blob: e4bb09bbd3fa6e63d78ba8ab68c2c63d6ac2c25b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
//
// helpers.c -- Voltage/Current Regulator framework helper functions.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/module.h>
#include "internal.h"
/**
* regulator_is_enabled_regmap - standard is_enabled() for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their is_enabled operation, saving some code.
*/
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
if (ret != 0)
return ret;
val &= rdev->desc->enable_mask;
if (rdev->desc->enable_is_inverted) {
if (rdev->desc->enable_val)
return val != rdev->desc->enable_val;
return val == 0;
} else {
if (rdev->desc->enable_val)
return val == rdev->desc->enable_val;
return val != 0;
}
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
/**
* regulator_enable_regmap - standard enable() for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their enable() operation, saving some code.
*/
int regulator_enable_regmap(struct regulator_dev *rdev)
{
unsigned int val;
if (rdev->desc->enable_is_inverted) {
val = rdev->desc->disable_val;
} else {
val = rdev->desc->enable_val;
if (!val)
val = rdev->desc->enable_mask;
}
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
rdev->desc->enable_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);
/**
* regulator_disable_regmap - standard disable() for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their disable() operation, saving some code.
*/
int regulator_disable_regmap(struct regulator_dev *rdev)
{
unsigned int val;
if (rdev->desc->enable_is_inverted) {
val = rdev->desc->enable_val;
if (!val)
val = rdev->desc->enable_mask;
} else {
val = rdev->desc->disable_val;
}
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
rdev->desc->enable_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);
static int regulator_range_selector_to_index(struct regulator_dev *rdev,
unsigned int rval)
{
int i;
if (!rdev->desc->linear_range_selectors)
return -EINVAL;
rval &= rdev->desc->vsel_range_mask;
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
if (rdev->desc->linear_range_selectors[i] == rval)
return i;
}
return -EINVAL;
}
/**
* regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O and use pickable
* ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
* fields in their descriptor and then use this as their get_voltage_vsel
* operation, saving some code.
*/
int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
{
unsigned int r_val;
int range;
unsigned int val;
int ret;
unsigned int voltages = 0;
const struct linear_range *r = rdev->desc->linear_ranges;
if (!r)
return -EINVAL;
ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
if (ret != 0)
return ret;
ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
if (ret != 0)
return ret;
val &= rdev->desc->vsel_mask;
val >>= ffs(rdev->desc->vsel_mask) - 1;
range = regulator_range_selector_to_index(rdev, r_val);
if (range < 0)
return -EINVAL;
voltages = linear_range_values_in_range_array(r, range);
return val + voltages;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
/**
* regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
*
* @rdev: regulator to operate on
* @sel: Selector to set
*
* Regulators that use regmap for their register I/O and use pickable
* ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
* fields in their descriptor and then use this as their set_voltage_vsel
* operation, saving some code.
*/
int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
unsigned int sel)
{
unsigned int range;
int ret, i;
unsigned int voltages_in_range = 0;
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
const struct linear_range *r;
r = &rdev->desc->linear_ranges[i];
voltages_in_range = linear_range_values_in_range(r);
if (sel < voltages_in_range)
break;
sel -= voltages_in_range;
}
if (i == rdev->desc->n_linear_ranges)
return -EINVAL;
sel <<= ffs(rdev->desc->vsel_mask) - 1;
sel += rdev->desc->linear_ranges[i].min_sel;
range = rdev->desc->linear_range_selectors[i];
if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
ret = regmap_update_bits(rdev->regmap,
rdev->desc->vsel_reg,
rdev->desc->vsel_range_mask |
rdev->desc->vsel_mask, sel | range);
} else {
ret = regmap_update_bits(rdev->regmap,
rdev->desc->vsel_range_reg,
rdev->desc->vsel_range_mask, range);
if (ret)
return ret;
ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
rdev->desc->vsel_mask, sel);
}
if (ret)
return ret;
if (rdev->desc->apply_bit)
ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
rdev->desc->apply_bit,
rdev->desc->apply_bit);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
/**
* regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* vsel_reg and vsel_mask fields in their descriptor and then use this
* as their get_voltage_vsel operation, saving some code.
*/
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
if (ret != 0)
return ret;
val &= rdev->desc->vsel_mask;
val >>= ffs(rdev->desc->vsel_mask) - 1;
return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
/**
* regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
*
* @rdev: regulator to operate on
* @sel: Selector to set
*
* Regulators that use regmap for their register I/O can set the
* vsel_reg and vsel_mask fields in their descriptor and then use this
* as their set_voltage_vsel operation, saving some code.
