| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Cryptographic API. |
| * |
| * s390 implementation of the AES Cipher Algorithm with protected keys. |
| * |
| * s390 Version: |
| * Copyright IBM Corp. 2017, 2023 |
| * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> |
| * Harald Freudenberger <freude@de.ibm.com> |
| */ |
| |
| #define KMSG_COMPONENT "paes_s390" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <linux/bug.h> |
| #include <linux/err.h> |
| #include <linux/module.h> |
| #include <linux/cpufeature.h> |
| #include <linux/init.h> |
| #include <linux/mutex.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/xts.h> |
| #include <asm/cpacf.h> |
| #include <asm/pkey.h> |
| |
| /* |
| * Key blobs smaller/bigger than these defines are rejected |
| * by the common code even before the individual setkey function |
| * is called. As paes can handle different kinds of key blobs |
| * and padding is also possible, the limits need to be generous. |
| */ |
| #define PAES_MIN_KEYSIZE 16 |
| #define PAES_MAX_KEYSIZE MAXEP11AESKEYBLOBSIZE |
| #define PAES_256_PROTKEY_SIZE (32 + 32) /* key + verification pattern */ |
| #define PXTS_256_PROTKEY_SIZE (32 + 32 + 32) /* k1 + k2 + verification pattern */ |
| |
| static u8 *ctrblk; |
| static DEFINE_MUTEX(ctrblk_lock); |
| |
| static cpacf_mask_t km_functions, kmc_functions, kmctr_functions; |
| |
| struct paes_protkey { |
| u32 type; |
| u32 len; |
| u8 protkey[PXTS_256_PROTKEY_SIZE]; |
| }; |
| |
| struct key_blob { |
| /* |
| * Small keys will be stored in the keybuf. Larger keys are |
| * stored in extra allocated memory. In both cases does |
| * key point to the memory where the key is stored. |
| * The code distinguishes by checking keylen against |
| * sizeof(keybuf). See the two following helper functions. |
| */ |
| u8 *key; |
| u8 keybuf[128]; |
| unsigned int keylen; |
| }; |
| |
| /* |
| * make_clrkey_token() - wrap the raw key ck with pkey clearkey token |
| * information. |
| * @returns the size of the clearkey token |
| */ |
| static inline u32 make_clrkey_token(const u8 *ck, size_t cklen, u8 *dest) |
| { |
| struct clrkey_token { |
| u8 type; |
| u8 res0[3]; |
| u8 version; |
| u8 res1[3]; |
| u32 keytype; |
| u32 len; |
| u8 key[]; |
| } __packed *token = (struct clrkey_token *)dest; |
| |
| token->type = 0x00; |
| token->version = 0x02; |
| token->keytype = (cklen - 8) >> 3; |
| token->len = cklen; |
| memcpy(token->key, ck, cklen); |
| |
| return sizeof(*token) + cklen; |
| } |
| |
| static inline int _key_to_kb(struct key_blob *kb, |
| const u8 *key, |
| unsigned int keylen) |
| { |
| switch (keylen) { |
| case 16: |
| case 24: |
| case 32: |
| /* clear key value, prepare pkey clear key token in keybuf */ |
| memset(kb->keybuf, 0, sizeof(kb->keybuf)); |
| kb->keylen = make_clrkey_token(key, keylen, kb->keybuf); |
| kb->key = kb->keybuf; |
| break; |
| default: |
| /* other key material, let pkey handle this */ |
| if (keylen <= sizeof(kb->keybuf)) |
| kb->key = kb->keybuf; |
| else { |
| kb->key = kmalloc(keylen, GFP_KERNEL); |
| if (!kb->key) |
| return -ENOMEM; |
| } |
| memcpy(kb->key, key, keylen); |
| kb->keylen = keylen; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static inline int _xts_key_to_kb(struct key_blob *kb, |
