blob: f43bb974fc66d7b21ad52c64da22694ccc274187 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* cpu_feature_enabled() cannot be used this early */
#define USE_EARLY_PGTABLE_L5
#include <linux/memblock.h>
#include <linux/linkage.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/sched/mm.h>
#include <linux/sched/clock.h>
#include <linux/sched/task.h>
#include <linux/sched/smt.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/kgdb.h>
#include <linux/mem_encrypt.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/io.h>
#include <linux/syscore_ops.h>
#include <linux/pgtable.h>
#include <linux/stackprotector.h>
#include <linux/utsname.h>
#include <asm/alternative.h>
#include <asm/cmdline.h>
#include <asm/perf_event.h>
#include <asm/mmu_context.h>
#include <asm/doublefault.h>
#include <asm/archrandom.h>
#include <asm/hypervisor.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/debugreg.h>
#include <asm/sections.h>
#include <asm/vsyscall.h>
#include <linux/topology.h>
#include <linux/cpumask.h>
#include <linux/atomic.h>
#include <asm/proto.h>
#include <asm/setup.h>
#include <asm/apic.h>
#include <asm/desc.h>
#include <asm/fpu/api.h>
#include <asm/mtrr.h>
#include <asm/hwcap2.h>
#include <linux/numa.h>
#include <asm/numa.h>
#include <asm/asm.h>
#include <asm/bugs.h>
#include <asm/cpu.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/cacheinfo.h>
#include <asm/memtype.h>
#include <asm/microcode.h>
#include <asm/intel-family.h>
#include <asm/cpu_device_id.h>
#include <asm/fred.h>
#include <asm/uv/uv.h>
#include <asm/ia32.h>
#include <asm/set_memory.h>
#include <asm/traps.h>
#include <asm/sev.h>
#include <asm/tdx.h>
#include <asm/posted_intr.h>
#include <asm/runtime-const.h>
#include "cpu.h"
DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
EXPORT_PER_CPU_SYMBOL(cpu_info);
u32 elf_hwcap2 __read_mostly;
/* Number of siblings per CPU package */
unsigned int __max_threads_per_core __ro_after_init = 1;
EXPORT_SYMBOL(__max_threads_per_core);
unsigned int __max_dies_per_package __ro_after_init = 1;
EXPORT_SYMBOL(__max_dies_per_package);
unsigned int __max_logical_packages __ro_after_init = 1;
EXPORT_SYMBOL(__max_logical_packages);
unsigned int __num_cores_per_package __ro_after_init = 1;
EXPORT_SYMBOL(__num_cores_per_package);
unsigned int __num_threads_per_package __ro_after_init = 1;
EXPORT_SYMBOL(__num_threads_per_package);
static struct ppin_info {
int feature;
int msr_ppin_ctl;
int msr_ppin;
} ppin_info[] = {
[X86_VENDOR_INTEL] = {
.feature = X86_FEATURE_INTEL_PPIN,
.msr_ppin_ctl = MSR_PPIN_CTL,
.msr_ppin = MSR_PPIN
},
[X86_VENDOR_AMD] = {
.feature = X86_FEATURE_AMD_PPIN,
.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
.msr_ppin = MSR_AMD_PPIN
},
};
static const struct x86_cpu_id ppin_cpuids[] = {
X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
/* Legacy models without CPUID enumeration */
X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
{}
};
static void ppin_init(struct cpuinfo_x86 *c)
{
const struct x86_cpu_id *id;
unsigned long long val;
struct ppin_info *info;
id = x86_match_cpu(ppin_cpuids);
if (!id)
return;
/*
* Testing the presence of the MSR is not enough. Need to check
* that the PPIN_CTL allows reading of the PPIN.
*/
info = (struct ppin_info *)id->driver_data;
if (rdmsrl_safe(info->msr_ppin_ctl, &val))
goto clear_ppin;
if ((val & 3UL) == 1UL) {
/* PPIN locked in disabled mode */
goto clear_ppin;
}
/* If PPIN is disabled, try to enable */
if (!(val & 2UL)) {
wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
rdmsrl_safe(info->msr_ppin_ctl, &val);
}
/* Is the enable bit set? */
if (val & 2UL) {
c->ppin = __rdmsr(info->msr_ppin);
set_cpu_cap(c, info->feature);
return;
}
clear_ppin:
clear_cpu_cap(c, info->feature);
}
static void default_init(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
cpu_detect_cache_sizes(c);
#else
/* Not much we can do here... */
/* Check if at least it has cpuid */
if (c->cpuid_level == -1) {
/* No cpuid. It must be an ancient CPU */
if (c->x86 == 4)
strcpy(c->x86_model_id, "486");
else if (c->x86 == 3)
strcpy(c->x86_model_id, "386");
}
#endif
}
static const struct cpu_dev default_cpu = {
.c_init = default_init,
.c_vendor = "Unknown",
.c_x86_vendor = X86_VENDOR_UNKNOWN,
};
static const struct cpu_dev *this_cpu = &default_cpu;
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
#ifdef CONFIG_X86_64
/*
* We need valid kernel segments for data and code in long mode too
* IRET will check the segment types kkeil 2000/10/28
* Also sysret mandates a special GDT layout
*
* TLS descriptors are currently at a different place compared to i386.
* Hopefully nobody expects them at a fixed place (Wine?)
*/
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
#else
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
/*
* Segments used for calling PnP BIOS have byte granularity.
* They code segments and data segments have fixed 64k limits,
* the transfer segment sizes are set at run time.
*/
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
/*
* The APM segments have byte granularity and their bases
* are set at run time. All have 64k limits.
*/
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
#endif
} };
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
#ifdef CONFIG_X86_64
static int __init x86_nopcid_setup(char *s)
{
/* nopcid doesn't accept parameters */
if (s)
return -EINVAL;
/* do not emit a message if the feature is not present */
if (!boot_cpu_has(X86_FEATURE_PCID))
return 0;
setup_clear_cpu_cap(X86_FEATURE_PCID);
pr_info("nopcid: PCID feature disabled\n");
return 0;
}
early_param("nopcid", x86_nopcid_setup);
#endif
static int __init x86_noinvpcid_setup(char *s)
{
/* noinvpcid doesn't accept parameters */
if (s)
return -EINVAL;
/* do not emit a message if the feature is not present */
if (!boot_cpu_has(X86_FEATURE_INVPCID))
return 0;
setup_clear_cpu_cap(X86_FEATURE_INVPCID);
pr_info("noinvpcid: INVPCID feature disabled\n");
return 0;
}
early_param("noinvpcid", x86_noinvpcid_setup);
#ifdef CONFIG_X86_32
static int cachesize_override = -1;
static int disable_x86_serial_nr = 1;
static int __init cachesize_setup(char *str)
{
get_option(&str, &cachesize_override);
return 1;
}
__setup("cachesize=", cachesize_setup);
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(u32 flag)
{
u32 f1, f2;
/*
* Cyrix and IDT cpus allow disabling of CPUID
* so the code below may return different results
* when it is executed before and after enabling
* the CPUID. Add "volatile" to not allow gcc to
* optimize the subsequent calls to this function.
