| // SPDX-License-Identifier: GPL-2.0-only |
| /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. |
| * |
| * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/platform_device.h> |
| #include <linux/cpumask.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/crypto.h> |
| #include <crypto/md5.h> |
| #include <crypto/sha1.h> |
| #include <crypto/sha2.h> |
| #include <crypto/aes.h> |
| #include <crypto/internal/des.h> |
| #include <linux/mutex.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/algapi.h> |
| |
| #include <asm/hypervisor.h> |
| #include <asm/mdesc.h> |
| |
| #include "n2_core.h" |
| |
| #define DRV_MODULE_NAME "n2_crypto" |
| #define DRV_MODULE_VERSION "0.2" |
| #define DRV_MODULE_RELDATE "July 28, 2011" |
| |
| static const char version[] = |
| DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| |
| MODULE_AUTHOR("David S. Miller <davem@davemloft.net>"); |
| MODULE_DESCRIPTION("Niagara2 Crypto driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_MODULE_VERSION); |
| |
| #define N2_CRA_PRIORITY 200 |
| |
| static DEFINE_MUTEX(spu_lock); |
| |
| struct spu_queue { |
| cpumask_t sharing; |
| unsigned long qhandle; |
| |
| spinlock_t lock; |
| u8 q_type; |
| void *q; |
| unsigned long head; |
| unsigned long tail; |
| struct list_head jobs; |
| |
| unsigned long devino; |
| |
| char irq_name[32]; |
| unsigned int irq; |
| |
| struct list_head list; |
| }; |
| |
| struct spu_qreg { |
| struct spu_queue *queue; |
| unsigned long type; |
| }; |
| |
| static struct spu_queue **cpu_to_cwq; |
| static struct spu_queue **cpu_to_mau; |
| |
| static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) |
| { |
| if (q->q_type == HV_NCS_QTYPE_MAU) { |
| off += MAU_ENTRY_SIZE; |
| if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) |
| off = 0; |
| } else { |
| off += CWQ_ENTRY_SIZE; |
| if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) |
| off = 0; |
| } |
| return off; |
| } |
| |
| struct n2_request_common { |
| struct list_head entry; |
| unsigned int offset; |
| }; |
| #define OFFSET_NOT_RUNNING (~(unsigned int)0) |
| |
| /* An async job request records the final tail value it used in |
| * n2_request_common->offset, test to see if that offset is in |
| * the range old_head, new_head, inclusive. |
| */ |
| static inline bool job_finished(struct spu_queue *q, unsigned int offset, |
| unsigned long old_head, unsigned long new_head) |
| { |
| if (old_head <= new_head) { |
| if (offset > old_head && offset <= new_head) |
| return true; |
| } else { |
| if (offset > old_head || offset <= new_head) |
| return true; |
| } |
| return false; |
| } |
| |
| /* When the HEAD marker is unequal to the actual HEAD, we get |
| * a virtual device INO interrupt. We should process the |
| * completed CWQ entries and adjust the HEAD marker to clear |
| * the IRQ. |
| */ |
| static irqreturn_t cwq_intr(int irq, void *dev_id) |
| { |
| unsigned long off, new_head, hv_ret; |
| struct spu_queue *q = dev_id; |
| |
| pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", |
| smp_processor_id(), q->qhandle); |
| |
| spin_lock(&q->lock); |
| |
| hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); |
| |
| pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", |
| smp_processor_id(), new_head, hv_ret); |
| |
| for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { |
| /* XXX ... XXX */ |
| } |
| |
| hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); |
| if (hv_ret == HV_EOK) |
| q->head = new_head; |
| |
| spin_unlock(&q->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t mau_intr(int irq, void *dev_id) |
| { |
| struct spu_queue *q = dev_id; |
| unsigned long head, hv_ret; |
| |
| spin_lock(&q->lock); |
| |
| pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", |
| smp_processor_id(), q->qhandle); |
| |
| hv_ret = sun4v_ncs_gethead(q->qhandle, &head); |
| |
| pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", |
| smp_processor_id(), head, hv_ret); |
| |
| sun4v_ncs_sethead_marker(q->qhandle, head); |
| |
| spin_unlock(&q->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void *spu_queue_next(struct spu_queue *q, void *cur) |
| { |
| return q->q + spu_next_offset(q, cur - q->q); |
| } |
| |
| static int spu_queue_num_free(struct spu_queue *q) |
| { |
| unsigned long head = q->head; |
| unsigned long tail = q->tail; |
| unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); |
| unsigned long diff; |
| |
| if (head > tail) |
| diff = head - tail; |
| else |
| diff = (end - tail) + head; |
| |
| return (diff / CWQ_ENTRY_SIZE) - 1; |
| } |
| |
| static void *spu_queue_alloc(struct spu_queue *q, int num_entries) |
| { |
| int avail = spu_queue_num_free(q); |
| |
| if (avail >= num_entries) |
| return q->q + q->tail; |
| |
| return NULL; |
| } |
| |
| static unsigned long spu_queue_submit(struct spu_queue *q, void *last) |
| { |
| unsigned long hv_ret, new_tail; |
| |
| new_tail = spu_next_offset(q, last - q->q); |
| |
| hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); |
| if (hv_ret == HV_EOK) |
| q->tail = new_tail; |
| return hv_ret; |
| } |
| |
| static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, |
| int enc_type, int auth_type, |
| unsigned int hash_len, |
| bool sfas, bool sob, bool eob, bool encrypt, |
| int opcode) |
| { |
| u64 word = (len - 1) & CONTROL_LEN; |
| |
| word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); |
| word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); |
| word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); |
| if (sfas) |
| word |= CONTROL_STORE_FINAL_AUTH_STATE; |
| if (sob) |
| word |= CONTROL_START_OF_BLOCK; |
| if (eob) |
| word |= CONTROL_END_OF_BLOCK; |
| if (encrypt) |
| word |= CONTROL_ENCRYPT; |
| if (hmac_key_len) |
| word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; |
| if (hash_len) |
| word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; |
| |
| return word; |
| } |
| |
| #if 0 |
| static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) |
| { |
| if (this_len >= 64 || |
| qp->head != qp->tail) |
| return true; |
| return false; |
| } |
| #endif |
| |
| struct n2_ahash_alg { |
| struct list_head entry; |
| const u8 *hash_zero; |
| const u8 *hash_init; |
| u8 hw_op_hashsz; |
| u8 digest_size; |
| u8 auth_type; |
| u8 hmac_type; |
| struct ahash_alg alg; |
| }; |
| |
| static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) |
| { |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct ahash_alg *ahash_alg; |
| |
| ahash_alg = container_of(alg, struct ahash_alg, halg.base); |
| |
| return container_of(ahash_alg, struct n2_ahash_alg, alg); |
| } |
| |
| struct n2_hmac_alg { |
| const char *child_alg; |
| struct n2_ahash_alg derived; |
| }; |
| |
| static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) |
