_pages(struct kvm_vm *vm, int slot, |
| void *bitmap, uint32_t num_pages) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| TEST_ASSERT(mode->collect_dirty_pages != NULL, |
| "collect_dirty_pages() is required for any log mode!"); |
| mode->collect_dirty_pages(vm, slot, bitmap, num_pages); |
| } |
| |
| static void log_mode_after_vcpu_run(struct kvm_vm *vm, int ret, int err) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| if (mode->after_vcpu_run) |
| mode->after_vcpu_run(vm, ret, err); |
| } |
| |
| static void log_mode_before_vcpu_join(void) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| if (mode->before_vcpu_join) |
| mode->before_vcpu_join(); |
| } |
| |
| static void generate_random_array(uint64_t *guest_array, uint64_t size) |
| { |
| uint64_t i; |
| |
| for (i = 0; i < size; i++) |
| guest_array[i] = random(); |
| } |
| |
| static void *vcpu_worker(void *data) |
| { |
| int ret, vcpu_fd; |
| struct kvm_vm *vm = data; |
| uint64_t *guest_array; |
| uint64_t pages_count = 0; |
| struct kvm_signal_mask *sigmask = alloca(offsetof(struct kvm_signal_mask, sigset) |
| + sizeof(sigset_t)); |
| sigset_t *sigset = (sigset_t *) &sigmask->sigset; |
| |
| vcpu_fd = vcpu_get_fd(vm, VCPU_ID); |
| |
| /* |
| * SIG_IPI is unblocked atomically while in KVM_RUN. It causes the |
| * ioctl to return with -EINTR, but it is still pending and we need |
| * to accept it with the sigwait. |
| */ |
| sigmask->len = 8; |
| pthread_sigmask(0, NULL, sigset); |
| sigdelset(sigset, SIG_IPI); |
| vcpu_ioctl(vm, VCPU_ID, KVM_SET_SIGNAL_MASK, sigmask); |
| |
| sigemptyset(sigset); |
| sigaddset(sigset, SIG_IPI); |
| |
| guest_array = addr_gva2hva(vm, (vm_vaddr_t)random_array); |
| |
| while (!READ_ONCE(host_quit)) { |
| /* Clear any existing kick signals */ |
| generate_random_array(guest_array, TEST_PAGES_PER_LOOP); |
| pages_count += TEST_PAGES_PER_LOOP; |
| /* Let the guest dirty the random pages */ |
| ret = ioctl(vcpu_fd, KVM_RUN, NULL); |
| if (ret == -1 && errno == EINTR) { |
| int sig = -1; |
| sigwait(sigset, &sig); |
| assert(sig == SIG_IPI); |
| } |
| log_mode_after_vcpu_run(vm, ret, errno); |
| } |
| |
| pr_info("Dirtied %"PRIu64" pages\n", pages_count); |
| |
| return NULL; |
| } |
| |
| static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long *bmap) |
| { |
| uint64_t step = vm_num_host_pages(mode, 1); |
| uint64_t page; |
| uint64_t *value_ptr; |
| uint64_t min_iter = 0; |
| |
| for (page = 0; page < host_num_pages; page += step) { |
| value_ptr = host_test_mem + page * host_page_size; |
| |
| /* If this is a special page that we were tracking... */ |
| if (test_and_clear_bit_le(page, host_bmap_track)) { |
| host_track_next_count++; |
| TEST_ASSERT(test_bit_le(page, bmap), |
| "Page %"PRIu64" should have its dirty bit " |
| "set in this iteration but it is missing", |
| page); |
| } |
| |
| if (test_and_clear_bit_le(page, bmap)) { |
| bool matched; |
| |
| host_dirty_count++; |
| |
| /* |
| * If the bit is set, the value written onto |
| * the corresponding page should be either the |
| * previous iteration number or the current one. |
| */ |
| matched = (*value_ptr == iteration || |
| *value_ptr == iteration - 1); |
| |
| if (host_log_mode == LOG_MODE_DIRTY_RING && !matched) { |
| if (*value_ptr == iteration - 2 && min_iter <= iteration - 2) { |
| /* |
