| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2013 Imagination Technologies |
| * Author: Paul Burton <paul.burton@mips.com> |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/memblock.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/slab.h> |
| #include <linux/smp.h> |
| #include <linux/types.h> |
| #include <linux/irq.h> |
| |
| #include <asm/bcache.h> |
| #include <asm/mips-cps.h> |
| #include <asm/mips_mt.h> |
| #include <asm/mipsregs.h> |
| #include <asm/pm-cps.h> |
| #include <asm/r4kcache.h> |
| #include <asm/regdef.h> |
| #include <asm/smp.h> |
| #include <asm/smp-cps.h> |
| #include <asm/time.h> |
| #include <asm/uasm.h> |
| |
| #define BEV_VEC_SIZE 0x500 |
| #define BEV_VEC_ALIGN 0x1000 |
| |
| enum label_id { |
| label_not_nmi = 1, |
| }; |
| |
| UASM_L_LA(_not_nmi) |
| |
| static DECLARE_BITMAP(core_power, NR_CPUS); |
| static u64 core_entry_reg; |
| static phys_addr_t cps_vec_pa; |
| |
| struct core_boot_config *mips_cps_core_bootcfg; |
| |
| static unsigned __init core_vpe_count(unsigned int cluster, unsigned core) |
| { |
| return min(smp_max_threads, mips_cps_numvps(cluster, core)); |
| } |
| |
| static void __init *mips_cps_build_core_entry(void *addr) |
| { |
| extern void (*nmi_handler)(void); |
| u32 *p = addr; |
| u32 val; |
| struct uasm_label labels[2]; |
| struct uasm_reloc relocs[2]; |
| struct uasm_label *l = labels; |
| struct uasm_reloc *r = relocs; |
| |
| memset(labels, 0, sizeof(labels)); |
| memset(relocs, 0, sizeof(relocs)); |
| |
| uasm_i_mfc0(&p, GPR_K0, C0_STATUS); |
| UASM_i_LA(&p, GPR_T9, ST0_NMI); |
| uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9); |
| |
| uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi); |
| uasm_i_nop(&p); |
| UASM_i_LA(&p, GPR_K0, (long)&nmi_handler); |
| |
| uasm_l_not_nmi(&l, p); |
| |
| val = CAUSEF_IV; |
| uasm_i_lui(&p, GPR_K0, val >> 16); |
| uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff); |
| uasm_i_mtc0(&p, GPR_K0, C0_CAUSE); |
| val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64; |
| uasm_i_lui(&p, GPR_K0, val >> 16); |
| uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff); |
| uasm_i_mtc0(&p, GPR_K0, C0_STATUS); |
| uasm_i_ehb(&p); |
| uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK); |
| UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base); |
| #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT) |
| UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot))); |
| #else |
| UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot))); |
| #endif |
| uasm_i_jr(&p, GPR_T9); |
| uasm_i_nop(&p); |
| |
| uasm_resolve_relocs(relocs, labels); |
| |
| return p; |
| } |
| |
| static bool __init check_64bit_reset(void) |
| { |
| bool cx_64bit_reset = false; |
| |
| mips_cm_lock_other(0, 0, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); |
| write_gcr_co_reset64_base(CM_GCR_Cx_RESET64_BASE_BEVEXCBASE); |
| if ((read_gcr_co_reset64_base() & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) == |
| CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) |
| cx_64bit_reset = true; |
| mips_cm_unlock_other(); |
| |
| return cx_64bit_reset; |
| } |
| |
| static int __init allocate_cps_vecs(void) |
| { |
| /* Try to allocate in KSEG1 first */ |
| cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN, |
| 0x0, CSEGX_SIZE - 1); |
| |
| if (cps_vec_pa) |
| core_entry_reg = CKSEG1ADDR(cps_vec_pa) & |
| CM_GCR_Cx_RESET_BASE_BEVEXCBASE; |
| |
| if (!cps_vec_pa && mips_cm_is64) { |
| phys_addr_t end; |
| |
| if (check_64bit_reset()) { |
| pr_info("VP Local Reset Exception Base support 47 bits address\n"); |