| { |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct ahash_alg *ahash_alg; |
| |
| ahash_alg = container_of(alg, struct ahash_alg, halg.base); |
| |
| return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); |
| } |
| |
| struct n2_hash_ctx { |
| struct crypto_ahash *fallback_tfm; |
| }; |
| |
| #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ |
| |
| struct n2_hmac_ctx { |
| struct n2_hash_ctx base; |
| |
| struct crypto_shash *child_shash; |
| |
| int hash_key_len; |
| unsigned char hash_key[N2_HASH_KEY_MAX]; |
| }; |
| |
| struct n2_hash_req_ctx { |
| union { |
| struct md5_state md5; |
| struct sha1_state sha1; |
| struct sha256_state sha256; |
| } u; |
| |
| struct ahash_request fallback_req; |
| }; |
| |
| static int n2_hash_async_init(struct ahash_request *req) |
| { |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); |
| rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| return crypto_ahash_init(&rctx->fallback_req); |
| } |
| |
| static int n2_hash_async_update(struct ahash_request *req) |
| { |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); |
| rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| rctx->fallback_req.nbytes = req->nbytes; |
| rctx->fallback_req.src = req->src; |
| |
| return crypto_ahash_update(&rctx->fallback_req); |
| } |
| |
| static int n2_hash_async_final(struct ahash_request *req) |
| { |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); |
| rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| rctx->fallback_req.result = req->result; |
| |
| return crypto_ahash_final(&rctx->fallback_req); |
| } |
| |
| static int n2_hash_async_finup(struct ahash_request *req) |
| { |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); |
| rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| rctx->fallback_req.nbytes = req->nbytes; |
| rctx->fallback_req.src = req->src; |
| rctx->fallback_req.result = req->result; |
| |
| return crypto_ahash_finup(&rctx->fallback_req); |
| } |
| |
| static int n2_hash_async_noimport(struct ahash_request *req, const void *in) |
| { |
| return -ENOSYS; |
| } |
| |
| static int n2_hash_async_noexport(struct ahash_request *req, void *out) |
| { |
| return -ENOSYS; |
| } |
| |
| static int n2_hash_cra_init(struct crypto_tfm *tfm) |
| { |
| const char *fallback_driver_name = crypto_tfm_alg_name(tfm); |
| struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); |
| struct crypto_ahash *fallback_tfm; |
| int err; |
| |
| fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(fallback_tfm)) { |
| pr_warn("Fallback driver '%s' could not be loaded!\n", |
| fallback_driver_name); |
| err = PTR_ERR(fallback_tfm); |
| goto out; |
| } |
| |
| crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + |
| crypto_ahash_reqsize(fallback_tfm))); |
| |
| ctx->fallback_tfm = fallback_tfm; |
| return 0; |
| |
| out: |
| return err; |
| } |
| |
| static void n2_hash_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); |
| |
| crypto_free_ahash(ctx->fallback_tfm); |
| } |
| |
| static int n2_hmac_cra_init(struct crypto_tfm *tfm) |
| { |
| const char *fallback_driver_name = crypto_tfm_alg_name(tfm); |
| struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); |
| struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); |
| struct crypto_ahash *fallback_tfm; |
| struct crypto_shash *child_shash; |
| int err; |
| |
| fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(fallback_tfm)) { |
| pr_warn("Fallback driver '%s' could not be loaded!\n", |
| fallback_driver_name); |
| err = PTR_ERR(fallback_tfm); |
| goto out; |
| } |
| |
| child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); |
| if (IS_ERR(child_shash)) { |
| pr_warn("Child shash '%s' could not be loaded!\n", |
| n2alg->child_alg); |
| err = PTR_ERR(child_shash); |
| goto out_free_fallback; |
| } |
| |
| crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + |
| crypto_ahash_reqsize(fallback_tfm))); |
| |
| ctx->child_shash = child_shash; |
| ctx->base.fallback_tfm = fallback_tfm; |
| return 0; |
| |
| out_free_fallback: |
| crypto_free_ahash(fallback_tfm); |
| |
| out: |
| return err; |
| } |
| |
| static void n2_hmac_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); |
| |
| crypto_free_ahash(ctx->base.fallback_tfm); |
| crypto_free_shash(ctx->child_shash); |
| } |
| |
| static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct crypto_shash *child_shash = ctx->child_shash; |
| struct crypto_ahash *fallback_tfm; |
| int err, bs, ds; |
| |
| fallback_tfm = ctx->base.fallback_tfm; |
| err = crypto_ahash_setkey(fallback_tfm, key, keylen); |
| if (err) |
| return err; |
| |
| bs = crypto_shash_blocksize(child_shash); |
| ds = crypto_shash_digestsize(child_shash); |
| BUG_ON(ds > N2_HASH_KEY_MAX); |
| if (keylen > bs) { |
| err = crypto_shash_tfm_digest(child_shash, key, keylen, |
| ctx->hash_key); |
| if (err) |
| return err; |
| keylen = ds; |
| } else if (keylen <= N2_HASH_KEY_MAX) |
| memcpy(ctx->hash_key, key, keylen); |
| |
| ctx->hash_key_len = keylen; |
| |
| return err; |
| } |
| |
| static unsigned long wait_for_tail(struct spu_queue *qp) |
| { |
| unsigned long head, hv_ret; |
| |
| do { |
| hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); |
| if (hv_ret != HV_EOK) { |
| pr_err("Hypervisor error on gethead\n"); |
| break; |
| } |
| if (head == qp->tail) { |
| qp->head = head; |
| break; |
| } |
| } while (1); |
| return hv_ret; |
| } |
| |
| static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, |
| struct cwq_initial_entry *ent) |
| { |
| unsigned long hv_ret = spu_queue_submit(qp, ent); |
| |
| if (hv_ret == HV_EOK) |
| hv_ret = wait_for_tail(qp); |
| |
| return hv_ret; |
| } |
| |
| static int n2_do_async_digest(struct ahash_request *req, |
| unsigned int auth_type, unsigned int digest_size, |
| unsigned int result_size, void *hash_loc, |
| unsigned long auth_key, unsigned int auth_key_len) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct cwq_initial_entry *ent; |
| struct crypto_hash_walk walk; |
| struct spu_queue *qp; |
| unsigned long flags; |
| int err = -ENODEV; |
| int nbytes, cpu; |
| |
| /* The total effective length of the operation may not |
| * exceed 2^16. |
| */ |
| if (unlikely(req->nbytes > (1 << 16))) { |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); |
| rctx->fallback_req.base.flags = |
| req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| rctx->fallback_req.nbytes = req->nbytes; |
| rctx->fallback_req.src = req->src; |
| rctx->fallback_req.result = req->result; |
| |
| return crypto_ahash_digest(&rctx->fallback_req); |
| } |
| |
| nbytes = crypto_hash_walk_first(req, &walk); |
| |
| cpu = get_cpu(); |
| qp = cpu_to_cwq[cpu]; |
| if (!qp) |
| goto out; |
| |
| spin_lock_irqsave(&qp->lock, flags); |