| * Short answer: this case is special |
| * only for dirty ring test where the |
| * page is the last page before a kvm |
| * dirty ring full in iteration N-2. |
| * |
| * Long answer: Assuming ring size R, |
| * one possible condition is: |
| * |
| * main thr vcpu thr |
| * -------- -------- |
| * iter=1 |
| * write 1 to page 0~(R-1) |
| * full, vmexit |
| * collect 0~(R-1) |
| * kick vcpu |
| * write 1 to (R-1)~(2R-2) |
| * full, vmexit |
| * iter=2 |
| * collect (R-1)~(2R-2) |
| * kick vcpu |
| * write 1 to (2R-2) |
| * (NOTE!!! "1" cached in cpu reg) |
| * write 2 to (2R-1)~(3R-3) |
| * full, vmexit |
| * iter=3 |
| * collect (2R-2)~(3R-3) |
| * (here if we read value on page |
| * "2R-2" is 1, while iter=3!!!) |
| * |
| * This however can only happen once per iteration. |
| */ |
| min_iter = iteration - 1; |
| continue; |
| } else if (page == dirty_ring_last_page) { |
| /* |
| * Please refer to comments in |
| * dirty_ring_last_page. |
| */ |
| continue; |
| } |
| } |
| |
| TEST_ASSERT(matched, |
| "Set page %"PRIu64" value %"PRIu64 |
| " incorrect (iteration=%"PRIu64")", |
| page, *value_ptr, iteration); |
| } else { |
| host_clear_count++; |
| /* |
| * If cleared, the value written can be any |
| * value smaller or equals to the iteration |
| * number. Note that the value can be exactly |
| * (iteration-1) if that write can happen |
| * like this: |
| * |
| * (1) increase loop count to "iteration-1" |
| * (2) write to page P happens (with value |
| * "iteration-1") |
| * (3) get dirty log for "iteration-1"; we'll |
| * see that page P bit is set (dirtied), |
| * and not set the bit in host_bmap_track |
| * (4) increase loop count to "iteration" |
| * (which is current iteration) |
| * (5) get dirty log for current iteration, |
| * we'll see that page P is cleared, with |
| * value "iteration-1". |
| */ |
| TEST_ASSERT(*value_ptr <= iteration, |
| "Clear page %"PRIu64" value %"PRIu64 |
| " incorrect (iteration=%"PRIu64")", |
| page, *value_ptr, iteration); |
| if (*value_ptr == iteration) { |
| /* |
| * This page is _just_ modified; it |
| * should report its dirtyness in the |
| * next run |
| */ |
| set_bit_le(page, host_bmap_track); |
| } |
| } |
| } |
| } |
| |
| static struct kvm_vm *create_vm(enum vm_guest_mode mode, uint32_t vcpuid, |
| uint64_t extra_mem_pages, void *guest_code) |
| { |
| struct kvm_vm *vm; |
| uint64_t extra_pg_pages = extra_mem_pages / 512 * 2; |
| |
| pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); |
| |
| vm = vm_create(mode, DEFAULT_GUEST_PHY_PAGES + extra_pg_pages, O_RDWR); |
| kvm_vm_elf_load(vm, program_invocation_name); |
| #ifdef __x86_64__ |
| vm_create_irqchip(vm); |
| #endif |
| log_mode_create_vm_done(vm); |
| vm_vcpu_add_default(vm, vcpuid, guest_code); |
| return vm; |
| } |
| |
| #define DIRTY_MEM_BITS 30 /* 1G */ |
| #define PAGE_SHIFT_4K 12 |
| |
| struct test_params { |
| unsigned long iterations; |
| unsigned long interval; |
| uint64_t phys_offset; |
| }; |
| |
| static void run_test(enum vm_guest_mode mode, void *arg) |
| { |
| struct test_params *p = arg; |
| struct kvm_vm *vm; |
| unsigned long *bmap; |
| |
| if (!log_mode_supported()) { |
| print_skip("Log mode '%s' not supported", |
| log_modes[host_log_mode].name); |
| return; |
| } |
| |
| /* |
| * We reserve page table for 2 times of extra dirty mem which |