*/
asm volatile ("pushfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"movl %0, %1 \n\t"
"xorl %2, %0 \n\t"
"pushl %0 \n\t"
"popfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"popfl \n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
int have_cpuid_p(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
unsigned long lo, hi;
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
return;
/* Disable processor serial number: */
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
lo |= 0x200000;
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
pr_notice("CPU serial number disabled.\n");
clear_cpu_cap(c, X86_FEATURE_PN);
/* Disabling the serial number may affect the cpuid level */
c->cpuid_level = cpuid_eax(0);
}
static int __init x86_serial_nr_setup(char *s)
{
disable_x86_serial_nr = 0;
return 1;
}
__setup("serialnumber", x86_serial_nr_setup);
#else
static inline int flag_is_changeable_p(u32 flag)
{
return 1;
}
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
}
#endif
static __always_inline void setup_smep(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_SMEP))
cr4_set_bits(X86_CR4_SMEP);
}
static __always_inline void setup_smap(struct cpuinfo_x86 *c)
{
unsigned long eflags = native_save_fl();
/* This should have been cleared long ago */
BUG_ON(eflags & X86_EFLAGS_AC);
if (cpu_has(c, X86_FEATURE_SMAP))
cr4_set_bits(X86_CR4_SMAP);
}
static __always_inline void setup_umip(struct cpuinfo_x86 *c)
{
/* Check the boot processor, plus build option for UMIP. */
if (!cpu_feature_enabled(X86_FEATURE_UMIP))
goto out;
/* Check the current processor's cpuid bits. */
if (!cpu_has(c, X86_FEATURE_UMIP))
goto out;
cr4_set_bits(X86_CR4_UMIP);
pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
return;
out:
/*
* Make sure UMIP is disabled in case it was enabled in a
* previous boot (e.g., via kexec).
*/
cr4_clear_bits(X86_CR4_UMIP);
}
/* These bits should not change their value after CPU init is finished. */
static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
static unsigned long cr4_pinned_bits __ro_after_init;
void native_write_cr0(unsigned long val)
{
unsigned long bits_missing = 0;
set_register:
asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
if (static_branch_likely(&cr_pinning)) {
if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
bits_missing = X86_CR0_WP;
val |= bits_missing;
goto set_register;
}
/* Warn after we've set the missing bits. */
WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
}
}
EXPORT_SYMBOL(native_write_cr0);
void __no_profile native_write_cr4(unsigned long val)
{
unsigned long bits_changed = 0;
set_register:
asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
if (static_branch_likely(&cr_pinning)) {
if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
goto set_register;
}
/* Warn after we've corrected the changed bits. */
WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
bits_changed);
}
}
#if IS_MODULE(CONFIG_LKDTM)
EXPORT_SYMBOL_GPL(native_write_cr4);
#endif
void cr4_update_irqsoff(unsigned long set, unsigned long clear)
{
unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
lockdep_assert_irqs_disabled();
newval = (cr4 & ~clear) | set;
if (newval != cr4) {
this_cpu_write(cpu_tlbstate.cr4, newval);
__write_cr4(newval);
}
}
EXPORT_SYMBOL(cr4_update_irqsoff);
/* Read the CR4 shadow. */
unsigned long cr4_read_shadow(void)
{
return this_cpu_read(cpu_tlbstate.cr4);
}
EXPORT_SYMBOL_GPL(cr4_read_shadow);
void cr4_init(void)
{
unsigned long cr4 = __read_cr4();
if (boot_cpu_has(X86_FEATURE_PCID))
cr4 |= X86_CR4_PCIDE;
if (static_branch_likely(&cr_pinning))
cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
__write_cr4(cr4);
/* Initialize cr4 shadow for this CPU. */
this_cpu_write(cpu_tlbstate.cr4, cr4);
}
/*
* Once CPU feature detection is finished (and boot params have been
* parsed), record any of the sensitive CR bits that are set, and
* enable CR pinning.
*/
static void __init setup_cr_pinning(void)
{
cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
static_key_enable(&cr_pinning.key);
}
static __init int x86_nofsgsbase_setup(char *arg)
{
/* Require an exact match without trailing characters. */
if (strlen(arg))
return 0;
/* Do not emit a message if the feature is not present. */
if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
return 1;
setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
pr_info("FSGSBASE disabled via kernel command line\n");
return 1;
}
__setup("nofsgsbase", x86_nofsgsbase_setup);
/*
* Protection Keys are not available in 32-bit mode.
*/
static bool pku_disabled;
static __always_inline void setup_pku(struct cpuinfo_x86 *c)
{
if (c == &boot_cpu_data) {
if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
return;
/*
* Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
* bit to be set. Enforce it.
*/
setup_force_cpu_cap(X86_FEATURE_OSPKE);
} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
return;
}
cr4_set_bits(X86_CR4_PKE);
/* Load the default PKRU value */
pkru_write_default();
}
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
static __init int setup_disable_pku(char *arg)
{
/*
* Do not clear the X86_FEATURE_PKU bit. All of the
* runtime checks are against OSPKE so clearing the
* bit does nothing.
*
* This way, we will see "pku" in cpuinfo, but not
* "ospke", which is exactly what we want. It shows
* that the CPU has PKU, but the OS has not enabled it.
* This happens to be exactly how a system would look
* if we disabled the config option.
*/
pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
pku_disabled = true;
return 1;
}
__setup("nopku", setup_disable_pku);
#endif
#ifdef CONFIG_X86_KERNEL_IBT
__noendbr u64 ibt_save(bool disable)
{
u64 msr = 0;
if (cpu_feature_enabled(X86_FEATURE_IBT)) {
rdmsrl(MSR_IA32_S_CET, msr);
if (disable)
wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
}
return msr;
}
__noendbr void ibt_restore(u64 save)
{
u64 msr;
if (cpu_feature_enabled(X86_FEATURE_IBT)) {
rdmsrl(MSR_IA32_S_CET, msr);
msr &= ~CET_ENDBR_EN;
msr |= (save & CET_ENDBR_EN);
wrmsrl(MSR_IA32_S_CET, msr);
}
}
#endif
static __always_inline void setup_cet(struct cpuinfo_x86 *c)
{
bool user_shstk, kernel_ibt;
if (!IS_ENABLED(CONFIG_X86_CET))
return;
kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
if (!kernel_ibt && !user_shstk)
return;
if (user_shstk)
set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
if (kernel_ibt)
wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
else
wrmsrl(MSR_IA32_S_CET, 0);
cr4_set_bits(X86_CR4_CET);
if (kernel_ibt && ibt_selftest()) {
pr_err("IBT selftest: Failed!\n");
wrmsrl(MSR_IA32_S_CET, 0);
setup_clear_cpu_cap(X86_FEATURE_IBT);
}
}
__noendbr void cet_disable(void)
{
if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
cpu_feature_enabled(X86_FEATURE_SHSTK)))
return;
wrmsrl(MSR_IA32_S_CET, 0);
wrmsrl(MSR_IA32_U_CET, 0);
}
/*
* Some CPU features depend on higher CPUID levels, which may not always
* be available due to CPUID level capping or broken virtualization
* software. Add those features to this table to auto-disable them.