| const u8 *key, |
| unsigned int keylen) |
| { |
| size_t cklen = keylen / 2; |
| |
| memset(kb->keybuf, 0, sizeof(kb->keybuf)); |
| |
| switch (keylen) { |
| case 32: |
| case 64: |
| /* clear key value, prepare pkey clear key tokens in keybuf */ |
| kb->key = kb->keybuf; |
| kb->keylen = make_clrkey_token(key, cklen, kb->key); |
| kb->keylen += make_clrkey_token(key + cklen, cklen, |
| kb->key + kb->keylen); |
| break; |
| default: |
| /* other key material, let pkey handle this */ |
| if (keylen <= sizeof(kb->keybuf)) { |
| kb->key = kb->keybuf; |
| } else { |
| kb->key = kmalloc(keylen, GFP_KERNEL); |
| if (!kb->key) |
| return -ENOMEM; |
| } |
| memcpy(kb->key, key, keylen); |
| kb->keylen = keylen; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static inline void _free_kb_keybuf(struct key_blob *kb) |
| { |
| if (kb->key && kb->key != kb->keybuf |
| && kb->keylen > sizeof(kb->keybuf)) { |
| kfree_sensitive(kb->key); |
| kb->key = NULL; |
| } |
| memzero_explicit(kb->keybuf, sizeof(kb->keybuf)); |
| } |
| |
| struct s390_paes_ctx { |
| struct key_blob kb; |
| struct paes_protkey pk; |
| spinlock_t pk_lock; |
| unsigned long fc; |
| }; |
| |
| struct s390_pxts_ctx { |
| struct key_blob kb; |
| struct paes_protkey pk[2]; |
| spinlock_t pk_lock; |
| unsigned long fc; |
| }; |
| |
| static inline int __paes_keyblob2pkey(const u8 *key, unsigned int keylen, |
| struct paes_protkey *pk) |
| { |
| int i, rc = -EIO; |
| |
| /* try three times in case of busy card */ |
| for (i = 0; rc && i < 3; i++) { |
| if (rc == -EBUSY && in_task()) { |
| if (msleep_interruptible(1000)) |
| return -EINTR; |
| } |
| rc = pkey_key2protkey(key, keylen, pk->protkey, &pk->len, |
| &pk->type); |
| } |
| |
| return rc; |
| } |
| |
| static inline int __paes_convert_key(struct s390_paes_ctx *ctx) |
| { |
| struct paes_protkey pk; |
| int rc; |
| |
| pk.len = sizeof(pk.protkey); |
| rc = __paes_keyblob2pkey(ctx->kb.key, ctx->kb.keylen, &pk); |
| if (rc) |
| return rc; |
| |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(&ctx->pk, &pk, sizeof(pk)); |
| spin_unlock_bh(&ctx->pk_lock); |
| |
| return 0; |
| } |
| |
| static int ecb_paes_init(struct crypto_skcipher *tfm) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| ctx->kb.key = NULL; |
| spin_lock_init(&ctx->pk_lock); |
| |
| return 0; |
| } |
| |
| static void ecb_paes_exit(struct crypto_skcipher *tfm) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| _free_kb_keybuf(&ctx->kb); |
| } |
| |
| static inline int __ecb_paes_set_key(struct s390_paes_ctx *ctx) |
| { |
| unsigned long fc; |
| int rc; |
| |
| rc = __paes_convert_key(ctx); |
| if (rc) |
| return rc; |
| |
| /* Pick the correct function code based on the protected key type */ |
| fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KM_PAES_128 : |
| (ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KM_PAES_192 : |
| (ctx->pk.type == PKEY_KEYTYPE_AES_256) ? CPACF_KM_PAES_256 : 0; |
| |
| /* Check if the function code is available */ |
| ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; |
| |
| return ctx->fc ? 0 : -EINVAL; |
| } |
| |
| static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int rc; |
| |
| _free_kb_keybuf(&ctx->kb); |