| |
| /* XXX can do better, improve this later by doing a by-hand scatterlist |
| * XXX walk, etc. |
| */ |
| ent = qp->q + qp->tail; |
| |
| ent->control = control_word_base(nbytes, auth_key_len, 0, |
| auth_type, digest_size, |
| false, true, false, false, |
| OPCODE_INPLACE_BIT | |
| OPCODE_AUTH_MAC); |
| ent->src_addr = __pa(walk.data); |
| ent->auth_key_addr = auth_key; |
| ent->auth_iv_addr = __pa(hash_loc); |
| ent->final_auth_state_addr = 0UL; |
| ent->enc_key_addr = 0UL; |
| ent->enc_iv_addr = 0UL; |
| ent->dest_addr = __pa(hash_loc); |
| |
| nbytes = crypto_hash_walk_done(&walk, 0); |
| while (nbytes > 0) { |
| ent = spu_queue_next(qp, ent); |
| |
| ent->control = (nbytes - 1); |
| ent->src_addr = __pa(walk.data); |
| ent->auth_key_addr = 0UL; |
| ent->auth_iv_addr = 0UL; |
| ent->final_auth_state_addr = 0UL; |
| ent->enc_key_addr = 0UL; |
| ent->enc_iv_addr = 0UL; |
| ent->dest_addr = 0UL; |
| |
| nbytes = crypto_hash_walk_done(&walk, 0); |
| } |
| ent->control |= CONTROL_END_OF_BLOCK; |
| |
| if (submit_and_wait_for_tail(qp, ent) != HV_EOK) |
| err = -EINVAL; |
| else |
| err = 0; |
| |
| spin_unlock_irqrestore(&qp->lock, flags); |
| |
| if (!err) |
| memcpy(req->result, hash_loc, result_size); |
| out: |
| put_cpu(); |
| |
| return err; |
| } |
| |
| static int n2_hash_async_digest(struct ahash_request *req) |
| { |
| struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| int ds; |
| |
| ds = n2alg->digest_size; |
| if (unlikely(req->nbytes == 0)) { |
| memcpy(req->result, n2alg->hash_zero, ds); |
| return 0; |
| } |
| memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); |
| |
| return n2_do_async_digest(req, n2alg->auth_type, |
| n2alg->hw_op_hashsz, ds, |
| &rctx->u, 0UL, 0); |
| } |
| |
| static int n2_hmac_async_digest(struct ahash_request *req) |
| { |
| struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); |
| int ds; |
| |
| ds = n2alg->derived.digest_size; |
| if (unlikely(req->nbytes == 0) || |
| unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { |
| struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); |
| struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); |
| rctx->fallback_req.base.flags = |
| req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| rctx->fallback_req.nbytes = req->nbytes; |
| rctx->fallback_req.src = req->src; |
| rctx->fallback_req.result = req->result; |
| |
| return crypto_ahash_digest(&rctx->fallback_req); |
| } |
| memcpy(&rctx->u, n2alg->derived.hash_init, |
| n2alg->derived.hw_op_hashsz); |
| |
| return n2_do_async_digest(req, n2alg->derived.hmac_type, |
| n2alg->derived.hw_op_hashsz, ds, |
| &rctx->u, |
| __pa(&ctx->hash_key), |
| ctx->hash_key_len); |
| } |
| |
| struct n2_skcipher_context { |
| int key_len; |
| int enc_type; |
| union { |
| u8 aes[AES_MAX_KEY_SIZE]; |
| u8 des[DES_KEY_SIZE]; |
| u8 des3[3 * DES_KEY_SIZE]; |
| } key; |
| }; |
| |
| #define N2_CHUNK_ARR_LEN 16 |
| |
| struct n2_crypto_chunk { |
| struct list_head entry; |
| unsigned long iv_paddr : 44; |
| unsigned long arr_len : 20; |
| unsigned long dest_paddr; |
| unsigned long dest_final; |
| struct { |
| unsigned long src_paddr : 44; |
| unsigned long src_len : 20; |
| } arr[N2_CHUNK_ARR_LEN]; |
| }; |
| |
| struct n2_request_context { |
| struct skcipher_walk walk; |
| struct list_head chunk_list; |
| struct n2_crypto_chunk chunk; |
| u8 temp_iv[16]; |
| }; |
| |
| /* The SPU allows some level of flexibility for partial cipher blocks |
| * being specified in a descriptor. |
| * |
| * It merely requires that every descriptor's length field is at least |
| * as large as the cipher block size. This means that a cipher block |
| * can span at most 2 descriptors. However, this does not allow a |
| * partial block to span into the final descriptor as that would |
| * violate the rule (since every descriptor's length must be at lest |
| * the block size). So, for example, assuming an 8 byte block size: |
| * |
| * 0xe --> 0xa --> 0x8 |
| * |
| * is a valid length sequence, whereas: |
| * |
| * 0xe --> 0xb --> 0x7 |
| * |
| * is not a valid sequence. |
| */ |
| |
| struct n2_skcipher_alg { |
| struct list_head entry; |
| u8 enc_type; |
| struct skcipher_alg skcipher; |
| }; |
| |
| static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) |
| { |
| struct skcipher_alg *alg = crypto_skcipher_alg(tfm); |
| |
| return container_of(alg, struct n2_skcipher_alg, skcipher); |
| } |
| |
| static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); |
| struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); |
| struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); |
| |
| ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); |
| |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| ctx->enc_type |= ENC_TYPE_ALG_AES128; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->enc_type |= ENC_TYPE_ALG_AES192; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->enc_type |= ENC_TYPE_ALG_AES256; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ctx->key_len = keylen; |
| memcpy(ctx->key.aes, key, keylen); |
| return 0; |
| } |
| |
| static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); |
| struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); |
| struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); |
| int err; |
| |
| err = verify_skcipher_des_key(skcipher, key); |
| if (err) |
| return err; |
| |
| ctx->enc_type = n2alg->enc_type; |
| |
| ctx->key_len = keylen; |
| memcpy(ctx->key.des, key, keylen); |
| return 0; |
| } |
| |
| static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); |
| struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); |
| struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); |
| int err; |
| |
| err = verify_skcipher_des3_key(skcipher, key); |
| if (err) |
| return err; |
| |
| ctx->enc_type = n2alg->enc_type; |
| |
| ctx->key_len = keylen; |
| memcpy(ctx->key.des3, key, keylen); |
| return 0; |
| } |
| |
| static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) |
| { |
| int this_len = nbytes; |
| |
| this_len -= (nbytes & (block_size - 1)); |
| return this_len > (1 << 16) ? (1 << 16) : this_len; |
| } |
| |
| static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, |
| struct n2_crypto_chunk *cp, |
| struct spu_queue *qp, bool encrypt) |
| { |
| struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); |
| struct cwq_initial_entry *ent; |
| bool in_place; |
| int i; |
| |
| ent = spu_queue_alloc(qp, cp->arr_len); |
| if (!ent) { |
| pr_info("queue_alloc() of %d fails\n", |
| cp->arr_len); |
| return -EBUSY; |
| } |
| |
| in_place = (cp->dest_paddr == cp->arr[0].src_paddr); |
| |
| ent->control = control_word_base(cp->arr[0].src_len, |
| 0, ctx->enc_type, 0, 0, |
| false, true, false, encrypt, |