*/
struct cpuid_dependent_feature {
u32 feature;
u32 level;
};
static const struct cpuid_dependent_feature
cpuid_dependent_features[] = {
{ X86_FEATURE_MWAIT, 0x00000005 },
{ X86_FEATURE_DCA, 0x00000009 },
{ X86_FEATURE_XSAVE, 0x0000000d },
{ 0, 0 }
};
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
{
const struct cpuid_dependent_feature *df;
for (df = cpuid_dependent_features; df->feature; df++) {
if (!cpu_has(c, df->feature))
continue;
/*
* Note: cpuid_level is set to -1 if unavailable, but
* extended_extended_level is set to 0 if unavailable
* and the legitimate extended levels are all negative
* when signed; hence the weird messing around with
* signs here...
*/
if (!((s32)df->level < 0 ?
(u32)df->level > (u32)c->extended_cpuid_level :
(s32)df->level > (s32)c->cpuid_level))
continue;
clear_cpu_cap(c, df->feature);
if (!warn)
continue;
pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
x86_cap_flag(df->feature), df->level);
}
}
/*
* Naming convention should be: <Name> [(<Codename>)]
* This table only is used unless init_<vendor>() below doesn't set it;
* in particular, if CPUID levels 0x80000002..4 are supported, this
* isn't used
*/
/* Look up CPU names by table lookup. */
static const char *table_lookup_model(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
const struct legacy_cpu_model_info *info;
if (c->x86_model >= 16)
return NULL; /* Range check */
if (!this_cpu)
return NULL;
info = this_cpu->legacy_models;
while (info->family) {
if (info->family == c->x86)
return info->model_names[c->x86_model];
info++;
}
#endif
return NULL; /* Not found */
}
/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
#ifdef CONFIG_X86_32
/* The 32-bit entry code needs to find cpu_entry_area. */
DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
#endif
/* Load the original GDT from the per-cpu structure */
void load_direct_gdt(int cpu)
{
struct desc_ptr gdt_descr;
gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
}
EXPORT_SYMBOL_GPL(load_direct_gdt);
/* Load a fixmap remapping of the per-cpu GDT */
void load_fixmap_gdt(int cpu)
{
struct desc_ptr gdt_descr;
gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
}
EXPORT_SYMBOL_GPL(load_fixmap_gdt);
/**
* switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
* @cpu: The CPU number for which this is invoked
*
* Invoked during early boot to switch from early GDT and early per CPU to
* the direct GDT and the runtime per CPU area. On 32-bit the percpu base
* switch is implicit by loading the direct GDT. On 64bit this requires
* to update GSBASE.
*/
void __init switch_gdt_and_percpu_base(int cpu)
{
load_direct_gdt(cpu);
#ifdef CONFIG_X86_64
/*
* No need to load %gs. It is already correct.
*
* Writing %gs on 64bit would zero GSBASE which would make any per
* CPU operation up to the point of the wrmsrl() fault.
*
* Set GSBASE to the new offset. Until the wrmsrl() happens the
* early mapping is still valid. That means the GSBASE update will
* lose any prior per CPU data which was not copied over in
* setup_per_cpu_areas().
*
* This works even with stackprotector enabled because the
* per CPU stack canary is 0 in both per CPU areas.
*/
wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
#else
/*
* %fs is already set to __KERNEL_PERCPU, but after switching GDT
* it is required to load FS again so that the 'hidden' part is
* updated from the new GDT. Up to this point the early per CPU
* translation is active. Any content of the early per CPU data
* which was not copied over in setup_per_cpu_areas() is lost.
*/
loadsegment(fs, __KERNEL_PERCPU);
#endif
}
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
static void get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
char *p, *q, *s;
if (c->extended_cpuid_level < 0x80000004)
return;
v = (unsigned int *)c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
/* Trim whitespace */
p = q = s = &c->x86_model_id[0];
while (*p == ' ')
p++;
while (*p) {
/* Note the last non-whitespace index */
if (!isspace(*p))
s = q;
*q++ = *p++;
}
*(s + 1) = '\0';
}
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, ebx, ecx, edx, l2size;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
c->x86_cache_size = (ecx>>24) + (edx>>24);
#ifdef CONFIG_X86_64
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
#endif
}
if (n < 0x80000006) /* Some chips just has a large L1. */
return;
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
l2size = ecx >> 16;
#ifdef CONFIG_X86_64
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
#else
/* do processor-specific cache resizing */
if (this_cpu->legacy_cache_size)
l2size = this_cpu->legacy_cache_size(c, l2size);
/* Allow user to override all this if necessary. */
if (cachesize_override != -1)
l2size = cachesize_override;
if (l2size == 0)
return; /* Again, no L2 cache is possible */
#endif
c->x86_cache_size = l2size;
}
u16 __read_mostly tlb_lli_4k[NR_INFO];
u16 __read_mostly tlb_lli_2m[NR_INFO];
u16 __read_mostly tlb_lli_4m[NR_INFO];
u16 __read_mostly tlb_lld_4k[NR_INFO];
u16 __read_mostly tlb_lld_2m[NR_INFO];
u16 __read_mostly tlb_lld_4m[NR_INFO];
u16 __read_mostly tlb_lld_1g[NR_INFO];
static void cpu_detect_tlb(struct cpuinfo_x86 *c)
{
if (this_cpu->c_detect_tlb)
this_cpu->c_detect_tlb(c);
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
tlb_lli_4m[ENTRIES]);
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
}
static void get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
int i;
for (i = 0; i < X86_VENDOR_NUM; i++) {
if (!cpu_devs[i])
break;
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
(cpu_devs[i]->c_ident[1] &&
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
this_cpu = cpu_devs[i];
c->x86_vendor = this_cpu->c_x86_vendor;
return;
}
}
pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
"CPU: Your system may be unstable.\n", v);
c->x86_vendor = X86_VENDOR_UNKNOWN;
this_cpu = &default_cpu;
}
void cpu_detect(struct cpuinfo_x86 *c)
{
/* Get vendor name */
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
c->x86 = 4;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
u32 junk, tfms, cap0, misc;
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
c->x86 = x86_family(tfms);
c->x86_model = x86_model(tfms);
c->x86_stepping = x86_stepping(tfms);
if (cap0 & (1<<19)) {
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
c->x86_cache_alignment = c->x86_clflush_size;
}
}
}
static void apply_forced_caps(struct cpuinfo_x86 *c)
{
int i;
for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
c->x86_capability[i] &= ~cpu_caps_cleared[i];
c->x86_capability[i] |= cpu_caps_set[i];
}
}
static void init_speculation_control(struct cpuinfo_x86 *c)
{
/*
* The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
* and they also have a different bit for STIBP support. Also,
* a hypervisor might have set the individual AMD bits even on
* Intel CPUs, for finer-grained selection of what's available.