| end = MEMBLOCK_ALLOC_ANYWHERE; |
| } else { |
| end = SZ_4G - 1; |
| } |
| cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN, 0, end); |
| if (cps_vec_pa) { |
| if (check_64bit_reset()) |
| core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) | |
| CM_GCR_Cx_RESET_BASE_MODE; |
| else |
| core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) | |
| CM_GCR_Cx_RESET_BASE_MODE; |
| } |
| } |
| |
| if (!cps_vec_pa) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void __init setup_cps_vecs(void) |
| { |
| void *cps_vec; |
| |
| cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa); |
| mips_cps_build_core_entry(cps_vec); |
| |
| memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80); |
| memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80); |
| memcpy(cps_vec + 0x300, &excep_cache, 0x80); |
| memcpy(cps_vec + 0x380, &excep_genex, 0x80); |
| memcpy(cps_vec + 0x400, &excep_intex, 0x80); |
| memcpy(cps_vec + 0x480, &excep_ejtag, 0x80); |
| |
| /* Make sure no prefetched data in cache */ |
| blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE); |
| bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE); |
| __sync(); |
| } |
| |
| static void __init cps_smp_setup(void) |
| { |
| unsigned int nclusters, ncores, nvpes, core_vpes; |
| int cl, c, v; |
| |
| /* Detect & record VPE topology */ |
| nvpes = 0; |
| nclusters = mips_cps_numclusters(); |
| pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE"); |
| for (cl = 0; cl < nclusters; cl++) { |
| if (cl > 0) |
| pr_cont(","); |
| pr_cont("{"); |
| |
| ncores = mips_cps_numcores(cl); |
| for (c = 0; c < ncores; c++) { |
| core_vpes = core_vpe_count(cl, c); |
| |
| if (c > 0) |
| pr_cont(","); |
| pr_cont("%u", core_vpes); |
| |
| /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */ |
| if (!cl && !c) |
| smp_num_siblings = core_vpes; |
| |
| for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) { |
| cpu_set_cluster(&cpu_data[nvpes + v], cl); |
| cpu_set_core(&cpu_data[nvpes + v], c); |
| cpu_set_vpe_id(&cpu_data[nvpes + v], v); |
| } |
| |
| nvpes += core_vpes; |
| } |
| |
| pr_cont("}"); |
| } |
| pr_cont(" total %u\n", nvpes); |
| |
| /* Indicate present CPUs (CPU being synonymous with VPE) */ |
| for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) { |
| set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0); |
| set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0); |
| __cpu_number_map[v] = v; |
| __cpu_logical_map[v] = v; |
| } |
| |
| /* Set a coherent default CCA (CWB) */ |
| change_c0_config(CONF_CM_CMASK, 0x5); |
| |
| /* Core 0 is powered up (we're running on it) */ |
| bitmap_set(core_power, 0, 1); |
| |
| /* Initialise core 0 */ |
| mips_cps_core_init(); |
| |
| /* Make core 0 coherent with everything */ |
| write_gcr_cl_coherence(0xff); |
| |
| if (allocate_cps_vecs()) |
| pr_err("Failed to allocate CPS vectors\n"); |
| |
| if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3) |
| write_gcr_bev_base(core_entry_reg); |
| |
| #ifdef CONFIG_MIPS_MT_FPAFF |
| /* If we have an FPU, enroll ourselves in the FPU-full mask */ |
| if (cpu_has_fpu) |
| cpumask_set_cpu(0, &mt_fpu_cpumask); |
| #endif /* CONFIG_MIPS_MT_FPAFF */ |
| } |
| |
| static void __init cps_prepare_cpus(unsigned int max_cpus) |
| { |
| unsigned ncores, core_vpes, c, cca; |
| bool cca_unsuitable, cores_limited; |
| |
| mips_mt_set_cpuoptions(); |
| |
| if (!core_entry_reg) { |
| pr_err("core_entry address unsuitable, disabling smp-cps\n"); |
| goto err_out; |
| } |
| |