| rc = _key_to_kb(&ctx->kb, in_key, key_len); |
| if (rc) |
| return rc; |
| |
| return __ecb_paes_set_key(ctx); |
| } |
| |
| static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct { |
| u8 key[PAES_256_PROTKEY_SIZE]; |
| } param; |
| struct skcipher_walk walk; |
| unsigned int nbytes, n, k; |
| int rc; |
| |
| rc = skcipher_walk_virt(&walk, req, false); |
| if (rc) |
| return rc; |
| |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE); |
| spin_unlock_bh(&ctx->pk_lock); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| /* only use complete blocks */ |
| n = nbytes & ~(AES_BLOCK_SIZE - 1); |
| k = cpacf_km(ctx->fc | modifier, ¶m, |
| walk.dst.virt.addr, walk.src.virt.addr, n); |
| if (k) |
| rc = skcipher_walk_done(&walk, nbytes - k); |
| if (k < n) { |
| if (__paes_convert_key(ctx)) |
| return skcipher_walk_done(&walk, -EIO); |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE); |
| spin_unlock_bh(&ctx->pk_lock); |
| } |
| } |
| return rc; |
| } |
| |
| static int ecb_paes_encrypt(struct skcipher_request *req) |
| { |
| return ecb_paes_crypt(req, 0); |
| } |
| |
| static int ecb_paes_decrypt(struct skcipher_request *req) |
| { |
| return ecb_paes_crypt(req, CPACF_DECRYPT); |
| } |
| |
| static struct skcipher_alg ecb_paes_alg = { |
| .base.cra_name = "ecb(paes)", |
| .base.cra_driver_name = "ecb-paes-s390", |
| .base.cra_priority = 401, /* combo: aes + ecb + 1 */ |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct s390_paes_ctx), |
| .base.cra_module = THIS_MODULE, |
| .base.cra_list = LIST_HEAD_INIT(ecb_paes_alg.base.cra_list), |
| .init = ecb_paes_init, |
| .exit = ecb_paes_exit, |
| .min_keysize = PAES_MIN_KEYSIZE, |
| .max_keysize = PAES_MAX_KEYSIZE, |
| .setkey = ecb_paes_set_key, |
| .encrypt = ecb_paes_encrypt, |
| .decrypt = ecb_paes_decrypt, |
| }; |
| |
| static int cbc_paes_init(struct crypto_skcipher *tfm) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| ctx->kb.key = NULL; |
| spin_lock_init(&ctx->pk_lock); |
| |
| return 0; |
| } |
| |
| static void cbc_paes_exit(struct crypto_skcipher *tfm) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| _free_kb_keybuf(&ctx->kb); |
| } |
| |
| static inline int __cbc_paes_set_key(struct s390_paes_ctx *ctx) |
| { |
| unsigned long fc; |
| int rc; |
| |
| rc = __paes_convert_key(ctx); |
| if (rc) |
| return rc; |
| |
| /* Pick the correct function code based on the protected key type */ |
| fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KMC_PAES_128 : |
| (ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KMC_PAES_192 : |
| (ctx->pk.type == PKEY_KEYTYPE_AES_256) ? CPACF_KMC_PAES_256 : 0; |
| |
| /* Check if the function code is available */ |
| ctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0; |
| |
| return ctx->fc ? 0 : -EINVAL; |
| } |
| |
| static int cbc_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int rc; |
| |
| _free_kb_keybuf(&ctx->kb); |
| rc = _key_to_kb(&ctx->kb, in_key, key_len); |
| if (rc) |
| return rc; |
| |
| return __cbc_paes_set_key(ctx); |
| } |
| |
| static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct { |
| u8 iv[AES_BLOCK_SIZE]; |
| u8 key[PAES_256_PROTKEY_SIZE]; |
| } param; |
| struct skcipher_walk walk; |
| unsigned int nbytes, n, k; |
| int rc; |
| |