*/
if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
set_cpu_cap(c, X86_FEATURE_IBRS);
set_cpu_cap(c, X86_FEATURE_IBPB);
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
}
if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
set_cpu_cap(c, X86_FEATURE_STIBP);
if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
cpu_has(c, X86_FEATURE_VIRT_SSBD))
set_cpu_cap(c, X86_FEATURE_SSBD);
if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
set_cpu_cap(c, X86_FEATURE_IBRS);
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
}
if (cpu_has(c, X86_FEATURE_AMD_IBPB))
set_cpu_cap(c, X86_FEATURE_IBPB);
if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
set_cpu_cap(c, X86_FEATURE_STIBP);
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
}
if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
set_cpu_cap(c, X86_FEATURE_SSBD);
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
}
}
void get_cpu_cap(struct cpuinfo_x86 *c)
{
u32 eax, ebx, ecx, edx;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_1_ECX] = ecx;
c->x86_capability[CPUID_1_EDX] = edx;
}
/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
if (c->cpuid_level >= 0x00000006)
c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
/* Additional Intel-defined flags: level 0x00000007 */
if (c->cpuid_level >= 0x00000007) {
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_7_0_EBX] = ebx;
c->x86_capability[CPUID_7_ECX] = ecx;
c->x86_capability[CPUID_7_EDX] = edx;
/* Check valid sub-leaf index before accessing it */
if (eax >= 1) {
cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_7_1_EAX] = eax;
}
}
/* Extended state features: level 0x0000000d */
if (c->cpuid_level >= 0x0000000d) {
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_D_1_EAX] = eax;
}
/* AMD-defined flags: level 0x80000001 */
eax = cpuid_eax(0x80000000);
c->extended_cpuid_level = eax;
if ((eax & 0xffff0000) == 0x80000000) {
if (eax >= 0x80000001) {
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_8000_0001_ECX] = ecx;
c->x86_capability[CPUID_8000_0001_EDX] = edx;
}
}
if (c->extended_cpuid_level >= 0x80000007) {
cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_8000_0007_EBX] = ebx;
c->x86_power = edx;
}
if (c->extended_cpuid_level >= 0x80000008) {
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
c->x86_capability[CPUID_8000_0008_EBX] = ebx;
}
if (c->extended_cpuid_level >= 0x8000000a)
c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
if (c->extended_cpuid_level >= 0x8000001f)
c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
if (c->extended_cpuid_level >= 0x80000021)
c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
init_scattered_cpuid_features(c);
init_speculation_control(c);
/*
* Clear/Set all flags overridden by options, after probe.
* This needs to happen each time we re-probe, which may happen
* several times during CPU initialization.
*/
apply_forced_caps(c);
}
void get_cpu_address_sizes(struct cpuinfo_x86 *c)
{
u32 eax, ebx, ecx, edx;
if (!cpu_has(c, X86_FEATURE_CPUID) ||
(c->extended_cpuid_level < 0x80000008)) {
if (IS_ENABLED(CONFIG_X86_64)) {
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
} else {
c->x86_clflush_size = 32;
c->x86_virt_bits = 32;
c->x86_phys_bits = 32;
if (cpu_has(c, X86_FEATURE_PAE) ||
cpu_has(c, X86_FEATURE_PSE36))
c->x86_phys_bits = 36;
}
} else {
cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
/* Provide a sane default if not enumerated: */
if (!c->x86_clflush_size)
c->x86_clflush_size = 32;
}
c->x86_cache_bits = c->x86_phys_bits;
c->x86_cache_alignment = c->x86_clflush_size;
}
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
int i;
/*
* First of all, decide if this is a 486 or higher
* It's a 486 if we can modify the AC flag
*/
if (flag_is_changeable_p(X86_EFLAGS_AC))
c->x86 = 4;
else
c->x86 = 3;
for (i = 0; i < X86_VENDOR_NUM; i++)
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
c->x86_vendor_id[0] = 0;
cpu_devs[i]->c_identify(c);
if (c->x86_vendor_id[0]) {
get_cpu_vendor(c);
break;
}
}
#endif
}
#define NO_SPECULATION BIT(0)
#define NO_MELTDOWN BIT(1)
#define NO_SSB BIT(2)
#define NO_L1TF BIT(3)
#define NO_MDS BIT(4)
#define MSBDS_ONLY BIT(5)
#define NO_SWAPGS BIT(6)
#define NO_ITLB_MULTIHIT BIT(7)
#define NO_SPECTRE_V2 BIT(8)
#define NO_MMIO BIT(9)
#define NO_EIBRS_PBRSB BIT(10)
#define NO_BHI BIT(11)
#define VULNWL(vendor, family, model, whitelist) \
X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
#define VULNWL_INTEL(vfm, whitelist) \
X86_MATCH_VFM(vfm, whitelist)
#define VULNWL_AMD(family, whitelist) \
VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
#define VULNWL_HYGON(family, whitelist) \
VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
/* Intel Family 6 */
VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO),
VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO),
VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO),
VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO),
VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB),
VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
/*
* Technically, swapgs isn't serializing on AMD (despite it previously
* being documented as such in the APM). But according to AMD, %gs is
* updated non-speculatively, and the issuing of %gs-relative memory
* operands will be blocked until the %gs update completes, which is
* good enough for our purposes.