| OPCODE_ENCRYPT | |
| (in_place ? OPCODE_INPLACE_BIT : 0)); |
| ent->src_addr = cp->arr[0].src_paddr; |
| ent->auth_key_addr = 0UL; |
| ent->auth_iv_addr = 0UL; |
| ent->final_auth_state_addr = 0UL; |
| ent->enc_key_addr = __pa(&ctx->key); |
| ent->enc_iv_addr = cp->iv_paddr; |
| ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); |
| |
| for (i = 1; i < cp->arr_len; i++) { |
| ent = spu_queue_next(qp, ent); |
| |
| ent->control = cp->arr[i].src_len - 1; |
| ent->src_addr = cp->arr[i].src_paddr; |
| ent->auth_key_addr = 0UL; |
| ent->auth_iv_addr = 0UL; |
| ent->final_auth_state_addr = 0UL; |
| ent->enc_key_addr = 0UL; |
| ent->enc_iv_addr = 0UL; |
| ent->dest_addr = 0UL; |
| } |
| ent->control |= CONTROL_END_OF_BLOCK; |
| |
| return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; |
| } |
| |
| static int n2_compute_chunks(struct skcipher_request *req) |
| { |
| struct n2_request_context *rctx = skcipher_request_ctx(req); |
| struct skcipher_walk *walk = &rctx->walk; |
| struct n2_crypto_chunk *chunk; |
| unsigned long dest_prev; |
| unsigned int tot_len; |
| bool prev_in_place; |
| int err, nbytes; |
| |
| err = skcipher_walk_async(walk, req); |
| if (err) |
| return err; |
| |
| INIT_LIST_HEAD(&rctx->chunk_list); |
| |
| chunk = &rctx->chunk; |
| INIT_LIST_HEAD(&chunk->entry); |
| |
| chunk->iv_paddr = 0UL; |
| chunk->arr_len = 0; |
| chunk->dest_paddr = 0UL; |
| |
| prev_in_place = false; |
| dest_prev = ~0UL; |
| tot_len = 0; |
| |
| while ((nbytes = walk->nbytes) != 0) { |
| unsigned long dest_paddr, src_paddr; |
| bool in_place; |
| int this_len; |
| |
| src_paddr = (page_to_phys(walk->src.phys.page) + |
| walk->src.phys.offset); |
| dest_paddr = (page_to_phys(walk->dst.phys.page) + |
| walk->dst.phys.offset); |
| in_place = (src_paddr == dest_paddr); |
| this_len = skcipher_descriptor_len(nbytes, walk->blocksize); |
| |
| if (chunk->arr_len != 0) { |
| if (in_place != prev_in_place || |
| (!prev_in_place && |
| dest_paddr != dest_prev) || |
| chunk->arr_len == N2_CHUNK_ARR_LEN || |
| tot_len + this_len > (1 << 16)) { |
| chunk->dest_final = dest_prev; |
| list_add_tail(&chunk->entry, |
| &rctx->chunk_list); |
| chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); |
| if (!chunk) { |
| err = -ENOMEM; |
| break; |
| } |
| INIT_LIST_HEAD(&chunk->entry); |
| } |
| } |
| if (chunk->arr_len == 0) { |
| chunk->dest_paddr = dest_paddr; |
| tot_len = 0; |
| } |
| chunk->arr[chunk->arr_len].src_paddr = src_paddr; |
| chunk->arr[chunk->arr_len].src_len = this_len; |
| chunk->arr_len++; |
| |
| dest_prev = dest_paddr + this_len; |
| prev_in_place = in_place; |
| tot_len += this_len; |
| |
| err = skcipher_walk_done(walk, nbytes - this_len); |
| if (err) |
| break; |
| } |
| if (!err && chunk->arr_len != 0) { |
| chunk->dest_final = dest_prev; |
| list_add_tail(&chunk->entry, &rctx->chunk_list); |
| } |
| |
| return err; |
| } |
| |
| static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) |
| { |
| struct n2_request_context *rctx = skcipher_request_ctx(req); |
| struct n2_crypto_chunk *c, *tmp; |
| |
| if (final_iv) |
| memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); |
| |
| list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { |
| list_del(&c->entry); |
| if (unlikely(c != &rctx->chunk)) |
| kfree(c); |
| } |
| |
| } |
| |
| static int n2_do_ecb(struct skcipher_request *req, bool encrypt) |
| { |
| struct n2_request_context *rctx = skcipher_request_ctx(req); |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| int err = n2_compute_chunks(req); |
| struct n2_crypto_chunk *c, *tmp; |
| unsigned long flags, hv_ret; |
| struct spu_queue *qp; |
| |
| if (err) |
| return err; |
| |
| qp = cpu_to_cwq[get_cpu()]; |
| err = -ENODEV; |
| if (!qp) |
| goto out; |
| |
| spin_lock_irqsave(&qp->lock, flags); |
| |
| list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { |
| err = __n2_crypt_chunk(tfm, c, qp, encrypt); |
| if (err) |
| break; |
| list_del(&c->entry); |
| if (unlikely(c != &rctx->chunk)) |
| kfree(c); |
| } |
| if (!err) { |
| hv_ret = wait_for_tail(qp); |
| if (hv_ret != HV_EOK) |
| err = -EINVAL; |
| } |
| |
| spin_unlock_irqrestore(&qp->lock, flags); |
| |
| out: |
| put_cpu(); |
| |
| n2_chunk_complete(req, NULL); |
| return err; |
| } |
| |
| static int n2_encrypt_ecb(struct skcipher_request *req) |
| { |
| return n2_do_ecb(req, true); |
| } |
| |
| static int n2_decrypt_ecb(struct skcipher_request *req) |
| { |
| return n2_do_ecb(req, false); |
| } |
| |
| static int n2_do_chaining(struct skcipher_request *req, bool encrypt) |
| { |
| struct n2_request_context *rctx = skcipher_request_ctx(req); |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| unsigned long flags, hv_ret, iv_paddr; |
| int err = n2_compute_chunks(req); |
| struct n2_crypto_chunk *c, *tmp; |
| struct spu_queue *qp; |
| void *final_iv_addr; |
| |
| final_iv_addr = NULL; |
| |
| if (err) |
| return err; |
| |
| qp = cpu_to_cwq[get_cpu()]; |
| err = -ENODEV; |
| if (!qp) |
| goto out; |
| |
| spin_lock_irqsave(&qp->lock, flags); |
| |
| if (encrypt) { |
| iv_paddr = __pa(rctx->walk.iv); |
| list_for_each_entry_safe(c, tmp, &rctx->chunk_list, |
| entry) { |
| c->iv_paddr = iv_paddr; |
| err = __n2_crypt_chunk(tfm, c, qp, true); |
| if (err) |
| break; |
| iv_paddr = c->dest_final - rctx->walk.blocksize; |
| list_del(&c->entry); |
| if (unlikely(c != &rctx->chunk)) |
| kfree(c); |
| } |
| final_iv_addr = __va(iv_paddr); |
| } else { |
| list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, |
| entry) { |
| if (c == &rctx->chunk) { |
| iv_paddr = __pa(rctx->walk.iv); |
| } else { |
| iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + |
| tmp->arr[tmp->arr_len-1].src_len - |
| rctx->walk.blocksize); |
| } |
| if (!final_iv_addr) { |
| unsigned long pa; |
| |
| pa = (c->arr[c->arr_len-1].src_paddr + |
| c->arr[c->arr_len-1].src_len - |
| rctx->walk.blocksize); |
| final_iv_addr = rctx->temp_iv; |
| memcpy(rctx->temp_iv, __va(pa), |
| rctx->walk.blocksize); |
| } |
| c->iv_paddr = iv_paddr; |
| err = __n2_crypt_chunk(tfm, c, qp, false); |
| if (err) |
| break; |
| list_del(&c->entry); |
| if (unlikely(c != &rctx->chunk)) |
| kfree(c); |
| } |
| } |
| if (!err) { |
| hv_ret = wait_for_tail(qp); |
| if (hv_ret != HV_EOK) |
| err = -EINVAL; |
| } |
| |
| spin_unlock_irqrestore(&qp->lock, flags); |
| |
| out: |
| put_cpu(); |
| |
| n2_chunk_complete(req, err ? NULL : final_iv_addr); |
| return err; |
| } |
| |
| static int n2_encrypt_chaining(struct skcipher_request *req) |
| { |
| return n2_do_chaining(req, true); |
| } |
| |
| static int n2_decrypt_chaining(struct skcipher_request *req) |
| { |
| return n2_do_chaining(req, false); |
| } |
| |
| struct n2_skcipher_tmpl { |
| const char *name; |
| const char *drv_name; |