| /* Detect whether the CCA is unsuited to multi-core SMP */ |
| cca = read_c0_config() & CONF_CM_CMASK; |
| switch (cca) { |
| case 0x4: /* CWBE */ |
| case 0x5: /* CWB */ |
| /* The CCA is coherent, multi-core is fine */ |
| cca_unsuitable = false; |
| break; |
| |
| default: |
| /* CCA is not coherent, multi-core is not usable */ |
| cca_unsuitable = true; |
| } |
| |
| /* Warn the user if the CCA prevents multi-core */ |
| cores_limited = false; |
| if (cca_unsuitable || cpu_has_dc_aliases) { |
| for_each_present_cpu(c) { |
| if (cpus_are_siblings(smp_processor_id(), c)) |
| continue; |
| |
| set_cpu_present(c, false); |
| cores_limited = true; |
| } |
| } |
| if (cores_limited) |
| pr_warn("Using only one core due to %s%s%s\n", |
| cca_unsuitable ? "unsuitable CCA" : "", |
| (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "", |
| cpu_has_dc_aliases ? "dcache aliasing" : ""); |
| |
| setup_cps_vecs(); |
| |
| /* Allocate core boot configuration structs */ |
| ncores = mips_cps_numcores(0); |
| mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg), |
| GFP_KERNEL); |
| if (!mips_cps_core_bootcfg) { |
| pr_err("Failed to allocate boot config for %u cores\n", ncores); |
| goto err_out; |
| } |
| |
| /* Allocate VPE boot configuration structs */ |
| for (c = 0; c < ncores; c++) { |
| core_vpes = core_vpe_count(0, c); |
| mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes, |
| sizeof(*mips_cps_core_bootcfg[c].vpe_config), |
| GFP_KERNEL); |
| if (!mips_cps_core_bootcfg[c].vpe_config) { |
| pr_err("Failed to allocate %u VPE boot configs\n", |
| core_vpes); |
| goto err_out; |
| } |
| } |
| |
| /* Mark this CPU as booted */ |
| atomic_set(&mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)].vpe_mask, |
| 1 << cpu_vpe_id(¤t_cpu_data)); |
| |
| return; |
| err_out: |
| /* Clean up allocations */ |
| if (mips_cps_core_bootcfg) { |
| for (c = 0; c < ncores; c++) |
| kfree(mips_cps_core_bootcfg[c].vpe_config); |
| kfree(mips_cps_core_bootcfg); |
| mips_cps_core_bootcfg = NULL; |
| } |
| |
| /* Effectively disable SMP by declaring CPUs not present */ |
| for_each_possible_cpu(c) { |
| if (c == 0) |
| continue; |
| set_cpu_present(c, false); |
| } |
| } |
| |
| static void boot_core(unsigned int core, unsigned int vpe_id) |
| { |
| u32 stat, seq_state; |
| unsigned timeout; |
| |
| /* Select the appropriate core */ |
| mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); |
| |
| /* Set its reset vector */ |
| if (mips_cm_is64) |
| write_gcr_co_reset64_base(core_entry_reg); |
| else |
| write_gcr_co_reset_base(core_entry_reg); |
| |
| /* Ensure its coherency is disabled */ |
| write_gcr_co_coherence(0); |
| |
| /* Start it with the legacy memory map and exception base */ |
| write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB); |
| |
| /* Ensure the core can access the GCRs */ |
| if (mips_cm_revision() < CM_REV_CM3) |
| set_gcr_access(1 << core); |
| else |
| set_gcr_access_cm3(1 << core); |
| |
| if (mips_cpc_present()) { |
| /* Reset the core */ |
| mips_cpc_lock_other(core); |
| |
| if (mips_cm_revision() >= CM_REV_CM3) { |
| /* Run only the requested VP following the reset */ |
| write_cpc_co_vp_stop(0xf); |
| write_cpc_co_vp_run(1 << vpe_id); |
| |
| /* |
| * Ensure that the VP_RUN register is written before the |
| * core leaves reset. |
| */ |
| wmb(); |
| } |
| |
| write_cpc_co_cmd(CPC_Cx_CMD_RESET); |
| |
| timeout = 100; |
| while (true) { |
| stat = read_cpc_co_stat_conf(); |
| seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE; |
| seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE); |
| |