*/
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
int ret;
sel <<= ffs(rdev->desc->vsel_mask) - 1;
ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
rdev->desc->vsel_mask, sel);
if (ret)
return ret;
if (rdev->desc->apply_bit)
ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
rdev->desc->apply_bit,
rdev->desc->apply_bit);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
/**
* regulator_map_voltage_iterate - map_voltage() based on list_voltage()
*
* @rdev: Regulator to operate on
* @min_uV: Lower bound for voltage
* @max_uV: Upper bound for voltage
*
* Drivers implementing set_voltage_sel() and list_voltage() can use
* this as their map_voltage() operation. It will find a suitable
* voltage by calling list_voltage() until it gets something in bounds
* for the requested voltages.
*/
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
int best_val = INT_MAX;
int selector = 0;
int i, ret;
/* Find the smallest voltage that falls within the specified
* range.
*/
for (i = 0; i < rdev->desc->n_voltages; i++) {
ret = rdev->desc->ops->list_voltage(rdev, i);
if (ret < 0)
continue;
if (ret < best_val && ret >= min_uV && ret <= max_uV) {
best_val = ret;
selector = i;
}
}
if (best_val != INT_MAX)
return selector;
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
/**
* regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
*
* @rdev: Regulator to operate on
* @min_uV: Lower bound for voltage
* @max_uV: Upper bound for voltage
*
* Drivers that have ascendant voltage list can use this as their
* map_voltage() operation.
*/
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
int i, ret;
for (i = 0; i < rdev->desc->n_voltages; i++) {
ret = rdev->desc->ops->list_voltage(rdev, i);
if (ret < 0)
continue;
if (ret > max_uV)
break;
if (ret >= min_uV && ret <= max_uV)
return i;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
/**
* regulator_map_voltage_linear - map_voltage() for simple linear mappings
*
* @rdev: Regulator to operate on
* @min_uV: Lower bound for voltage
* @max_uV: Upper bound for voltage
*
* Drivers providing min_uV and uV_step in their regulator_desc can
* use this as their map_voltage() operation.
*/
int regulator_map_voltage_linear(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
int ret, voltage;
/* Allow uV_step to be 0 for fixed voltage */
if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
return 0;
else
return -EINVAL;
}
if (!rdev->desc->uV_step) {
BUG_ON(!rdev->desc->uV_step);
return -EINVAL;
}
if (min_uV < rdev->desc->min_uV)
min_uV = rdev->desc->min_uV;
ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
if (ret < 0)
return ret;
ret += rdev->desc->linear_min_sel;
/* Map back into a voltage to verify we're still in bounds */
voltage = rdev->desc->ops->list_voltage(rdev, ret);
if (voltage < min_uV || voltage > max_uV)
return -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
/**
* regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
*
* @rdev: Regulator to operate on
* @min_uV: Lower bound for voltage
* @max_uV: Upper bound for voltage
*
* Drivers providing linear_ranges in their descriptor can use this as
* their map_voltage() callback.
*/
int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
const struct linear_range *range;
int ret = -EINVAL;
unsigned int sel;
bool found;
int voltage, i;
if (!rdev->desc->n_linear_ranges) {
BUG_ON(!rdev->desc->n_linear_ranges);
return -EINVAL;
}
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
range = &rdev->desc->linear_ranges[i];
ret = linear_range_get_selector_high(range, min_uV, &sel,
&found);
if (ret)
continue;
ret = sel;
/*
* Map back into a voltage to verify we're still in bounds.
* If we are not, then continue checking rest of the ranges.
*/
voltage = rdev->desc->ops->list_voltage(rdev, sel);
if (voltage >= min_uV && voltage <= max_uV)
break;
}
if (i == rdev->desc->n_linear_ranges)
return -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
/**
* regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
*
* @rdev: Regulator to operate on
* @min_uV: Lower bound for voltage
* @max_uV: Upper bound for voltage
*
* Drivers providing pickable linear_ranges in their descriptor can use
* this as their map_voltage() callback.