| u8 block_size; |
| u8 enc_type; |
| struct skcipher_alg skcipher; |
| }; |
| |
| static const struct n2_skcipher_tmpl skcipher_tmpls[] = { |
| /* DES: ECB CBC and CFB are supported */ |
| { .name = "ecb(des)", |
| .drv_name = "ecb-des", |
| .block_size = DES_BLOCK_SIZE, |
| .enc_type = (ENC_TYPE_ALG_DES | |
| ENC_TYPE_CHAINING_ECB), |
| .skcipher = { |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| .setkey = n2_des_setkey, |
| .encrypt = n2_encrypt_ecb, |
| .decrypt = n2_decrypt_ecb, |
| }, |
| }, |
| { .name = "cbc(des)", |
| .drv_name = "cbc-des", |
| .block_size = DES_BLOCK_SIZE, |
| .enc_type = (ENC_TYPE_ALG_DES | |
| ENC_TYPE_CHAINING_CBC), |
| .skcipher = { |
| .ivsize = DES_BLOCK_SIZE, |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| .setkey = n2_des_setkey, |
| .encrypt = n2_encrypt_chaining, |
| .decrypt = n2_decrypt_chaining, |
| }, |
| }, |
| |
| /* 3DES: ECB CBC and CFB are supported */ |
| { .name = "ecb(des3_ede)", |
| .drv_name = "ecb-3des", |
| .block_size = DES_BLOCK_SIZE, |
| .enc_type = (ENC_TYPE_ALG_3DES | |
| ENC_TYPE_CHAINING_ECB), |
| .skcipher = { |
| .min_keysize = 3 * DES_KEY_SIZE, |
| .max_keysize = 3 * DES_KEY_SIZE, |
| .setkey = n2_3des_setkey, |
| .encrypt = n2_encrypt_ecb, |
| .decrypt = n2_decrypt_ecb, |
| }, |
| }, |
| { .name = "cbc(des3_ede)", |
| .drv_name = "cbc-3des", |
| .block_size = DES_BLOCK_SIZE, |
| .enc_type = (ENC_TYPE_ALG_3DES | |
| ENC_TYPE_CHAINING_CBC), |
| .skcipher = { |
| .ivsize = DES_BLOCK_SIZE, |
| .min_keysize = 3 * DES_KEY_SIZE, |
| .max_keysize = 3 * DES_KEY_SIZE, |
| .setkey = n2_3des_setkey, |
| .encrypt = n2_encrypt_chaining, |
| .decrypt = n2_decrypt_chaining, |
| }, |
| }, |
| |
| /* AES: ECB CBC and CTR are supported */ |
| { .name = "ecb(aes)", |
| .drv_name = "ecb-aes", |
| .block_size = AES_BLOCK_SIZE, |
| .enc_type = (ENC_TYPE_ALG_AES128 | |
| ENC_TYPE_CHAINING_ECB), |
| .skcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = n2_aes_setkey, |
| .encrypt = n2_encrypt_ecb, |
| .decrypt = n2_decrypt_ecb, |
| }, |
| }, |
| { .name = "cbc(aes)", |
| .drv_name = "cbc-aes", |
| .block_size = AES_BLOCK_SIZE, |
| .enc_type = (ENC_TYPE_ALG_AES128 | |
| ENC_TYPE_CHAINING_CBC), |
| .skcipher = { |
| .ivsize = AES_BLOCK_SIZE, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = n2_aes_setkey, |
| .encrypt = n2_encrypt_chaining, |
| .decrypt = n2_decrypt_chaining, |
| }, |
| }, |
| { .name = "ctr(aes)", |
| .drv_name = "ctr-aes", |
| .block_size = AES_BLOCK_SIZE, |
| .enc_type = (ENC_TYPE_ALG_AES128 | |
| ENC_TYPE_CHAINING_COUNTER), |
| .skcipher = { |
| .ivsize = AES_BLOCK_SIZE, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = n2_aes_setkey, |
| .encrypt = n2_encrypt_chaining, |
| .decrypt = n2_encrypt_chaining, |
| }, |
| }, |
| |
| }; |
| #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) |
| |
| static LIST_HEAD(skcipher_algs); |
| |
| struct n2_hash_tmpl { |
| const char *name; |
| const u8 *hash_zero; |
| const u8 *hash_init; |
| u8 hw_op_hashsz; |
| u8 digest_size; |
| u8 statesize; |
| u8 block_size; |
| u8 auth_type; |
| u8 hmac_type; |
| }; |
| |
| static const __le32 n2_md5_init[MD5_HASH_WORDS] = { |
| cpu_to_le32(MD5_H0), |
| cpu_to_le32(MD5_H1), |
| cpu_to_le32(MD5_H2), |
| cpu_to_le32(MD5_H3), |
| }; |
| static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { |
| SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, |
| }; |
| static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { |
| SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, |
| SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, |
| }; |
| static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { |
| SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, |
| SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, |
| }; |
| |
| static const struct n2_hash_tmpl hash_tmpls[] = { |
| { .name = "md5", |
| .hash_zero = md5_zero_message_hash, |
| .hash_init = (u8 *)n2_md5_init, |
| .auth_type = AUTH_TYPE_MD5, |
| .hmac_type = AUTH_TYPE_HMAC_MD5, |
| .hw_op_hashsz = MD5_DIGEST_SIZE, |
| .digest_size = MD5_DIGEST_SIZE, |
| .statesize = sizeof(struct md5_state), |
| .block_size = MD5_HMAC_BLOCK_SIZE }, |
| { .name = "sha1", |
| .hash_zero = sha1_zero_message_hash, |
| .hash_init = (u8 *)n2_sha1_init, |
| .auth_type = AUTH_TYPE_SHA1, |
| .hmac_type = AUTH_TYPE_HMAC_SHA1, |
| .hw_op_hashsz = SHA1_DIGEST_SIZE, |
| .digest_size = SHA1_DIGEST_SIZE, |
| .statesize = sizeof(struct sha1_state), |
| .block_size = SHA1_BLOCK_SIZE }, |
| { .name = "sha256", |
| .hash_zero = sha256_zero_message_hash, |
| .hash_init = (u8 *)n2_sha256_init, |
| .auth_type = AUTH_TYPE_SHA256, |
| .hmac_type = AUTH_TYPE_HMAC_SHA256, |
| .hw_op_hashsz = SHA256_DIGEST_SIZE, |
| .digest_size = SHA256_DIGEST_SIZE, |
| .statesize = sizeof(struct sha256_state), |
| .block_size = SHA256_BLOCK_SIZE }, |
| { .name = "sha224", |
| .hash_zero = sha224_zero_message_hash, |
| .hash_init = (u8 *)n2_sha224_init, |
| .auth_type = AUTH_TYPE_SHA256, |
| .hmac_type = AUTH_TYPE_RESERVED, |
| .hw_op_hashsz = SHA256_DIGEST_SIZE, |
| .digest_size = SHA224_DIGEST_SIZE, |
| .statesize = sizeof(struct sha256_state), |
| .block_size = SHA224_BLOCK_SIZE }, |
| }; |
| #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) |
| |
| static LIST_HEAD(ahash_algs); |
| static LIST_HEAD(hmac_algs); |
| |
| static int algs_registered; |
| |
| static void __n2_unregister_algs(void) |
| { |
| struct n2_skcipher_alg *skcipher, *skcipher_tmp; |
| struct n2_ahash_alg *alg, *alg_tmp; |
| struct n2_hmac_alg *hmac, *hmac_tmp; |
| |
| list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { |
| crypto_unregister_skcipher(&skcipher->skcipher); |
| list_del(&skcipher->entry); |
| kfree(skcipher); |
| } |
| list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { |
| crypto_unregister_ahash(&hmac->derived.alg); |
| list_del(&hmac->derived.entry); |
| kfree(hmac); |
| } |
| list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { |
| crypto_unregister_ahash(&alg->alg); |
| list_del(&alg->entry); |
| kfree(alg); |
| } |
| } |
| |
| static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) |
| { |
| crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); |
| return 0; |
| } |
| |
| static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) |
| { |
| struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); |
| struct skcipher_alg *alg; |
| int err; |
| |
| if (!p) |
| return -ENOMEM; |
| |
| alg = &p->skcipher; |
| *alg = tmpl->skcipher; |
| |
| snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); |
| snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); |
| alg->base.cra_priority = N2_CRA_PRIORITY; |
| alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_ALLOCATES_MEMORY; |
| alg->base.cra_blocksize = tmpl->block_size; |