| * will definitely cover the original (1G+) test range. Here |
| * we do the calculation with 4K page size which is the |
| * smallest so the page number will be enough for all archs |
| * (e.g., 64K page size guest will need even less memory for |
| * page tables). |
| */ |
| vm = create_vm(mode, VCPU_ID, |
| 2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), |
| guest_code); |
| |
| guest_page_size = vm_get_page_size(vm); |
| /* |
| * A little more than 1G of guest page sized pages. Cover the |
| * case where the size is not aligned to 64 pages. |
| */ |
| guest_num_pages = (1ul << (DIRTY_MEM_BITS - |
| vm_get_page_shift(vm))) + 3; |
| guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); |
| |
| host_page_size = getpagesize(); |
| host_num_pages = vm_num_host_pages(mode, guest_num_pages); |
| |
| if (!p->phys_offset) { |
| guest_test_phys_mem = (vm_get_max_gfn(vm) - |
| guest_num_pages) * guest_page_size; |
| guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size); |
| } else { |
| guest_test_phys_mem = p->phys_offset; |
| } |
| |
| #ifdef __s390x__ |
| /* Align to 1M (segment size) */ |
| guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20); |
| #endif |
| |
| pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); |
| |
| bmap = bitmap_zalloc(host_num_pages); |
| host_bmap_track = bitmap_zalloc(host_num_pages); |
| |
| /* Add an extra memory slot for testing dirty logging */ |
| vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, |
| guest_test_phys_mem, |
| TEST_MEM_SLOT_INDEX, |
| guest_num_pages, |
| KVM_MEM_LOG_DIRTY_PAGES); |
| |
| /* Do mapping for the dirty track memory slot */ |
| virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); |
| |
| /* Cache the HVA pointer of the region */ |
| host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); |
| |
| ucall_init(vm, NULL); |
| |
| /* Export the shared variables to the guest */ |
| sync_global_to_guest(vm, host_page_size); |
| sync_global_to_guest(vm, guest_page_size); |
| sync_global_to_guest(vm, guest_test_virt_mem); |
| sync_global_to_guest(vm, guest_num_pages); |
| |
| /* Start the iterations */ |
| iteration = 1; |
| sync_global_to_guest(vm, iteration); |
| host_quit = false; |
| host_dirty_count = 0; |
| host_clear_count = 0; |
| host_track_next_count = 0; |
| |
| pthread_create(&vcpu_thread, NULL, vcpu_worker, vm); |
| |
| while (iteration < p->iterations) { |
| /* Give the vcpu thread some time to dirty some pages */ |
| usleep(p->interval * 1000); |
| log_mode_collect_dirty_pages(vm, TEST_MEM_SLOT_INDEX, |
| bmap, host_num_pages); |
| |
| /* |
| * See vcpu_sync_stop_requested definition for details on why |
| * we need to stop vcpu when verify data. |
| */ |
| atomic_set(&vcpu_sync_stop_requested, true); |
| sem_wait_until(&sem_vcpu_stop); |
| /* |
| * NOTE: for dirty ring, it's possible that we didn't stop at |
| * GUEST_SYNC but instead we stopped because ring is full; |
| * that's okay too because ring full means we're only missing |
| * the flush of the last page, and since we handle the last |
| * page specially verification will succeed anyway. |
| */ |
| assert(host_log_mode == LOG_MODE_DIRTY_RING || |
| atomic_read(&vcpu_sync_stop_requested) == false); |
| vm_dirty_log_verify(mode, bmap); |
| sem_post(&sem_vcpu_cont); |
| |
| iteration++; |
| sync_global_to_guest(vm, iteration); |