*/
VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB),
VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB),
VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
/* AMD Family 0xf - 0x12 */
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
/* Zhaoxin Family 7 */
VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
{}
};
#define VULNBL(vendor, family, model, blacklist) \
X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
#define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues) \
X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
#define VULNBL_AMD(family, blacklist) \
VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
#define VULNBL_HYGON(family, blacklist) \
VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
#define SRBDS BIT(0)
/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
#define MMIO BIT(1)
/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
#define MMIO_SBDS BIT(2)
/* CPU is affected by RETbleed, speculating where you would not expect it */
#define RETBLEED BIT(3)
/* CPU is affected by SMT (cross-thread) return predictions */
#define SMT_RSB BIT(4)
/* CPU is affected by SRSO */
#define SRSO BIT(5)
/* CPU is affected by GDS */
#define GDS BIT(6)
/* CPU is affected by Register File Data Sampling */
#define RFDS BIT(7)
static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X, X86_STEPPING_ANY, MMIO),
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPING_ANY, MMIO),
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X, X86_STEPPING_ANY, MMIO),
VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L, X86_STEPPING_ANY, GDS),
VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE, X86_STEPPING_ANY, GDS),
VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO | RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D, X86_STEPPING_ANY, RFDS),
VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY, RFDS),
VULNBL_AMD(0x15, RETBLEED),
VULNBL_AMD(0x16, RETBLEED),
VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
VULNBL_AMD(0x19, SRSO),
{}
};
static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
{
const struct x86_cpu_id *m = x86_match_cpu(table);
return m && !!(m->driver_data & which);
}
u64 x86_read_arch_cap_msr(void)
{
u64 x86_arch_cap_msr = 0;
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
return x86_arch_cap_msr;
}
static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
{
return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
}
static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
{
/* The "immunity" bit trumps everything else: */
if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
return false;
/*
* VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
* indicate that mitigation is needed because guest is running on a
* vulnerable hardware or may migrate to such hardware:
*/
if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
return true;
/* Only consult the blacklist when there is no enumeration: */
return cpu_matches(cpu_vuln_blacklist, RFDS);
}
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
{
u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
!(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
return;
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
!(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
!cpu_has(c, X86_FEATURE_AMD_SSB_NO))
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
/*
* AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
* flag and protect from vendor-specific bugs via the whitelist.
*
* Don't use AutoIBRS when SNP is enabled because it degrades host
* userspace indirect branch performance.
*/
if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
(cpu_has(c, X86_FEATURE_AUTOIBRS) &&
!cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
!(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
}
if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
!(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
setup_force_cpu_bug(X86_BUG_MDS);
if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
}
if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
setup_force_cpu_bug(X86_BUG_SWAPGS);
/*
* When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
* - TSX is supported or
* - TSX_CTRL is present
*
* TSX_CTRL check is needed for cases when TSX could be disabled before
* the kernel boot e.g. kexec.
* TSX_CTRL check alone is not sufficient for cases when the microcode
* update is not present or running as guest that don't get TSX_CTRL.
*/
if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
(cpu_has(c, X86_FEATURE_RTM) ||
(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
setup_force_cpu_bug(X86_BUG_TAA);
/*
* SRBDS affects CPUs which support RDRAND or RDSEED and are listed
* in the vulnerability blacklist.
*
* Some of the implications and mitigation of Shared Buffers Data
* Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
* SRBDS.
*/
if ((cpu_has(c, X86_FEATURE_RDRAND) ||
cpu_has(c, X86_FEATURE_RDSEED)) &&
cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
setup_force_cpu_bug(X86_BUG_SRBDS);
/*
* Processor MMIO Stale Data bug enumeration
*
* Affected CPU list is generally enough to enumerate the vulnerability,
* but for virtualization case check for ARCH_CAP MSR bits also, VMM may
* not want the guest to enumerate the bug.
*
* Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
* nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
*/
if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
if (cpu_matches(cpu_vuln_blacklist, MMIO))
setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
}
if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
setup_force_cpu_bug(X86_BUG_RETBLEED);
}
if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
setup_force_cpu_bug(X86_BUG_SMT_RSB);
if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
if (cpu_matches(cpu_vuln_blacklist, SRSO))
setup_force_cpu_bug(X86_BUG_SRSO);
}
/*
* Check if CPU is vulnerable to GDS. If running in a virtual machine on
* an affected processor, the VMM may have disabled the use of GATHER by
* disabling AVX2. The only way to do this in HW is to clear XCR0[2],
* which means that AVX will be disabled.
*/
if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
boot_cpu_has(X86_FEATURE_AVX))
setup_force_cpu_bug(X86_BUG_GDS);
if (vulnerable_to_rfds(x86_arch_cap_msr))
setup_force_cpu_bug(X86_BUG_RFDS);
/* When virtualized, eIBRS could be hidden, assume vulnerable */
if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
(boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
boot_cpu_has(X86_FEATURE_HYPERVISOR)))
setup_force_cpu_bug(X86_BUG_BHI);
if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
return;
/* Rogue Data Cache Load? No! */
if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
return;
setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
return;
setup_force_cpu_bug(X86_BUG_L1TF);
}
/*
* The NOPL instruction is supposed to exist on all CPUs of family >= 6;
* unfortunately, that's not true in practice because of early VIA
* chips and (more importantly) broken virtualizers that are not easy
* to detect. In the latter case it doesn't even *fail* reliably, so
* probing for it doesn't even work. Disable it completely on 32-bit
* unless we can find a reliable way to detect all the broken cases.
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
*/
static void detect_nopl(void)
{
#ifdef CONFIG_X86_32
setup_clear_cpu_cap(X86_FEATURE_NOPL);
#else
setup_force_cpu_cap(X86_FEATURE_NOPL);
#endif
}
/*
* We parse cpu parameters early because fpu__init_system() is executed
* before parse_early_param().
*/
static void __init cpu_parse_early_param(void)
{
char arg[128];
char *argptr = arg, *opt;
int arglen, taint = 0;
#ifdef CONFIG_X86_32
if (cmdline_find_option_bool(boot_command_line, "no387"))
#ifdef CONFIG_MATH_EMULATION
setup_clear_cpu_cap(X86_FEATURE_FPU);
#else
pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
#endif
if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
setup_clear_cpu_cap(X86_FEATURE_FXSR);
#endif
if (cmdline_find_option_bool(boot_command_line, "noxsave"))
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
setup_clear_cpu_cap(X86_FEATURE_XSAVES);
if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
/* Minimize the gap between FRED is available and available but disabled. */
arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
if (arglen != 2 || strncmp(arg, "on", 2))
setup_clear_cpu_cap(X86_FEATURE_FRED);
arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
if (arglen <= 0)
return;
pr_info("Clearing CPUID bits:");
while (argptr) {
bool found __maybe_unused = false;
unsigned int bit;
opt = strsep(&argptr, ",");
/*
* Handle naked numbers first for feature flags which don't
* have names.
*/
if (!kstrtouint(opt, 10, &bit)) {
if (bit < NCAPINTS * 32) {
/* empty-string, i.e., ""-defined feature flags */
if (!x86_cap_flags[bit])
pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
else
pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
setup_clear_cpu_cap(bit);
taint++;
}
/*
* The assumption is that there are no feature names with only
* numbers in the name thus go to the next argument.