| rc = skcipher_walk_virt(&walk, req, false); |
| if (rc) |
| return rc; |
| |
| memcpy(param.iv, walk.iv, AES_BLOCK_SIZE); |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE); |
| spin_unlock_bh(&ctx->pk_lock); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| /* only use complete blocks */ |
| n = nbytes & ~(AES_BLOCK_SIZE - 1); |
| k = cpacf_kmc(ctx->fc | modifier, ¶m, |
| walk.dst.virt.addr, walk.src.virt.addr, n); |
| if (k) { |
| memcpy(walk.iv, param.iv, AES_BLOCK_SIZE); |
| rc = skcipher_walk_done(&walk, nbytes - k); |
| } |
| if (k < n) { |
| if (__paes_convert_key(ctx)) |
| return skcipher_walk_done(&walk, -EIO); |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE); |
| spin_unlock_bh(&ctx->pk_lock); |
| } |
| } |
| return rc; |
| } |
| |
| static int cbc_paes_encrypt(struct skcipher_request *req) |
| { |
| return cbc_paes_crypt(req, 0); |
| } |
| |
| static int cbc_paes_decrypt(struct skcipher_request *req) |
| { |
| return cbc_paes_crypt(req, CPACF_DECRYPT); |
| } |
| |
| static struct skcipher_alg cbc_paes_alg = { |
| .base.cra_name = "cbc(paes)", |
| .base.cra_driver_name = "cbc-paes-s390", |
| .base.cra_priority = 402, /* ecb-paes-s390 + 1 */ |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct s390_paes_ctx), |
| .base.cra_module = THIS_MODULE, |
| .base.cra_list = LIST_HEAD_INIT(cbc_paes_alg.base.cra_list), |
| .init = cbc_paes_init, |
| .exit = cbc_paes_exit, |
| .min_keysize = PAES_MIN_KEYSIZE, |
| .max_keysize = PAES_MAX_KEYSIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = cbc_paes_set_key, |
| .encrypt = cbc_paes_encrypt, |
| .decrypt = cbc_paes_decrypt, |
| }; |
| |
| static int xts_paes_init(struct crypto_skcipher *tfm) |
| { |
| struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| ctx->kb.key = NULL; |
| spin_lock_init(&ctx->pk_lock); |
| |
| return 0; |
| } |
| |
| static void xts_paes_exit(struct crypto_skcipher *tfm) |
| { |
| struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| _free_kb_keybuf(&ctx->kb); |
| } |
| |
| static inline int __xts_paes_convert_key(struct s390_pxts_ctx *ctx) |
| { |
| struct paes_protkey pk0, pk1; |
| size_t split_keylen; |
| int rc; |
| |
| pk0.len = sizeof(pk0.protkey); |
| pk1.len = sizeof(pk1.protkey); |
| |
| rc = __paes_keyblob2pkey(ctx->kb.key, ctx->kb.keylen, &pk0); |
| if (rc) |
| return rc; |
| |
| switch (pk0.type) { |
| case PKEY_KEYTYPE_AES_128: |
| case PKEY_KEYTYPE_AES_256: |
| /* second keytoken required */ |
| if (ctx->kb.keylen % 2) |
| return -EINVAL; |
| split_keylen = ctx->kb.keylen / 2; |
| |
| rc = __paes_keyblob2pkey(ctx->kb.key + split_keylen, |
| split_keylen, &pk1); |
| if (rc) |
| return rc; |
| |
| if (pk0.type != pk1.type) |
| return -EINVAL; |
| break; |
| case PKEY_KEYTYPE_AES_XTS_128: |
| case PKEY_KEYTYPE_AES_XTS_256: |
| /* single key */ |
| pk1.type = 0; |
| break; |
| default: |
| /* unsupported protected keytype */ |
| return -EINVAL; |
| } |
| |
| spin_lock_bh(&ctx->pk_lock); |
| ctx->pk[0] = pk0; |
| ctx->pk[1] = pk1; |
| spin_unlock_bh(&ctx->pk_lock); |
| |
| return 0; |
| } |
| |
| static inline int __xts_paes_set_key(struct s390_pxts_ctx *ctx) |
| { |
| unsigned long fc; |
| int rc; |
| |
| rc = __xts_paes_convert_key(ctx); |
| if (rc) |
| return rc; |
| |