| p->enc_type = tmpl->enc_type; |
| alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); |
| alg->base.cra_module = THIS_MODULE; |
| alg->init = n2_skcipher_init_tfm; |
| |
| list_add(&p->entry, &skcipher_algs); |
| err = crypto_register_skcipher(alg); |
| if (err) { |
| pr_err("%s alg registration failed\n", alg->base.cra_name); |
| list_del(&p->entry); |
| kfree(p); |
| } else { |
| pr_info("%s alg registered\n", alg->base.cra_name); |
| } |
| return err; |
| } |
| |
| static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) |
| { |
| struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); |
| struct ahash_alg *ahash; |
| struct crypto_alg *base; |
| int err; |
| |
| if (!p) |
| return -ENOMEM; |
| |
| p->child_alg = n2ahash->alg.halg.base.cra_name; |
| memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); |
| INIT_LIST_HEAD(&p->derived.entry); |
| |
| ahash = &p->derived.alg; |
| ahash->digest = n2_hmac_async_digest; |
| ahash->setkey = n2_hmac_async_setkey; |
| |
| base = &ahash->halg.base; |
| err = -EINVAL; |
| if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", |
| p->child_alg) >= CRYPTO_MAX_ALG_NAME) |
| goto out_free_p; |
| if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", |
| p->child_alg) >= CRYPTO_MAX_ALG_NAME) |
| goto out_free_p; |
| |
| base->cra_ctxsize = sizeof(struct n2_hmac_ctx); |
| base->cra_init = n2_hmac_cra_init; |
| base->cra_exit = n2_hmac_cra_exit; |
| |
| list_add(&p->derived.entry, &hmac_algs); |
| err = crypto_register_ahash(ahash); |
| if (err) { |
| pr_err("%s alg registration failed\n", base->cra_name); |
| list_del(&p->derived.entry); |
| out_free_p: |
| kfree(p); |
| } else { |
| pr_info("%s alg registered\n", base->cra_name); |
| } |
| return err; |
| } |
| |
| static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) |
| { |
| struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); |
| struct hash_alg_common *halg; |
| struct crypto_alg *base; |
| struct ahash_alg *ahash; |
| int err; |
| |
| if (!p) |
| return -ENOMEM; |
| |
| p->hash_zero = tmpl->hash_zero; |
| p->hash_init = tmpl->hash_init; |
| p->auth_type = tmpl->auth_type; |
| p->hmac_type = tmpl->hmac_type; |
| p->hw_op_hashsz = tmpl->hw_op_hashsz; |
| p->digest_size = tmpl->digest_size; |
| |
| ahash = &p->alg; |
| ahash->init = n2_hash_async_init; |
| ahash->update = n2_hash_async_update; |
| ahash->final = n2_hash_async_final; |
| ahash->finup = n2_hash_async_finup; |
| ahash->digest = n2_hash_async_digest; |
| ahash->export = n2_hash_async_noexport; |
| ahash->import = n2_hash_async_noimport; |
| |
| halg = &ahash->halg; |
| halg->digestsize = tmpl->digest_size; |
| halg->statesize = tmpl->statesize; |
| |
| base = &halg->base; |
| snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); |
| snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); |
| base->cra_priority = N2_CRA_PRIORITY; |
| base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_NEED_FALLBACK; |
| base->cra_blocksize = tmpl->block_size; |
| base->cra_ctxsize = sizeof(struct n2_hash_ctx); |
| base->cra_module = THIS_MODULE; |
| base->cra_init = n2_hash_cra_init; |
| base->cra_exit = n2_hash_cra_exit; |
| |
| list_add(&p->entry, &ahash_algs); |
| err = crypto_register_ahash(ahash); |
| if (err) { |
| pr_err("%s alg registration failed\n", base->cra_name); |
| list_del(&p->entry); |
| kfree(p); |
| } else { |
| pr_info("%s alg registered\n", base->cra_name); |
| } |
| if (!err && p->hmac_type != AUTH_TYPE_RESERVED) |
| err = __n2_register_one_hmac(p); |
| return err; |
| } |
| |
| static int n2_register_algs(void) |
| { |
| int i, err = 0; |
| |
| mutex_lock(&spu_lock); |
| if (algs_registered++) |
| goto out; |
| |
| for (i = 0; i < NUM_HASH_TMPLS; i++) { |
| err = __n2_register_one_ahash(&hash_tmpls[i]); |
| if (err) { |
| __n2_unregister_algs(); |
| goto out; |
| } |
| } |
| for (i = 0; i < NUM_CIPHER_TMPLS; i++) { |
| err = __n2_register_one_skcipher(&skcipher_tmpls[i]); |
| if (err) { |
| __n2_unregister_algs(); |
| goto out; |
| } |
| } |
| |
| out: |
| mutex_unlock(&spu_lock); |
| return err; |
| } |
| |
| static void n2_unregister_algs(void) |
| { |
| mutex_lock(&spu_lock); |
| if (!--algs_registered) |
| __n2_unregister_algs(); |
| mutex_unlock(&spu_lock); |
| } |
| |
| /* To map CWQ queues to interrupt sources, the hypervisor API provides |
| * a devino. This isn't very useful to us because all of the |
| * interrupts listed in the device_node have been translated to |
| * Linux virtual IRQ cookie numbers. |
| * |
| * So we have to back-translate, going through the 'intr' and 'ino' |
| * property tables of the n2cp MDESC node, matching it with the OF |
| * 'interrupts' property entries, in order to figure out which |
| * devino goes to which already-translated IRQ. |
| */ |
| static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, |
| unsigned long dev_ino) |
| { |
| const unsigned int *dev_intrs; |
| unsigned int intr; |
| int i; |
| |
| for (i = 0; i < ip->num_intrs; i++) { |
| if (ip->ino_table[i].ino == dev_ino) |
| break; |
| } |
| if (i == ip->num_intrs) |
| return -ENODEV; |
| |
| intr = ip->ino_table[i].intr; |
| |
| dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); |
| if (!dev_intrs) |
| return -ENODEV; |
| |
| for (i = 0; i < dev->archdata.num_irqs; i++) { |
| if (dev_intrs[i] == intr) |
| return i; |
| } |
| |
| return -ENODEV; |
| } |
| |
| static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, |
| const char *irq_name, struct spu_queue *p, |
| irq_handler_t handler) |
| { |
| unsigned long herr; |
| int index; |
| |
| herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); |
| if (herr) |
| return -EINVAL; |
| |
| index = find_devino_index(dev, ip, p->devino); |
| if (index < 0) |
| return index; |
| |
| p->irq = dev->archdata.irqs[index]; |
| |
| sprintf(p->irq_name, "%s-%d", irq_name, index); |
| |
| return request_irq(p->irq, handler, 0, p->irq_name, p); |
| } |
| |
| static struct kmem_cache *queue_cache[2]; |
| |
| static void *new_queue(unsigned long q_type) |
| { |
| return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); |
| } |
| |
| static void free_queue(void *p, unsigned long q_type) |
| { |
| kmem_cache_free(queue_cache[q_type - 1], p); |
| } |
| |
| static int queue_cache_init(void) |
| { |
| if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) |
| queue_cache[HV_NCS_QTYPE_MAU - 1] = |
| kmem_cache_create("mau_queue", |
| (MAU_NUM_ENTRIES * |
| MAU_ENTRY_SIZE), |
| MAU_ENTRY_SIZE, 0, NULL); |
| if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) |
| return -ENOMEM; |
| |
| if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) |
| queue_cache[HV_NCS_QTYPE_CWQ - 1] = |
| kmem_cache_create("cwq_queue", |
| (CWQ_NUM_ENTRIES * |
| CWQ_ENTRY_SIZE), |