*/
continue;
}
for (bit = 0; bit < 32 * NCAPINTS; bit++) {
if (!x86_cap_flag(bit))
continue;
if (strcmp(x86_cap_flag(bit), opt))
continue;
pr_cont(" %s", opt);
setup_clear_cpu_cap(bit);
taint++;
found = true;
break;
}
if (!found)
pr_cont(" (unknown: %s)", opt);
}
pr_cont("\n");
if (taint)
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
}
/*
* Do minimum CPU detection early.
* Fields really needed: vendor, cpuid_level, family, model, mask,
* cache alignment.
* The others are not touched to avoid unwanted side effects.
*
* WARNING: this function is only called on the boot CPU. Don't add code
* here that is supposed to run on all CPUs.
*/
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
{
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (have_cpuid_p()) {
cpu_detect(c);
get_cpu_vendor(c);
intel_unlock_cpuid_leafs(c);
get_cpu_cap(c);
setup_force_cpu_cap(X86_FEATURE_CPUID);
get_cpu_address_sizes(c);
cpu_parse_early_param();
cpu_init_topology(c);
if (this_cpu->c_early_init)
this_cpu->c_early_init(c);
c->cpu_index = 0;
filter_cpuid_features(c, false);
if (this_cpu->c_bsp_init)
this_cpu->c_bsp_init(c);
} else {
setup_clear_cpu_cap(X86_FEATURE_CPUID);
get_cpu_address_sizes(c);
cpu_init_topology(c);
}
setup_force_cpu_cap(X86_FEATURE_ALWAYS);
cpu_set_bug_bits(c);
sld_setup(c);
#ifdef CONFIG_X86_32
/*
* Regardless of whether PCID is enumerated, the SDM says
* that it can't be enabled in 32-bit mode.
*/
setup_clear_cpu_cap(X86_FEATURE_PCID);
#endif
/*
* Later in the boot process pgtable_l5_enabled() relies on
* cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
* enabled by this point we need to clear the feature bit to avoid
* false-positives at the later stage.
*
* pgtable_l5_enabled() can be false here for several reasons:
* - 5-level paging is disabled compile-time;
* - it's 32-bit kernel;
* - machine doesn't support 5-level paging;
* - user specified 'no5lvl' in kernel command line.
*/
if (!pgtable_l5_enabled())
setup_clear_cpu_cap(X86_FEATURE_LA57);
detect_nopl();
}
void __init early_cpu_init(void)
{
const struct cpu_dev *const *cdev;
int count = 0;
#ifdef CONFIG_PROCESSOR_SELECT
pr_info("KERNEL supported cpus:\n");
#endif
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
const struct cpu_dev *cpudev = *cdev;
if (count >= X86_VENDOR_NUM)
break;
cpu_devs[count] = cpudev;
count++;
#ifdef CONFIG_PROCESSOR_SELECT
{
unsigned int j;
for (j = 0; j < 2; j++) {
if (!cpudev->c_ident[j])
continue;
pr_info(" %s %s\n", cpudev->c_vendor,
cpudev->c_ident[j]);
}
}
#endif
}
early_identify_cpu(&boot_cpu_data);
}
static bool detect_null_seg_behavior(void)
{
/*
* Empirically, writing zero to a segment selector on AMD does
* not clear the base, whereas writing zero to a segment
* selector on Intel does clear the base. Intel's behavior
* allows slightly faster context switches in the common case
* where GS is unused by the prev and next threads.
*
* Since neither vendor documents this anywhere that I can see,
* detect it directly instead of hard-coding the choice by
* vendor.
*
* I've designated AMD's behavior as the "bug" because it's
* counterintuitive and less friendly.
*/
unsigned long old_base, tmp;
rdmsrl(MSR_FS_BASE, old_base);
wrmsrl(MSR_FS_BASE, 1);
loadsegment(fs, 0);
rdmsrl(MSR_FS_BASE, tmp);
wrmsrl(MSR_FS_BASE, old_base);
return tmp == 0;
}
void check_null_seg_clears_base(struct cpuinfo_x86 *c)
{
/* BUG_NULL_SEG is only relevant with 64bit userspace */
if (!IS_ENABLED(CONFIG_X86_64))
return;
if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
return;
/*
* CPUID bit above wasn't set. If this kernel is still running
* as a HV guest, then the HV has decided not to advertize
* that CPUID bit for whatever reason. For example, one
* member of the migration pool might be vulnerable. Which
* means, the bug is present: set the BUG flag and return.
*/
if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
set_cpu_bug(c, X86_BUG_NULL_SEG);
return;
}
/*
* Zen2 CPUs also have this behaviour, but no CPUID bit.
* 0x18 is the respective family for Hygon.
*/
if ((c->x86 == 0x17 || c->x86 == 0x18) &&
detect_null_seg_behavior())
return;
/* All the remaining ones are affected */
set_cpu_bug(c, X86_BUG_NULL_SEG);
}
static void generic_identify(struct cpuinfo_x86 *c)
{
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (!have_cpuid_p())
return;
cpu_detect(c);
get_cpu_vendor(c);
intel_unlock_cpuid_leafs(c);
get_cpu_cap(c);
get_cpu_address_sizes(c);
get_model_name(c); /* Default name */
/*
* ESPFIX is a strange bug. All real CPUs have it. Paravirt
* systems that run Linux at CPL > 0 may or may not have the
* issue, but, even if they have the issue, there's absolutely
* nothing we can do about it because we can't use the real IRET
* instruction.
*
* NB: For the time being, only 32-bit kernels support
* X86_BUG_ESPFIX as such. 64-bit kernels directly choose
* whether to apply espfix using paravirt hooks. If any
* non-paravirt system ever shows up that does *not* have the
* ESPFIX issue, we can change this.
*/
#ifdef CONFIG_X86_32
set_cpu_bug(c, X86_BUG_ESPFIX);
#endif
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
static void identify_cpu(struct cpuinfo_x86 *c)
{
int i;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = 0;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_stepping = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
#ifdef CONFIG_X86_64
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
#else
c->cpuid_level = -1; /* CPUID not detected */
c->x86_clflush_size = 32;
c->x86_phys_bits = 32;
c->x86_virt_bits = 32;
#endif
c->x86_cache_alignment = c->x86_clflush_size;
memset(&c->x86_capability, 0, sizeof(c->x86_capability));
#ifdef CONFIG_X86_VMX_FEATURE_NAMES
memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
#endif
generic_identify(c);
cpu_parse_topology(c);
if (this_cpu->c_identify)
this_cpu->c_identify(c);
/* Clear/Set all flags overridden by options, after probe */
apply_forced_caps(c);
/*
* Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
* Hygon will clear it in ->c_init() below.