| /* Pick the correct function code based on the protected key type */ |
| switch (ctx->pk[0].type) { |
| case PKEY_KEYTYPE_AES_128: |
| fc = CPACF_KM_PXTS_128; |
| break; |
| case PKEY_KEYTYPE_AES_256: |
| fc = CPACF_KM_PXTS_256; |
| break; |
| case PKEY_KEYTYPE_AES_XTS_128: |
| fc = CPACF_KM_PXTS_128_FULL; |
| break; |
| case PKEY_KEYTYPE_AES_XTS_256: |
| fc = CPACF_KM_PXTS_256_FULL; |
| break; |
| default: |
| fc = 0; |
| break; |
| } |
| |
| /* Check if the function code is available */ |
| ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; |
| |
| return ctx->fc ? 0 : -EINVAL; |
| } |
| |
| static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int in_keylen) |
| { |
| struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| u8 ckey[2 * AES_MAX_KEY_SIZE]; |
| unsigned int ckey_len; |
| int rc; |
| |
| if ((in_keylen == 32 || in_keylen == 64) && |
| xts_verify_key(tfm, in_key, in_keylen)) |
| return -EINVAL; |
| |
| _free_kb_keybuf(&ctx->kb); |
| rc = _xts_key_to_kb(&ctx->kb, in_key, in_keylen); |
| if (rc) |
| return rc; |
| |
| rc = __xts_paes_set_key(ctx); |
| if (rc) |
| return rc; |
| |
| /* |
| * It is not possible on a single protected key (e.g. full AES-XTS) to |
| * check, if k1 and k2 are the same. |
| */ |
| if (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128 || |
| ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_256) |
| return 0; |
| /* |
| * xts_verify_key verifies the key length is not odd and makes |
| * sure that the two keys are not the same. This can be done |
| * on the two protected keys as well |
| */ |
| ckey_len = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? |
| AES_KEYSIZE_128 : AES_KEYSIZE_256; |
| memcpy(ckey, ctx->pk[0].protkey, ckey_len); |
| memcpy(ckey + ckey_len, ctx->pk[1].protkey, ckey_len); |
| return xts_verify_key(tfm, ckey, 2*ckey_len); |
| } |
| |
| static int paes_xts_crypt_full(struct skcipher_request *req, |
| unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| unsigned int keylen, offset, nbytes, n, k; |
| struct { |
| u8 key[64]; |
| u8 tweak[16]; |
| u8 nap[16]; |
| u8 wkvp[32]; |
| } fxts_param = { |
| .nap = {0}, |
| }; |
| struct skcipher_walk walk; |
| int rc; |
| |
| rc = skcipher_walk_virt(&walk, req, false); |
| if (rc) |
| return rc; |
| |
| keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 64; |
| offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 0; |
| |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(fxts_param.key + offset, ctx->pk[0].protkey, keylen); |
| memcpy(fxts_param.wkvp, ctx->pk[0].protkey + keylen, |
| sizeof(fxts_param.wkvp)); |
| spin_unlock_bh(&ctx->pk_lock); |
| memcpy(fxts_param.tweak, walk.iv, sizeof(fxts_param.tweak)); |
| fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */ |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| /* only use complete blocks */ |
| n = nbytes & ~(AES_BLOCK_SIZE - 1); |
| k = cpacf_km(ctx->fc | modifier, fxts_param.key + offset, |
| walk.dst.virt.addr, walk.src.virt.addr, n); |
| if (k) |
| rc = skcipher_walk_done(&walk, nbytes - k); |
| if (k < n) { |
| if (__xts_paes_convert_key(ctx)) |
| return skcipher_walk_done(&walk, -EIO); |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(fxts_param.key + offset, ctx->pk[0].protkey, |