*/
int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
const struct linear_range *range;
int ret = -EINVAL;
int voltage, i;
unsigned int selector = 0;
if (!rdev->desc->n_linear_ranges) {
BUG_ON(!rdev->desc->n_linear_ranges);
return -EINVAL;
}
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
int linear_max_uV;
bool found;
unsigned int sel;
range = &rdev->desc->linear_ranges[i];
linear_max_uV = linear_range_get_max_value(range);
if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
selector += linear_range_values_in_range(range);
continue;
}
ret = linear_range_get_selector_high(range, min_uV, &sel,
&found);
if (ret) {
selector += linear_range_values_in_range(range);
continue;
}
ret = selector + sel - range->min_sel;
voltage = rdev->desc->ops->list_voltage(rdev, ret);
/*
* Map back into a voltage to verify we're still in bounds.
* We may have overlapping voltage ranges. Hence we don't
* exit but retry until we have checked all ranges.
*/
if (voltage < min_uV || voltage > max_uV)
selector += linear_range_values_in_range(range);
else
break;
}
if (i == rdev->desc->n_linear_ranges)
return -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
/**
* regulator_list_voltage_linear - List voltages with simple calculation
*
* @rdev: Regulator device
* @selector: Selector to convert into a voltage
*
* Regulators with a simple linear mapping between voltages and
* selectors can set min_uV and uV_step in the regulator descriptor
* and then use this function as their list_voltage() operation,
*/
int regulator_list_voltage_linear(struct regulator_dev *rdev,
unsigned int selector)
{
if (selector >= rdev->desc->n_voltages)
return -EINVAL;
if (selector < rdev->desc->linear_min_sel)
return 0;
selector -= rdev->desc->linear_min_sel;
return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
/**
* regulator_list_voltage_pickable_linear_range - pickable range list voltages
*
* @rdev: Regulator device
* @selector: Selector to convert into a voltage
*
* list_voltage() operation, intended to be used by drivers utilizing pickable
* ranges helpers.
*/
int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
unsigned int selector)
{
const struct linear_range *range;
int i;
unsigned int all_sels = 0;
if (!rdev->desc->n_linear_ranges) {
BUG_ON(!rdev->desc->n_linear_ranges);
return -EINVAL;
}
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
unsigned int sel_indexes;
range = &rdev->desc->linear_ranges[i];
sel_indexes = linear_range_values_in_range(range) - 1;
if (all_sels + sel_indexes >= selector) {
selector -= all_sels;
/*
* As we see here, pickable ranges work only as
* long as the first selector for each pickable
* range is 0, and the each subsequent range for
* this 'pick' follow immediately at next unused
* selector (Eg. there is no gaps between ranges).
* I think this is fine but it probably should be
* documented. OTOH, whole pickable range stuff
* might benefit from some documentation
*/
return range->min + (range->step * selector);
}
all_sels += (sel_indexes + 1);
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
/**
* regulator_desc_list_voltage_linear_range - List voltages for linear ranges
*
* @desc: Regulator desc for regulator which volatges are to be listed
* @selector: Selector to convert into a voltage
*
* Regulators with a series of simple linear mappings between voltages
* and selectors who have set linear_ranges in the regulator descriptor
* can use this function prior regulator registration to list voltages.
* This is useful when voltages need to be listed during device-tree
* parsing.
*/
int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
unsigned int selector)
{
unsigned int val;
int ret;
BUG_ON(!desc->n_linear_ranges);
ret = linear_range_get_value_array(desc->linear_ranges,
desc->n_linear_ranges, selector,
&val);
if (ret)
return ret;
return val;
}
EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
/**
* regulator_list_voltage_linear_range - List voltages for linear ranges
*
* @rdev: Regulator device
* @selector: Selector to convert into a voltage
*
* Regulators with a series of simple linear mappings between voltages
* and selectors can set linear_ranges in the regulator descriptor and
* then use this function as their list_voltage() operation,
*/
int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
unsigned int selector)
{
return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
/**
* regulator_list_voltage_table - List voltages with table based mapping
*
* @rdev: Regulator device
* @selector: Selector to convert into a voltage
*
* Regulators with table based mapping between voltages and
* selectors can set volt_table in the regulator descriptor
* and then use this function as their list_voltage() operation.
*/
int regulator_list_voltage_table(struct regulator_dev *rdev,
unsigned int selector)
{
if (!rdev->desc->volt_table) {
BUG_ON(!rdev->desc->volt_table);
return -EINVAL;
}
if (selector >= rdev->desc->n_voltages)
return -EINVAL;
return rdev->desc->volt_table[selector];
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
/**
* regulator_set_bypass_regmap - Default set_bypass() using regmap
*
* @rdev: device to operate on.