| /* U6 == coherent execution, ie. the core is up */ |
| if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6) |
| break; |
| |
| /* Delay a little while before we start warning */ |
| if (timeout) { |
| timeout--; |
| mdelay(10); |
| continue; |
| } |
| |
| pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n", |
| core, stat); |
| mdelay(1000); |
| } |
| |
| mips_cpc_unlock_other(); |
| } else { |
| /* Take the core out of reset */ |
| write_gcr_co_reset_release(0); |
| } |
| |
| mips_cm_unlock_other(); |
| |
| /* The core is now powered up */ |
| bitmap_set(core_power, core, 1); |
| } |
| |
| static void remote_vpe_boot(void *dummy) |
| { |
| unsigned core = cpu_core(¤t_cpu_data); |
| struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; |
| |
| mips_cps_boot_vpes(core_cfg, cpu_vpe_id(¤t_cpu_data)); |
| } |
| |
| static int cps_boot_secondary(int cpu, struct task_struct *idle) |
| { |
| unsigned core = cpu_core(&cpu_data[cpu]); |
| unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); |
| struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; |
| struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id]; |
| unsigned int remote; |
| int err; |
| |
| /* We don't yet support booting CPUs in other clusters */ |
| if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data)) |
| return -ENOSYS; |
| |
| vpe_cfg->pc = (unsigned long)&smp_bootstrap; |
| vpe_cfg->sp = __KSTK_TOS(idle); |
| vpe_cfg->gp = (unsigned long)task_thread_info(idle); |
| |
| atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask); |
| |
| preempt_disable(); |
| |
| if (!test_bit(core, core_power)) { |
| /* Boot a VPE on a powered down core */ |
| boot_core(core, vpe_id); |
| goto out; |
| } |
| |
| if (cpu_has_vp) { |
| mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL); |
| if (mips_cm_is64) |
| write_gcr_co_reset64_base(core_entry_reg); |
| else |
| write_gcr_co_reset_base(core_entry_reg); |
| mips_cm_unlock_other(); |
| } |
| |
| if (!cpus_are_siblings(cpu, smp_processor_id())) { |
| /* Boot a VPE on another powered up core */ |
| for (remote = 0; remote < NR_CPUS; remote++) { |
| if (!cpus_are_siblings(cpu, remote)) |
| continue; |
| if (cpu_online(remote)) |
| break; |
| } |
| if (remote >= NR_CPUS) { |
| pr_crit("No online CPU in core %u to start CPU%d\n", |
| core, cpu); |
| goto out; |
| } |
| |
| err = smp_call_function_single(remote, remote_vpe_boot, |
| NULL, 1); |
| if (err) |
| panic("Failed to call remote CPU\n"); |
| goto out; |
| } |
| |
| BUG_ON(!cpu_has_mipsmt && !cpu_has_vp); |
| |
| /* Boot a VPE on this core */ |
| mips_cps_boot_vpes(core_cfg, vpe_id); |
| out: |
| preempt_enable(); |
| return 0; |
| } |
| |
| static void cps_init_secondary(void) |
| { |
| int core = cpu_core(¤t_cpu_data); |
| |
| /* Disable MT - we only want to run 1 TC per VPE */ |
| if (cpu_has_mipsmt) |
| dmt(); |
| |
| if (mips_cm_revision() >= CM_REV_CM3) { |
| unsigned int ident = read_gic_vl_ident(); |
| |
| /* |
| * Ensure that our calculation of the VP ID matches up with |
| * what the GIC reports, otherwise we'll have configured |
| * interrupts incorrectly. |
| */ |
| BUG_ON(ident != mips_cm_vp_id(smp_processor_id())); |
| } |
| |
| if (core > 0 && !read_gcr_cl_coherence()) |
| pr_warn("Core %u is not in coherent domain\n", core); |
| |
| if (cpu_has_veic) |
| clear_c0_status(ST0_IM); |
| else |
| change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | |
| STATUSF_IP4 | STATUSF_IP5 | |
| STATUSF_IP6 | STATUSF_IP7); |
| } |
| |
| static void cps_smp_finish(void) |
| { |
| write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ)); |