*/
set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
if (this_cpu->c_init)
this_cpu->c_init(c);
/* Disable the PN if appropriate */
squash_the_stupid_serial_number(c);
/* Set up SMEP/SMAP/UMIP */
setup_smep(c);
setup_smap(c);
setup_umip(c);
/* Enable FSGSBASE instructions if available. */
if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
cr4_set_bits(X86_CR4_FSGSBASE);
elf_hwcap2 |= HWCAP2_FSGSBASE;
}
/*
* The vendor-specific functions might have changed features.
* Now we do "generic changes."
*/
/* Filter out anything that depends on CPUID levels we don't have */
filter_cpuid_features(c, true);
/* If the model name is still unset, do table lookup. */
if (!c->x86_model_id[0]) {
const char *p;
p = table_lookup_model(c);
if (p)
strcpy(c->x86_model_id, p);
else
/* Last resort... */
sprintf(c->x86_model_id, "%02x/%02x",
c->x86, c->x86_model);
}
x86_init_rdrand(c);
setup_pku(c);
setup_cet(c);
/*
* Clear/Set all flags overridden by options, need do it
* before following smp all cpus cap AND.
*/
apply_forced_caps(c);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0; i < NCAPINTS; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
/* OR, i.e. replicate the bug flags */
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
}
ppin_init(c);
/* Init Machine Check Exception if available. */
mcheck_cpu_init(c);
#ifdef CONFIG_NUMA
numa_add_cpu(smp_processor_id());
#endif
}
/*
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
* on 32-bit kernels:
*/
#ifdef CONFIG_X86_32
void enable_sep_cpu(void)
{
struct tss_struct *tss;
int cpu;
if (!boot_cpu_has(X86_FEATURE_SEP))
return;
cpu = get_cpu();
tss = &per_cpu(cpu_tss_rw, cpu);
/*
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
* see the big comment in struct x86_hw_tss's definition.
*/
tss->x86_tss.ss1 = __KERNEL_CS;
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
put_cpu();
}
#endif
static __init void identify_boot_cpu(void)
{
identify_cpu(&boot_cpu_data);
if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
pr_info("CET detected: Indirect Branch Tracking enabled\n");
#ifdef CONFIG_X86_32
enable_sep_cpu();
#endif
cpu_detect_tlb(&boot_cpu_data);
setup_cr_pinning();
tsx_init();
tdx_init();
lkgs_init();
}
void identify_secondary_cpu(struct cpuinfo_x86 *c)
{
BUG_ON(c == &boot_cpu_data);
identify_cpu(c);
#ifdef CONFIG_X86_32
enable_sep_cpu();
#endif
x86_spec_ctrl_setup_ap();
update_srbds_msr();
if (boot_cpu_has_bug(X86_BUG_GDS))
update_gds_msr();
tsx_ap_init();
}
void print_cpu_info(struct cpuinfo_x86 *c)
{
const char *vendor = NULL;
if (c->x86_vendor < X86_VENDOR_NUM) {
vendor = this_cpu->c_vendor;
} else {
if (c->cpuid_level >= 0)
vendor = c->x86_vendor_id;
}
if (vendor && !strstr(c->x86_model_id, vendor))
pr_cont("%s ", vendor);
if (c->x86_model_id[0])
pr_cont("%s", c->x86_model_id);
else
pr_cont("%d86", c->x86);
pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
if (c->x86_stepping || c->cpuid_level >= 0)
pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
else
pr_cont(")\n");
}
/*
* clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
* function prevents it from becoming an environment variable for init.
*/
static __init int setup_clearcpuid(char *arg)
{
return 1;
}
__setup("clearcpuid=", setup_clearcpuid);
DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
.current_task = &init_task,
.preempt_count = INIT_PREEMPT_COUNT,
.top_of_stack = TOP_OF_INIT_STACK,
};
EXPORT_PER_CPU_SYMBOL(pcpu_hot);
EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
#ifdef CONFIG_X86_64
DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
static void wrmsrl_cstar(unsigned long val)
{
/*
* Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
* is so far ignored by the CPU, but raises a #VE trap in a TDX
* guest. Avoid the pointless write on all Intel CPUs.
*/
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
wrmsrl(MSR_CSTAR, val);
}
static inline void idt_syscall_init(void)
{
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
if (ia32_enabled()) {
wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
/*
* This only works on Intel CPUs.
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
* This does not cause SYSENTER to jump to the wrong location, because
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
*/
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
(unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
} else {
wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
}
/*
* Flags to clear on syscall; clear as much as possible
* to minimize user space-kernel interference.
*/
wrmsrl(MSR_SYSCALL_MASK,
X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
X86_EFLAGS_AC|X86_EFLAGS_ID);
}
/* May not be marked __init: used by software suspend */
void syscall_init(void)
{
/* The default user and kernel segments */
wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
/*
* Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
* SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
* entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
* instruction to return to ring 3 (both sysexit and sysret cause
* #UD when FRED is enabled).
*/
if (!cpu_feature_enabled(X86_FEATURE_FRED))
idt_syscall_init();
}
#else /* CONFIG_X86_64 */
#ifdef CONFIG_STACKPROTECTOR
DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
#ifndef CONFIG_SMP
EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
#endif
#endif
#endif /* CONFIG_X86_64 */
/*
* Clear all 6 debug registers:
*/
static void clear_all_debug_regs(void)
{
int i;
for (i = 0; i < 8; i++) {
/* Ignore db4, db5 */
if ((i == 4) || (i == 5))
continue;
set_debugreg(0, i);
}
}
#ifdef CONFIG_KGDB
/*
* Restore debug regs if using kgdbwait and you have a kernel debugger
* connection established.
*/
static void dbg_restore_debug_regs(void)
{
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
arch_kgdb_ops.correct_hw_break();
}
#else /* ! CONFIG_KGDB */
#define dbg_restore_debug_regs()
#endif /* ! CONFIG_KGDB */
static inline void setup_getcpu(int cpu)
{
unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
struct desc_struct d = { };
if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
wrmsr(MSR_TSC_AUX, cpudata, 0);
/* Store CPU and node number in limit. */
d.limit0 = cpudata;
d.limit1 = cpudata >> 16;
d.type = 5; /* RO data, expand down, accessed */
d.dpl = 3; /* Visible to user code */
d.s = 1; /* Not a system segment */
d.p = 1; /* Present */
d.d = 1; /* 32-bit */
write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
}
#ifdef CONFIG_X86_64
static inline void tss_setup_ist(struct tss_struct *tss)
{
/* Set up the per-CPU TSS IST stacks */
tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
/* Only mapped when SEV-ES is active */
tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
}
#else /* CONFIG_X86_64 */
static inline void tss_setup_ist(struct tss_struct *tss) { }
#endif /* !CONFIG_X86_64 */
static inline void tss_setup_io_bitmap(struct tss_struct *tss)
{
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
#ifdef CONFIG_X86_IOPL_IOPERM
tss->io_bitmap.prev_max = 0;
tss->io_bitmap.prev_sequence = 0;
memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
/*
* Invalidate the extra array entry past the end of the all
* permission bitmap as required by the hardware.