* @enable: state to set.
*/
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
{
unsigned int val;
if (enable) {
val = rdev->desc->bypass_val_on;
if (!val)
val = rdev->desc->bypass_mask;
} else {
val = rdev->desc->bypass_val_off;
}
return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
rdev->desc->bypass_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
/**
* regulator_set_soft_start_regmap - Default set_soft_start() using regmap
*
* @rdev: device to operate on.
*/
int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
{
unsigned int val;
val = rdev->desc->soft_start_val_on;
if (!val)
val = rdev->desc->soft_start_mask;
return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
rdev->desc->soft_start_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
/**
* regulator_set_pull_down_regmap - Default set_pull_down() using regmap
*
* @rdev: device to operate on.
*/
int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
{
unsigned int val;
val = rdev->desc->pull_down_val_on;
if (!val)
val = rdev->desc->pull_down_mask;
return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
rdev->desc->pull_down_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
/**
* regulator_get_bypass_regmap - Default get_bypass() using regmap
*
* @rdev: device to operate on.
* @enable: current state.
*/
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
{
unsigned int val;
unsigned int val_on = rdev->desc->bypass_val_on;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
if (ret != 0)
return ret;
if (!val_on)
val_on = rdev->desc->bypass_mask;
*enable = (val & rdev->desc->bypass_mask) == val_on;
return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
/**
* regulator_set_active_discharge_regmap - Default set_active_discharge()
* using regmap
*
* @rdev: device to operate on.
* @enable: state to set, 0 to disable and 1 to enable.
*/
int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
bool enable)
{
unsigned int val;
if (enable)
val = rdev->desc->active_discharge_on;
else
val = rdev->desc->active_discharge_off;
return regmap_update_bits(rdev->regmap,
rdev->desc->active_discharge_reg,
rdev->desc->active_discharge_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
/**
* regulator_set_current_limit_regmap - set_current_limit for regmap users
*
* @rdev: regulator to operate on
* @min_uA: Lower bound for current limit
* @max_uA: Upper bound for current limit
*
* Regulators that use regmap for their register I/O can set curr_table,
* csel_reg and csel_mask fields in their descriptor and then use this
* as their set_current_limit operation, saving some code.
*/
int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
int min_uA, int max_uA)
{
unsigned int n_currents = rdev->desc->n_current_limits;
int i, sel = -1;
if (n_currents == 0)
return -EINVAL;
if (rdev->desc->curr_table) {
const unsigned int *curr_table = rdev->desc->curr_table;
bool ascend = curr_table[n_currents - 1] > curr_table[0];
/* search for closest to maximum */
if (ascend) {
for (i = n_currents - 1; i >= 0; i--) {
if (min_uA <= curr_table[i] &&
curr_table[i] <= max_uA) {
sel = i;
break;
}
}
} else {
for (i = 0; i < n_currents; i++) {
if (min_uA <= curr_table[i] &&
curr_table[i] <= max_uA) {
sel = i;
break;
}
}
}
}
if (sel < 0)
return -EINVAL;
sel <<= ffs(rdev->desc->csel_mask) - 1;
return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
rdev->desc->csel_mask, sel);
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
/**
* regulator_get_current_limit_regmap - get_current_limit for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* csel_reg and csel_mask fields in their descriptor and then use this
* as their get_current_limit operation, saving some code.
*/
int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
if (ret != 0)
return ret;
val &= rdev->desc->csel_mask;
val >>= ffs(rdev->desc->csel_mask) - 1;
if (rdev->desc->curr_table) {
if (val >= rdev->desc->n_current_limits)
return -EINVAL;
return rdev->desc->curr_table[val];
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
/**
* regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
* of regulator_bulk_data structs
*
* @consumers: array of regulator_bulk_data entries to initialize
* @supply_names: array of supply name strings
* @num_supplies: number of supply names to initialize
*
* Note: the 'consumers' array must be the size of 'num_supplies'.
*/
void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
const char *const *supply_names,
unsigned int num_supplies)
{
unsigned int i;
for (i = 0; i < num_supplies; i++)
consumers[i].supply = supply_names[i];
}
EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
/**
* regulator_is_equal - test whether two regulators are the same
*
* @reg1: first regulator to operate on
* @reg2: second regulator to operate on
*/
bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
{
return reg1->rdev == reg2->rdev;
}
EXPORT_SYMBOL_GPL(regulator_is_equal);