| CWQ_ENTRY_SIZE, 0, NULL); |
| if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { |
| kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); |
| queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void queue_cache_destroy(void) |
| { |
| kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); |
| kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); |
| queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; |
| queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; |
| } |
| |
| static long spu_queue_register_workfn(void *arg) |
| { |
| struct spu_qreg *qr = arg; |
| struct spu_queue *p = qr->queue; |
| unsigned long q_type = qr->type; |
| unsigned long hv_ret; |
| |
| hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), |
| CWQ_NUM_ENTRIES, &p->qhandle); |
| if (!hv_ret) |
| sun4v_ncs_sethead_marker(p->qhandle, 0); |
| |
| return hv_ret ? -EINVAL : 0; |
| } |
| |
| static int spu_queue_register(struct spu_queue *p, unsigned long q_type) |
| { |
| int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); |
| struct spu_qreg qr = { .queue = p, .type = q_type }; |
| |
| return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); |
| } |
| |
| static int spu_queue_setup(struct spu_queue *p) |
| { |
| int err; |
| |
| p->q = new_queue(p->q_type); |
| if (!p->q) |
| return -ENOMEM; |
| |
| err = spu_queue_register(p, p->q_type); |
| if (err) { |
| free_queue(p->q, p->q_type); |
| p->q = NULL; |
| } |
| |
| return err; |
| } |
| |
| static void spu_queue_destroy(struct spu_queue *p) |
| { |
| unsigned long hv_ret; |
| |
| if (!p->q) |
| return; |
| |
| hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); |
| |
| if (!hv_ret) |
| free_queue(p->q, p->q_type); |
| } |
| |
| static void spu_list_destroy(struct list_head *list) |
| { |
| struct spu_queue *p, *n; |
| |
| list_for_each_entry_safe(p, n, list, list) { |
| int i; |
| |
| for (i = 0; i < NR_CPUS; i++) { |
| if (cpu_to_cwq[i] == p) |
| cpu_to_cwq[i] = NULL; |
| } |
| |
| if (p->irq) { |
| free_irq(p->irq, p); |
| p->irq = 0; |
| } |
| spu_queue_destroy(p); |
| list_del(&p->list); |
| kfree(p); |
| } |
| } |
| |
| /* Walk the backward arcs of a CWQ 'exec-unit' node, |
| * gathering cpu membership information. |
| */ |
| static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, |
| struct platform_device *dev, |
| u64 node, struct spu_queue *p, |
| struct spu_queue **table) |
| { |
| u64 arc; |
| |
| mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { |
| u64 tgt = mdesc_arc_target(mdesc, arc); |
| const char *name = mdesc_node_name(mdesc, tgt); |
| const u64 *id; |
| |
| if (strcmp(name, "cpu")) |
| continue; |
| id = mdesc_get_property(mdesc, tgt, "id", NULL); |
| if (table[*id] != NULL) { |
| dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", |
| dev->dev.of_node); |
| return -EINVAL; |
| } |
| cpumask_set_cpu(*id, &p->sharing); |
| table[*id] = p; |
| } |
| return 0; |
| } |
| |
| /* Process an 'exec-unit' MDESC node of type 'cwq'. */ |
| static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, |
| struct platform_device *dev, struct mdesc_handle *mdesc, |
| u64 node, const char *iname, unsigned long q_type, |
| irq_handler_t handler, struct spu_queue **table) |
| { |
| struct spu_queue *p; |
| int err; |
| |
| p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); |
| if (!p) { |
| dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", |
| dev->dev.of_node); |
| return -ENOMEM; |
| } |
| |
| cpumask_clear(&p->sharing); |
| spin_lock_init(&p->lock); |
| p->q_type = q_type; |
| INIT_LIST_HEAD(&p->jobs); |
| list_add(&p->list, list); |
| |
| err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); |
| if (err) |
| return err; |
| |
| err = spu_queue_setup(p); |
| if (err) |
| return err; |
| |
| return spu_map_ino(dev, ip, iname, p, handler); |
| } |
| |
| static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, |
| struct spu_mdesc_info *ip, struct list_head *list, |
| const char *exec_name, unsigned long q_type, |
| irq_handler_t handler, struct spu_queue **table) |
| { |
| int err = 0; |
| u64 node; |
| |
| mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { |
| const char *type; |
| |
| type = mdesc_get_property(mdesc, node, "type", NULL); |
| if (!type || strcmp(type, exec_name)) |
| continue; |
| |
| err = handle_exec_unit(ip, list, dev, mdesc, node, |
| exec_name, q_type, handler, table); |
| if (err) { |
| spu_list_destroy(list); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| static int get_irq_props(struct mdesc_handle *mdesc, u64 node, |
| struct spu_mdesc_info *ip) |
| { |
| const u64 *ino; |
| int ino_len; |
| int i; |
| |
| ino = mdesc_get_property(mdesc, node, "ino", &ino_len); |
| if (!ino) { |
| printk("NO 'ino'\n"); |
| return -ENODEV; |
| } |
| |
| ip->num_intrs = ino_len / sizeof(u64); |
| ip->ino_table = kzalloc((sizeof(struct ino_blob) * |
| ip->num_intrs), |
| GFP_KERNEL); |
| if (!ip->ino_table) |
| return -ENOMEM; |
| |
| for (i = 0; i < ip->num_intrs; i++) { |
| struct ino_blob *b = &ip->ino_table[i]; |
| b->intr = i + 1; |
| b->ino = ino[i]; |
| } |
| |
| return 0; |
| } |
| |
| static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, |
| struct platform_device *dev, |
| struct spu_mdesc_info *ip, |
| const char *node_name) |
| { |
| u64 node, reg; |
| |
| if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0) |
| return -ENODEV; |
| |
| mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { |
| const char *name; |
| const u64 *chdl; |
| |
| name = mdesc_get_property(mdesc, node, "name", NULL); |
| if (!name || strcmp(name, node_name)) |
| continue; |
| chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); |
| if (!chdl || (*chdl != reg)) |
| continue; |
| ip->cfg_handle = *chdl; |
| return get_irq_props(mdesc, node, ip); |
| } |
| |
| return -ENODEV; |
| } |
| |
| static unsigned long n2_spu_hvapi_major; |
| static unsigned long n2_spu_hvapi_minor; |
| |
| static int n2_spu_hvapi_register(void) |
| { |
| int err; |
| |
| n2_spu_hvapi_major = 2; |
| n2_spu_hvapi_minor = 0; |
| |
| err = sun4v_hvapi_register(HV_GRP_NCS, |
| n2_spu_hvapi_major, |
| &n2_spu_hvapi_minor); |
| |
| if (!err) |
| pr_info("Registered NCS HVAPI version %lu.%lu\n", |
| n2_spu_hvapi_major, |
| n2_spu_hvapi_minor); |
| |
| return err; |
| } |
| |
| static void n2_spu_hvapi_unregister(void) |
| { |
| sun4v_hvapi_unregister(HV_GRP_NCS); |
| } |
| |
| static int global_ref; |
| |
| static int grab_global_resources(void) |
| { |
| int err = 0; |
| |
| mutex_lock(&spu_lock); |
| |
| if (global_ref++) |
| goto out; |
| |
| err = n2_spu_hvapi_register(); |
| if (err) |
| goto out; |
| |
| err = queue_cache_init(); |
| if (err) |
| goto out_hvapi_release; |
| |
| err = -ENOMEM; |
| cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), |