*/
tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
#endif
}
/*
* Setup everything needed to handle exceptions from the IDT, including the IST
* exceptions which use paranoid_entry().
*/
void cpu_init_exception_handling(bool boot_cpu)
{
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
int cpu = raw_smp_processor_id();
/* paranoid_entry() gets the CPU number from the GDT */
setup_getcpu(cpu);
/* For IDT mode, IST vectors need to be set in TSS. */
if (!cpu_feature_enabled(X86_FEATURE_FRED))
tss_setup_ist(tss);
tss_setup_io_bitmap(tss);
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
load_TR_desc();
/* GHCB needs to be setup to handle #VC. */
setup_ghcb();
if (cpu_feature_enabled(X86_FEATURE_FRED)) {
/* The boot CPU has enabled FRED during early boot */
if (!boot_cpu)
cpu_init_fred_exceptions();
cpu_init_fred_rsps();
} else {
load_current_idt();
}
}
void __init cpu_init_replace_early_idt(void)
{
if (cpu_feature_enabled(X86_FEATURE_FRED))
cpu_init_fred_exceptions();
else
idt_setup_early_pf();
}
/*
* cpu_init() initializes state that is per-CPU. Some data is already
* initialized (naturally) in the bootstrap process, such as the GDT. We
* reload it nevertheless, this function acts as a 'CPU state barrier',
* nothing should get across.
*/
void cpu_init(void)
{
struct task_struct *cur = current;
int cpu = raw_smp_processor_id();
#ifdef CONFIG_NUMA
if (this_cpu_read(numa_node) == 0 &&
early_cpu_to_node(cpu) != NUMA_NO_NODE)
set_numa_node(early_cpu_to_node(cpu));
#endif
pr_debug("Initializing CPU#%d\n", cpu);
if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
if (IS_ENABLED(CONFIG_X86_64)) {
loadsegment(fs, 0);
memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
syscall_init();
wrmsrl(MSR_FS_BASE, 0);
wrmsrl(MSR_KERNEL_GS_BASE, 0);
barrier();
x2apic_setup();
intel_posted_msi_init();
}
mmgrab(&init_mm);
cur->active_mm = &init_mm;
BUG_ON(cur->mm);
initialize_tlbstate_and_flush();
enter_lazy_tlb(&init_mm, cur);
/*
* sp0 points to the entry trampoline stack regardless of what task
* is running.
*/
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
load_mm_ldt(&init_mm);
clear_all_debug_regs();
dbg_restore_debug_regs();
doublefault_init_cpu_tss();
if (is_uv_system())
uv_cpu_init();
load_fixmap_gdt(cpu);
}
#ifdef CONFIG_MICROCODE_LATE_LOADING
/**
* store_cpu_caps() - Store a snapshot of CPU capabilities
* @curr_info: Pointer where to store it
*
* Returns: None
*/
void store_cpu_caps(struct cpuinfo_x86 *curr_info)
{
/* Reload CPUID max function as it might've changed. */
curr_info->cpuid_level = cpuid_eax(0);
/* Copy all capability leafs and pick up the synthetic ones. */
memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
sizeof(curr_info->x86_capability));
/* Get the hardware CPUID leafs */
get_cpu_cap(curr_info);
}
/**
* microcode_check() - Check if any CPU capabilities changed after an update.
* @prev_info: CPU capabilities stored before an update.
*
* The microcode loader calls this upon late microcode load to recheck features,
* only when microcode has been updated. Caller holds and CPU hotplug lock.
*
* Return: None
*/
void microcode_check(struct cpuinfo_x86 *prev_info)
{
struct cpuinfo_x86 curr_info;
perf_check_microcode();
amd_check_microcode();
store_cpu_caps(&curr_info);
if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
sizeof(prev_info->x86_capability)))
return;
pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
}
#endif
/*
* Invoked from core CPU hotplug code after hotplug operations
*/
void arch_smt_update(void)
{
/* Handle the speculative execution misfeatures */
cpu_bugs_smt_update();
/* Check whether IPI broadcasting can be enabled */
apic_smt_update();
}
void __init arch_cpu_finalize_init(void)
{
struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
identify_boot_cpu();
select_idle_routine();
/*
* identify_boot_cpu() initialized SMT support information, let the
* core code know.
*/
cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
if (!IS_ENABLED(CONFIG_SMP)) {
pr_info("CPU: ");
print_cpu_info(&boot_cpu_data);
}
cpu_select_mitigations();
arch_smt_update();
if (IS_ENABLED(CONFIG_X86_32)) {
/*
* Check whether this is a real i386 which is not longer
* supported and fixup the utsname.
*/
if (boot_cpu_data.x86 < 4)
panic("Kernel requires i486+ for 'invlpg' and other features");
init_utsname()->machine[1] =
'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
}
/*
* Must be before alternatives because it might set or clear
* feature bits.
*/
fpu__init_system();
fpu__init_cpu();
/*
* Ensure that access to the per CPU representation has the initial
* boot CPU configuration.
*/
*c = boot_cpu_data;
c->initialized = true;
alternative_instructions();
if (IS_ENABLED(CONFIG_X86_64)) {
unsigned long USER_PTR_MAX = TASK_SIZE_MAX-1;
/*
* Enable this when LAM is gated on LASS support
if (cpu_feature_enabled(X86_FEATURE_LAM))
USER_PTR_MAX = (1ul << 63) - PAGE_SIZE - 1;
*/
runtime_const_init(ptr, USER_PTR_MAX);
/*
* Make sure the first 2MB area is not mapped by huge pages
* There are typically fixed size MTRRs in there and overlapping
* MTRRs into large pages causes slow downs.
*
* Right now we don't do that with gbpages because there seems
* very little benefit for that case.
*/
if (!direct_gbpages)
set_memory_4k((unsigned long)__va(0), 1);
} else {
fpu__init_check_bugs();
}
/*
* This needs to be called before any devices perform DMA
* operations that might use the SWIOTLB bounce buffers. It will
* mark the bounce buffers as decrypted so that their usage will
* not cause "plain-text" data to be decrypted when accessed. It
* must be called after late_time_init() so that Hyper-V x86/x64
* hypercalls work when the SWIOTLB bounce buffers are decrypted.
*/
mem_encrypt_init();
}