| |
| #ifdef CONFIG_MIPS_MT_FPAFF |
| /* If we have an FPU, enroll ourselves in the FPU-full mask */ |
| if (cpu_has_fpu) |
| cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask); |
| #endif /* CONFIG_MIPS_MT_FPAFF */ |
| |
| local_irq_enable(); |
| } |
| |
| #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE) |
| |
| enum cpu_death { |
| CPU_DEATH_HALT, |
| CPU_DEATH_POWER, |
| }; |
| |
| static void cps_shutdown_this_cpu(enum cpu_death death) |
| { |
| unsigned int cpu, core, vpe_id; |
| |
| cpu = smp_processor_id(); |
| core = cpu_core(&cpu_data[cpu]); |
| |
| if (death == CPU_DEATH_HALT) { |
| vpe_id = cpu_vpe_id(&cpu_data[cpu]); |
| |
| pr_debug("Halting core %d VP%d\n", core, vpe_id); |
| if (cpu_has_mipsmt) { |
| /* Halt this TC */ |
| write_c0_tchalt(TCHALT_H); |
| instruction_hazard(); |
| } else if (cpu_has_vp) { |
| write_cpc_cl_vp_stop(1 << vpe_id); |
| |
| /* Ensure that the VP_STOP register is written */ |
| wmb(); |
| } |
| } else { |
| if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { |
| pr_debug("Gating power to core %d\n", core); |
| /* Power down the core */ |
| cps_pm_enter_state(CPS_PM_POWER_GATED); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_KEXEC_CORE |
| |
| static void cps_kexec_nonboot_cpu(void) |
| { |
| if (cpu_has_mipsmt || cpu_has_vp) |
| cps_shutdown_this_cpu(CPU_DEATH_HALT); |
| else |
| cps_shutdown_this_cpu(CPU_DEATH_POWER); |
| } |
| |
| #endif /* CONFIG_KEXEC_CORE */ |
| |
| #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */ |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| static int cps_cpu_disable(void) |
| { |
| unsigned cpu = smp_processor_id(); |
| struct core_boot_config *core_cfg; |
| |
| if (!cps_pm_support_state(CPS_PM_POWER_GATED)) |
| return -EINVAL; |
| |
| core_cfg = &mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)]; |
| atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask); |
| smp_mb__after_atomic(); |
| set_cpu_online(cpu, false); |
| calculate_cpu_foreign_map(); |
| irq_migrate_all_off_this_cpu(); |
| |
| return 0; |
| } |
| |
| static unsigned cpu_death_sibling; |
| static enum cpu_death cpu_death; |
| |
| void play_dead(void) |
| { |
| unsigned int cpu; |
| |
| local_irq_disable(); |
| idle_task_exit(); |
| cpu = smp_processor_id(); |
| cpu_death = CPU_DEATH_POWER; |
| |
| pr_debug("CPU%d going offline\n", cpu); |
| |
| if (cpu_has_mipsmt || cpu_has_vp) { |
| /* Look for another online VPE within the core */ |
| for_each_online_cpu(cpu_death_sibling) { |
| if (!cpus_are_siblings(cpu, cpu_death_sibling)) |
| continue; |
| |
| /* |
| * There is an online VPE within the core. Just halt |
| * this TC and leave the core alone. |
| */ |
| cpu_death = CPU_DEATH_HALT; |
| break; |
| } |
| } |
| |
| cpuhp_ap_report_dead(); |
| |
| cps_shutdown_this_cpu(cpu_death); |
| |
| /* This should never be reached */ |
| panic("Failed to offline CPU %u", cpu); |
| } |
| |
| static void wait_for_sibling_halt(void *ptr_cpu) |
| { |
| unsigned cpu = (unsigned long)ptr_cpu; |
| unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); |
| unsigned halted; |
| unsigned long flags; |
| |
| do { |
| local_irq_save(flags); |
| settc(vpe_id); |
| halted = read_tc_c0_tchalt(); |
| local_irq_restore(flags); |
| } while (!(halted & TCHALT_H)); |
| } |
| |
| static void cps_cpu_die(unsigned int cpu) { } |
| |
| static void cps_cleanup_dead_cpu(unsigned cpu) |
| { |
| unsigned core = cpu_core(&cpu_data[cpu]); |
| unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]); |
| ktime_t fail_time; |
| unsigned stat; |