| GFP_KERNEL); |
| if (!cpu_to_cwq) |
| goto out_queue_cache_destroy; |
| |
| cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), |
| GFP_KERNEL); |
| if (!cpu_to_mau) |
| goto out_free_cwq_table; |
| |
| err = 0; |
| |
| out: |
| if (err) |
| global_ref--; |
| mutex_unlock(&spu_lock); |
| return err; |
| |
| out_free_cwq_table: |
| kfree(cpu_to_cwq); |
| cpu_to_cwq = NULL; |
| |
| out_queue_cache_destroy: |
| queue_cache_destroy(); |
| |
| out_hvapi_release: |
| n2_spu_hvapi_unregister(); |
| goto out; |
| } |
| |
| static void release_global_resources(void) |
| { |
| mutex_lock(&spu_lock); |
| if (!--global_ref) { |
| kfree(cpu_to_cwq); |
| cpu_to_cwq = NULL; |
| |
| kfree(cpu_to_mau); |
| cpu_to_mau = NULL; |
| |
| queue_cache_destroy(); |
| n2_spu_hvapi_unregister(); |
| } |
| mutex_unlock(&spu_lock); |
| } |
| |
| static struct n2_crypto *alloc_n2cp(void) |
| { |
| struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); |
| |
| if (np) |
| INIT_LIST_HEAD(&np->cwq_list); |
| |
| return np; |
| } |
| |
| static void free_n2cp(struct n2_crypto *np) |
| { |
| kfree(np->cwq_info.ino_table); |
| np->cwq_info.ino_table = NULL; |
| |
| kfree(np); |
| } |
| |
| static void n2_spu_driver_version(void) |
| { |
| static int n2_spu_version_printed; |
| |
| if (n2_spu_version_printed++ == 0) |
| pr_info("%s", version); |
| } |
| |
| static int n2_crypto_probe(struct platform_device *dev) |
| { |
| struct mdesc_handle *mdesc; |
| struct n2_crypto *np; |
| int err; |
| |
| n2_spu_driver_version(); |
| |
| pr_info("Found N2CP at %pOF\n", dev->dev.of_node); |
| |
| np = alloc_n2cp(); |
| if (!np) { |
| dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", |
| dev->dev.of_node); |
| return -ENOMEM; |
| } |
| |
| err = grab_global_resources(); |
| if (err) { |
| dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", |
| dev->dev.of_node); |
| goto out_free_n2cp; |
| } |
| |
| mdesc = mdesc_grab(); |
| |
| if (!mdesc) { |
| dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", |
| dev->dev.of_node); |
| err = -ENODEV; |
| goto out_free_global; |
| } |
| err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); |
| if (err) { |
| dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", |
| dev->dev.of_node); |
| mdesc_release(mdesc); |
| goto out_free_global; |
| } |
| |
| err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, |
| "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, |
| cpu_to_cwq); |
| mdesc_release(mdesc); |
| |
| if (err) { |
| dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", |
| dev->dev.of_node); |
| goto out_free_global; |
| } |
| |
| err = n2_register_algs(); |
| if (err) { |
| dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", |
| dev->dev.of_node); |
| goto out_free_spu_list; |
| } |
| |
| dev_set_drvdata(&dev->dev, np); |
| |
| return 0; |
| |
| out_free_spu_list: |
| spu_list_destroy(&np->cwq_list); |
| |
| out_free_global: |
| release_global_resources(); |
| |
| out_free_n2cp: |
| free_n2cp(np); |
| |
| return err; |
| } |
| |
| static void n2_crypto_remove(struct platform_device *dev) |
| { |
| struct n2_crypto *np = dev_get_drvdata(&dev->dev); |
| |
| n2_unregister_algs(); |
| |
| spu_list_destroy(&np->cwq_list); |
| |
| release_global_resources(); |
| |
| free_n2cp(np); |
| } |
| |
| static struct n2_mau *alloc_ncp(void) |
| { |
| struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); |
| |
| if (mp) |
| INIT_LIST_HEAD(&mp->mau_list); |
| |
| return mp; |
| } |
| |
| static void free_ncp(struct n2_mau *mp) |
| { |
| kfree(mp->mau_info.ino_table); |
| mp->mau_info.ino_table = NULL; |
| |
| kfree(mp); |
| } |
| |
| static int n2_mau_probe(struct platform_device *dev) |
| { |
| struct mdesc_handle *mdesc; |
| struct n2_mau *mp; |
| int err; |
| |
| n2_spu_driver_version(); |
| |
| pr_info("Found NCP at %pOF\n", dev->dev.of_node); |
| |
| mp = alloc_ncp(); |
| if (!mp) { |
| dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", |
| dev->dev.of_node); |
| return -ENOMEM; |
| } |
| |
| err = grab_global_resources(); |
| if (err) { |
| dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", |
| dev->dev.of_node); |
| goto out_free_ncp; |
| } |
| |
| mdesc = mdesc_grab(); |
| |
| if (!mdesc) { |
| dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", |
| dev->dev.of_node); |
| err = -ENODEV; |
| goto out_free_global; |
| } |
| |
| err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); |
| if (err) { |
| dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", |
| dev->dev.of_node); |
| mdesc_release(mdesc); |
| goto out_free_global; |
| } |
| |
| err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, |
| "mau", HV_NCS_QTYPE_MAU, mau_intr, |
| cpu_to_mau); |
| mdesc_release(mdesc); |
| |
| if (err) { |
| dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", |
| dev->dev.of_node); |
| goto out_free_global; |
| } |
| |
| dev_set_drvdata(&dev->dev, mp); |
| |
| return 0; |
| |
| out_free_global: |
| release_global_resources(); |
| |
| out_free_ncp: |
| free_ncp(mp); |
| |
| return err; |
| } |
| |
| static void n2_mau_remove(struct platform_device *dev) |
| { |
| struct n2_mau *mp = dev_get_drvdata(&dev->dev); |
| |
| spu_list_destroy(&mp->mau_list); |
| |
| release_global_resources(); |
| |
| free_ncp(mp); |
| } |
| |
| static const struct of_device_id n2_crypto_match[] = { |
| { |
| .name = "n2cp", |
| .compatible = "SUNW,n2-cwq", |
| }, |
| { |
| .name = "n2cp", |
| .compatible = "SUNW,vf-cwq", |
| }, |
| { |
| .name = "n2cp", |
| .compatible = "SUNW,kt-cwq", |
| }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(of, n2_crypto_match); |
| |
| static struct platform_driver n2_crypto_driver = { |
| .driver = { |
| .name = "n2cp", |
| .of_match_table = n2_crypto_match, |
| }, |
| .probe = n2_crypto_probe, |
| .remove = n2_crypto_remove, |
| }; |
| |
| static const struct of_device_id n2_mau_match[] = { |
| { |
| .name = "ncp", |
| .compatible = "SUNW,n2-mau", |
| }, |
| { |
| .name = "ncp", |
| .compatible = "SUNW,vf-mau", |
| }, |
| { |
| .name = "ncp", |
| .compatible = "SUNW,kt-mau", |
| }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(of, n2_mau_match); |
| |
| static struct platform_driver n2_mau_driver = { |
| .driver = { |
| .name = "ncp", |
| .of_match_table = n2_mau_match, |
| }, |
| .probe = n2_mau_probe, |
| .remove = n2_mau_remove, |
| }; |
| |
| static struct platform_driver * const drivers[] = { |
| &n2_crypto_driver, |
| &n2_mau_driver, |
| }; |
| |
| static int __init n2_init(void) |
| { |
| return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); |
| } |
| |
| static void __exit n2_exit(void) |
| { |
| platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); |
| } |
| |
| module_init(n2_init); |
| module_exit(n2_exit); |