| keylen); |
| memcpy(fxts_param.wkvp, ctx->pk[0].protkey + keylen, |
| sizeof(fxts_param.wkvp)); |
| spin_unlock_bh(&ctx->pk_lock); |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int paes_xts_crypt(struct skcipher_request *req, unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| unsigned int keylen, offset, nbytes, n, k; |
| struct { |
| u8 key[PAES_256_PROTKEY_SIZE]; |
| u8 tweak[16]; |
| u8 block[16]; |
| u8 bit[16]; |
| u8 xts[16]; |
| } pcc_param; |
| struct { |
| u8 key[PAES_256_PROTKEY_SIZE]; |
| u8 init[16]; |
| } xts_param; |
| struct skcipher_walk walk; |
| int rc; |
| |
| rc = skcipher_walk_virt(&walk, req, false); |
| if (rc) |
| return rc; |
| |
| keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 48 : 64; |
| offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 16 : 0; |
| |
| memset(&pcc_param, 0, sizeof(pcc_param)); |
| memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak)); |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(pcc_param.key + offset, ctx->pk[1].protkey, keylen); |
| memcpy(xts_param.key + offset, ctx->pk[0].protkey, keylen); |
| spin_unlock_bh(&ctx->pk_lock); |
| cpacf_pcc(ctx->fc, pcc_param.key + offset); |
| memcpy(xts_param.init, pcc_param.xts, 16); |
| |
| while ((nbytes = walk.nbytes) != 0) { |
| /* only use complete blocks */ |
| n = nbytes & ~(AES_BLOCK_SIZE - 1); |
| k = cpacf_km(ctx->fc | modifier, xts_param.key + offset, |
| walk.dst.virt.addr, walk.src.virt.addr, n); |
| if (k) |
| rc = skcipher_walk_done(&walk, nbytes - k); |
| if (k < n) { |
| if (__xts_paes_convert_key(ctx)) |
| return skcipher_walk_done(&walk, -EIO); |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(xts_param.key + offset, |
| ctx->pk[0].protkey, keylen); |
| spin_unlock_bh(&ctx->pk_lock); |
| } |
| } |
| |
| return rc; |
| } |
| |
| static inline int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| switch (ctx->fc) { |
| case CPACF_KM_PXTS_128: |
| case CPACF_KM_PXTS_256: |
| return paes_xts_crypt(req, modifier); |
| case CPACF_KM_PXTS_128_FULL: |
| case CPACF_KM_PXTS_256_FULL: |
| return paes_xts_crypt_full(req, modifier); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int xts_paes_encrypt(struct skcipher_request *req) |
| { |
| return xts_paes_crypt(req, 0); |
| } |
| |
| static int xts_paes_decrypt(struct skcipher_request *req) |
| { |
| return xts_paes_crypt(req, CPACF_DECRYPT); |
| } |
| |
| static struct skcipher_alg xts_paes_alg = { |
| .base.cra_name = "xts(paes)", |
| .base.cra_driver_name = "xts-paes-s390", |
| .base.cra_priority = 402, /* ecb-paes-s390 + 1 */ |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct s390_pxts_ctx), |
| .base.cra_module = THIS_MODULE, |
| .base.cra_list = LIST_HEAD_INIT(xts_paes_alg.base.cra_list), |
| .init = xts_paes_init, |
| .exit = xts_paes_exit, |
| .min_keysize = 2 * PAES_MIN_KEYSIZE, |
| .max_keysize = 2 * PAES_MAX_KEYSIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = xts_paes_set_key, |
| .encrypt = xts_paes_encrypt, |
| .decrypt = xts_paes_decrypt, |
| }; |
| |
| static int ctr_paes_init(struct crypto_skcipher *tfm) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| ctx->kb.key = NULL; |
| spin_lock_init(&ctx->pk_lock); |
| |
| return 0; |
| } |
| |