| } |
| |
| /* Tell the vcpu thread to quit */ |
| host_quit = true; |
| log_mode_before_vcpu_join(); |
| pthread_join(vcpu_thread, NULL); |
| |
| pr_info("Total bits checked: dirty (%"PRIu64"), clear (%"PRIu64"), " |
| "track_next (%"PRIu64")\n", host_dirty_count, host_clear_count, |
| host_track_next_count); |
| |
| free(bmap); |
| free(host_bmap_track); |
| ucall_uninit(vm); |
| kvm_vm_free(vm); |
| } |
| |
| static void help(char *name) |
| { |
| puts(""); |
| printf("usage: %s [-h] [-i iterations] [-I interval] " |
| "[-p offset] [-m mode]\n", name); |
| puts(""); |
| printf(" -c: specify dirty ring size, in number of entries\n"); |
| printf(" (only useful for dirty-ring test; default: %"PRIu32")\n", |
| TEST_DIRTY_RING_COUNT); |
| printf(" -i: specify iteration counts (default: %"PRIu64")\n", |
| TEST_HOST_LOOP_N); |
| printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n", |
| TEST_HOST_LOOP_INTERVAL); |
| printf(" -p: specify guest physical test memory offset\n" |
| " Warning: a low offset can conflict with the loaded test code.\n"); |
| printf(" -M: specify the host logging mode " |
| "(default: run all log modes). Supported modes: \n\t"); |
| log_modes_dump(); |
| guest_modes_help(); |
| puts(""); |
| exit(0); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct test_params p = { |
| .iterations = TEST_HOST_LOOP_N, |
| .interval = TEST_HOST_LOOP_INTERVAL, |
| }; |
| int opt, i; |
| sigset_t sigset; |
| |
| sem_init(&sem_vcpu_stop, 0, 0); |
| sem_init(&sem_vcpu_cont, 0, 0); |
| |
| guest_modes_append_default(); |
| |
| while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) { |
| switch (opt) { |
| case 'c': |
| test_dirty_ring_count = strtol(optarg, NULL, 10); |
| break; |
| case 'i': |
| p.iterations = strtol(optarg, NULL, 10); |
| break; |
| case 'I': |
| p.interval = strtol(optarg, NULL, 10); |
| break; |
| case 'p': |
| p.phys_offset = strtoull(optarg, NULL, 0); |
| break; |
| case 'm': |
| guest_modes_cmdline(optarg); |
| break; |
| case 'M': |
| if (!strcmp(optarg, "all")) { |
| host_log_mode_option = LOG_MODE_ALL; |
| break; |
| } |
| for (i = 0; i < LOG_MODE_NUM; i++) { |
| if (!strcmp(optarg, log_modes[i].name)) { |
| pr_info("Setting log mode to: '%s'\n", |
| optarg); |
| host_log_mode_option = i; |
| break; |
| } |
| } |
| if (i == LOG_MODE_NUM) { |
| printf("Log mode '%s' invalid. Please choose " |
| "from: ", optarg); |
| log_modes_dump(); |
| exit(1); |
| } |
| break; |
| case 'h': |
| default: |
| help(argv[0]); |
| break; |
| } |
| } |
| |
| TEST_ASSERT(p.iterations > 2, "Iterations must be greater than two"); |
| TEST_ASSERT(p.interval > 0, "Interval must be greater than zero"); |
| |
| pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n", |
| p.iterations, p.interval); |
| |
| srandom(time(0)); |
| |
| /* Ensure that vCPU threads start with SIG_IPI blocked. */ |
| sigemptyset(&sigset); |
| sigaddset(&sigset, SIG_IPI); |
| pthread_sigmask(SIG_BLOCK, &sigset, NULL); |
| |
| if (host_log_mode_option == LOG_MODE_ALL) { |
| /* Run each log mode */ |
| for (i = 0; i < LOG_MODE_NUM; i++) { |
| pr_info("Testing Log Mode '%s'\n", log_modes[i].name); |
| host_log_mode = i; |
| for_each_guest_mode(run_test, &p); |
| } |
| } else { |
| host_log_mode = host_log_mode_option; |
| for_each_guest_mode(run_test, &p); |
| } |
| |
| return 0; |
| } |