| int err; |
| |
| /* |
| * Now wait for the CPU to actually offline. Without doing this that |
| * offlining may race with one or more of: |
| * |
| * - Onlining the CPU again. |
| * - Powering down the core if another VPE within it is offlined. |
| * - A sibling VPE entering a non-coherent state. |
| * |
| * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing |
| * with which we could race, so do nothing. |
| */ |
| if (cpu_death == CPU_DEATH_POWER) { |
| /* |
| * Wait for the core to enter a powered down or clock gated |
| * state, the latter happening when a JTAG probe is connected |
| * in which case the CPC will refuse to power down the core. |
| */ |
| fail_time = ktime_add_ms(ktime_get(), 2000); |
| do { |
| mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); |
| mips_cpc_lock_other(core); |
| stat = read_cpc_co_stat_conf(); |
| stat &= CPC_Cx_STAT_CONF_SEQSTATE; |
| stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE); |
| mips_cpc_unlock_other(); |
| mips_cm_unlock_other(); |
| |
| if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 || |
| stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 || |
| stat == CPC_Cx_STAT_CONF_SEQSTATE_U2) |
| break; |
| |
| /* |
| * The core ought to have powered down, but didn't & |
| * now we don't really know what state it's in. It's |
| * likely that its _pwr_up pin has been wired to logic |
| * 1 & it powered back up as soon as we powered it |
| * down... |
| * |
| * The best we can do is warn the user & continue in |
| * the hope that the core is doing nothing harmful & |
| * might behave properly if we online it later. |
| */ |
| if (WARN(ktime_after(ktime_get(), fail_time), |
| "CPU%u hasn't powered down, seq. state %u\n", |
| cpu, stat)) |
| break; |
| } while (1); |
| |
| /* Indicate the core is powered off */ |
| bitmap_clear(core_power, core, 1); |
| } else if (cpu_has_mipsmt) { |
| /* |
| * Have a CPU with access to the offlined CPUs registers wait |
| * for its TC to halt. |
| */ |
| err = smp_call_function_single(cpu_death_sibling, |
| wait_for_sibling_halt, |
| (void *)(unsigned long)cpu, 1); |
| if (err) |
| panic("Failed to call remote sibling CPU\n"); |
| } else if (cpu_has_vp) { |
| do { |
| mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL); |
| stat = read_cpc_co_vp_running(); |
| mips_cm_unlock_other(); |
| } while (stat & (1 << vpe_id)); |
| } |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static const struct plat_smp_ops cps_smp_ops = { |
| .smp_setup = cps_smp_setup, |
| .prepare_cpus = cps_prepare_cpus, |
| .boot_secondary = cps_boot_secondary, |
| .init_secondary = cps_init_secondary, |
| .smp_finish = cps_smp_finish, |
| .send_ipi_single = mips_smp_send_ipi_single, |
| .send_ipi_mask = mips_smp_send_ipi_mask, |
| #ifdef CONFIG_HOTPLUG_CPU |
| .cpu_disable = cps_cpu_disable, |
| .cpu_die = cps_cpu_die, |
| .cleanup_dead_cpu = cps_cleanup_dead_cpu, |
| #endif |
| #ifdef CONFIG_KEXEC_CORE |
| .kexec_nonboot_cpu = cps_kexec_nonboot_cpu, |
| #endif |
| }; |
| |
| bool mips_cps_smp_in_use(void) |
| { |
| extern const struct plat_smp_ops *mp_ops; |
| return mp_ops == &cps_smp_ops; |
| } |
| |
| int register_cps_smp_ops(void) |
| { |
| if (!mips_cm_present()) { |
| pr_warn("MIPS CPS SMP unable to proceed without a CM\n"); |
| return -ENODEV; |
| } |
| |
| /* check we have a GIC - we need one for IPIs */ |
| if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) { |
| pr_warn("MIPS CPS SMP unable to proceed without a GIC\n"); |
| return -ENODEV; |
| } |
| |
| register_smp_ops(&cps_smp_ops); |
| return 0; |
| } |