| static void ctr_paes_exit(struct crypto_skcipher *tfm) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| _free_kb_keybuf(&ctx->kb); |
| } |
| |
| static inline int __ctr_paes_set_key(struct s390_paes_ctx *ctx) |
| { |
| unsigned long fc; |
| int rc; |
| |
| rc = __paes_convert_key(ctx); |
| if (rc) |
| return rc; |
| |
| /* Pick the correct function code based on the protected key type */ |
| fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KMCTR_PAES_128 : |
| (ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KMCTR_PAES_192 : |
| (ctx->pk.type == PKEY_KEYTYPE_AES_256) ? |
| CPACF_KMCTR_PAES_256 : 0; |
| |
| /* Check if the function code is available */ |
| ctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0; |
| |
| return ctx->fc ? 0 : -EINVAL; |
| } |
| |
| static int ctr_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int rc; |
| |
| _free_kb_keybuf(&ctx->kb); |
| rc = _key_to_kb(&ctx->kb, in_key, key_len); |
| if (rc) |
| return rc; |
| |
| return __ctr_paes_set_key(ctx); |
| } |
| |
| static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes) |
| { |
| unsigned int i, n; |
| |
| /* only use complete blocks, max. PAGE_SIZE */ |
| memcpy(ctrptr, iv, AES_BLOCK_SIZE); |
| n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1); |
| for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) { |
| memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE); |
| crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
| ctrptr += AES_BLOCK_SIZE; |
| } |
| return n; |
| } |
| |
| static int ctr_paes_crypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| u8 buf[AES_BLOCK_SIZE], *ctrptr; |
| struct { |
| u8 key[PAES_256_PROTKEY_SIZE]; |
| } param; |
| struct skcipher_walk walk; |
| unsigned int nbytes, n, k; |
| int rc, locked; |
| |
| rc = skcipher_walk_virt(&walk, req, false); |
| if (rc) |
| return rc; |
| |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE); |
| spin_unlock_bh(&ctx->pk_lock); |
| |
| locked = mutex_trylock(&ctrblk_lock); |
| |
| while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { |
| n = AES_BLOCK_SIZE; |
| if (nbytes >= 2*AES_BLOCK_SIZE && locked) |
| n = __ctrblk_init(ctrblk, walk.iv, nbytes); |
| ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv; |
| k = cpacf_kmctr(ctx->fc, ¶m, walk.dst.virt.addr, |
| walk.src.virt.addr, n, ctrptr); |
| if (k) { |
| if (ctrptr == ctrblk) |
| memcpy(walk.iv, ctrptr + k - AES_BLOCK_SIZE, |
| AES_BLOCK_SIZE); |
| crypto_inc(walk.iv, AES_BLOCK_SIZE); |
| rc = skcipher_walk_done(&walk, nbytes - k); |
| } |
| if (k < n) { |
| if (__paes_convert_key(ctx)) { |
| if (locked) |
| mutex_unlock(&ctrblk_lock); |
| return skcipher_walk_done(&walk, -EIO); |
| } |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE); |
| spin_unlock_bh(&ctx->pk_lock); |
| } |
| } |
| if (locked) |
| mutex_unlock(&ctrblk_lock); |
| /* |
| * final block may be < AES_BLOCK_SIZE, copy only nbytes |
| */ |
| if (nbytes) { |
| memset(buf, 0, AES_BLOCK_SIZE); |
| memcpy(buf, walk.src.virt.addr, nbytes); |
| while (1) { |
| if (cpacf_kmctr(ctx->fc, ¶m, buf, |
| buf, AES_BLOCK_SIZE, |
| walk.iv) == AES_BLOCK_SIZE) |
| break; |
| if (__paes_convert_key(ctx)) |
| return skcipher_walk_done(&walk, -EIO); |
| spin_lock_bh(&ctx->pk_lock); |
| memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE); |
| spin_unlock_bh(&ctx->pk_lock); |
| } |
| memcpy(walk.dst.virt.addr, buf, nbytes); |
| crypto_inc(walk.iv, AES_BLOCK_SIZE); |
| rc = skcipher_walk_done(&walk, nbytes); |
| } |
| |
| return rc; |
| } |
| |
| static struct skcipher_alg ctr_paes_alg = { |
| .base.cra_name = "ctr(paes)", |
| .base.cra_driver_name = "ctr-paes-s390", |
| .base.cra_priority = 402, /* ecb-paes-s390 + 1 */ |
| .base.cra_blocksize = 1, |
| .base.cra_ctxsize = sizeof(struct s390_paes_ctx), |
| .base.cra_module = THIS_MODULE, |
| .base.cra_list = LIST_HEAD_INIT(ctr_paes_alg.base.cra_list), |
| .init = ctr_paes_init, |
| .exit = ctr_paes_exit, |
| .min_keysize = PAES_MIN_KEYSIZE, |
| .max_keysize = PAES_MAX_KEYSIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = ctr_paes_set_key, |
| .encrypt = ctr_paes_crypt, |
| .decrypt = ctr_paes_crypt, |
| .chunksize = AES_BLOCK_SIZE, |
| }; |
| |
| static inline void __crypto_unregister_skcipher(struct skcipher_alg *alg) |
| { |
| if (!list_empty(&alg->base.cra_list)) |
| crypto_unregister_skcipher(alg); |
| } |
| |
| static void paes_s390_fini(void) |
| { |
| __crypto_unregister_skcipher(&ctr_paes_alg); |
| __crypto_unregister_skcipher(&xts_paes_alg); |
| __crypto_unregister_skcipher(&cbc_paes_alg); |
| __crypto_unregister_skcipher(&ecb_paes_alg); |
| if (ctrblk) |
| free_page((unsigned long) ctrblk); |
| } |
| |
| static int __init paes_s390_init(void) |
| { |
| int rc; |
| |
| /* Query available functions for KM, KMC and KMCTR */ |
| cpacf_query(CPACF_KM, &km_functions); |
| cpacf_query(CPACF_KMC, &kmc_functions); |
| cpacf_query(CPACF_KMCTR, &kmctr_functions); |
| |
| if (cpacf_test_func(&km_functions, CPACF_KM_PAES_128) || |
| cpacf_test_func(&km_functions, CPACF_KM_PAES_192) || |
| cpacf_test_func(&km_functions, CPACF_KM_PAES_256)) { |
| rc = crypto_register_skcipher(&ecb_paes_alg); |
| if (rc) |
| goto out_err; |
| } |
| |
| if (cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_128) || |
| cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_192) || |
| cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_256)) { |
| rc = crypto_register_skcipher(&cbc_paes_alg); |
| if (rc) |
| goto out_err; |
| } |
| |
| if (cpacf_test_func(&km_functions, CPACF_KM_PXTS_128) || |
| cpacf_test_func(&km_functions, CPACF_KM_PXTS_256)) { |
| rc = crypto_register_skcipher(&xts_paes_alg); |
| if (rc) |
| goto out_err; |
| } |
| |
| if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_128) || |
| cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_192) || |
| cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_256)) { |
| ctrblk = (u8 *) __get_free_page(GFP_KERNEL); |
| if (!ctrblk) { |
| rc = -ENOMEM; |
| goto out_err; |
| } |
| rc = crypto_register_skcipher(&ctr_paes_alg); |
| if (rc) |
| goto out_err; |
| } |
| |
| return 0; |
| out_err: |
| paes_s390_fini(); |
| return rc; |
| } |
| |
| module_init(paes_s390_init); |
| module_exit(paes_s390_fini); |
| |
| MODULE_ALIAS_CRYPTO("ecb(paes)"); |
| MODULE_ALIAS_CRYPTO("cbc(paes)"); |
| MODULE_ALIAS_CRYPTO("ctr(paes)"); |
| MODULE_ALIAS_CRYPTO("xts(paes)"); |
| |
| MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm with protected keys"); |
| MODULE_LICENSE("GPL"); |