blob: fe2fd1bfc904db2db8ed2ead9ea284393ed85529 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Texas Instruments ICSSG Ethernet Driver
*
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
*
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dma/ti-cppi5.h>
#include <linux/etherdevice.h>
#include <linux/genalloc.h>
#include <linux/if_hsr.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/io-64-nonatomic-hi-lo.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/property.h>
#include <linux/remoteproc/pruss.h>
#include <linux/regmap.h>
#include <linux/remoteproc.h>
#include <net/switchdev.h>
#include "icssg_prueth.h"
#include "icssg_mii_rt.h"
#include "icssg_switchdev.h"
#include "../k3-cppi-desc-pool.h"
#define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver"
#define DEFAULT_VID 1
#define DEFAULT_PORT_MASK 1
#define DEFAULT_UNTAG_MASK 1
#define NETIF_PRUETH_HSR_OFFLOAD_FEATURES (NETIF_F_HW_HSR_FWD | \
NETIF_F_HW_HSR_DUP | \
NETIF_F_HW_HSR_TAG_INS | \
NETIF_F_HW_HSR_TAG_RM)
/* CTRLMMR_ICSSG_RGMII_CTRL register bits */
#define ICSSG_CTRL_RGMII_ID_MODE BIT(24)
static int emac_get_tx_ts(struct prueth_emac *emac,
struct emac_tx_ts_response *rsp)
{
struct prueth *prueth = emac->prueth;
int slice = prueth_emac_slice(emac);
int addr;
addr = icssg_queue_pop(prueth, slice == 0 ?
ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1);
if (addr < 0)
return addr;
memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp));
/* return buffer back for to pool */
icssg_queue_push(prueth, slice == 0 ?
ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr);
return 0;
}
static void tx_ts_work(struct prueth_emac *emac)
{
struct skb_shared_hwtstamps ssh;
struct emac_tx_ts_response tsr;
struct sk_buff *skb;
int ret = 0;
u32 hi_sw;
u64 ns;
/* There may be more than one pending requests */
while (1) {
ret = emac_get_tx_ts(emac, &tsr);
if (ret) /* nothing more */
break;
if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS ||
!emac->tx_ts_skb[tsr.cookie]) {
netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n",
tsr.cookie);
break;
}
skb = emac->tx_ts_skb[tsr.cookie];
emac->tx_ts_skb[tsr.cookie] = NULL; /* free slot */
if (!skb) {
netdev_err(emac->ndev, "Driver Bug! got NULL skb\n");
break;
}
hi_sw = readl(emac->prueth->shram.va +
TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts,
IEP_DEFAULT_CYCLE_TIME_NS);
memset(&ssh, 0, sizeof(ssh));
ssh.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &ssh);
dev_consume_skb_any(skb);
if (atomic_dec_and_test(&emac->tx_ts_pending)) /* no more? */
break;
}
}
static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id)
{
struct prueth_emac *emac = dev_id;
/* currently only TX timestamp is being returned */
tx_ts_work(emac);
return IRQ_HANDLED;
}
static struct icssg_firmwares icssg_hsr_firmwares[] = {
{
.pru = "ti-pruss/am65x-sr2-pru0-pruhsr-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu0-pruhsr-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru0-pruhsr-fw.elf",
},
{
.pru = "ti-pruss/am65x-sr2-pru1-pruhsr-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu1-pruhsr-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru1-pruhsr-fw.elf",
}
};
static struct icssg_firmwares icssg_switch_firmwares[] = {
{
.pru = "ti-pruss/am65x-sr2-pru0-prusw-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu0-prusw-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru0-prusw-fw.elf",
},
{
.pru = "ti-pruss/am65x-sr2-pru1-prusw-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu1-prusw-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru1-prusw-fw.elf",
}
};
static struct icssg_firmwares icssg_emac_firmwares[] = {
{
.pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf",
},
{
.pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf",
.rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf",
.txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf",
}
};
static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
{
struct icssg_firmwares *firmwares;
struct device *dev = prueth->dev;
int slice, ret;
if (prueth->is_switch_mode)
firmwares = icssg_switch_firmwares;
else if (prueth->is_hsr_offload_mode)
firmwares = icssg_hsr_firmwares;
else
firmwares = icssg_emac_firmwares;
slice = prueth_emac_slice(emac);
if (slice < 0) {
netdev_err(emac->ndev, "invalid port\n");
return -EINVAL;
}
ret = icssg_config(prueth, emac, slice);
if (ret)
return ret;
ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
ret = rproc_boot(prueth->pru[slice]);
if (ret) {
dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
return -EINVAL;
}
ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
ret = rproc_boot(prueth->rtu[slice]);
if (ret) {
dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
goto halt_pru;
}
ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru);
ret = rproc_boot(prueth->txpru[slice]);
if (ret) {
dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret);
goto halt_rtu;
}
emac->fw_running = 1;
return 0;
halt_rtu:
rproc_shutdown(prueth->rtu[slice]);
halt_pru:
rproc_shutdown(prueth->pru[slice]);
return ret;
}
/* called back by PHY layer if there is change in link state of hw port*/
static void emac_adjust_link(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
struct prueth *prueth = emac->prueth;
bool new_state = false;
unsigned long flags;
if (phydev->link) {
/* check the mode of operation - full/half duplex */
if (phydev->duplex != emac->duplex) {
new_state = true;
emac->duplex = phydev->duplex;
}
if (phydev->speed != emac->speed) {
new_state = true;
emac->speed = phydev->speed;
}
if (!emac->link) {
new_state = true;
emac->link = 1;
}
} else if (emac->link) {
new_state = true;
emac->link = 0;
/* f/w should support 100 & 1000 */
emac->speed = SPEED_1000;
/* half duplex may not be supported by f/w */
emac->duplex = DUPLEX_FULL;
}
if (new_state) {
phy_print_status(phydev);
/* update RGMII and MII configuration based on PHY negotiated
* values
*/
if (emac->link) {
if (emac->duplex == DUPLEX_HALF)
icssg_config_half_duplex(emac);
/* Set the RGMII cfg for gig en and full duplex */
icssg_update_rgmii_cfg(prueth->miig_rt, emac);
/* update the Tx IPG based on 100M/1G speed */
spin_lock_irqsave(&emac->lock, flags);
icssg_config_ipg(emac);
spin_unlock_irqrestore(&emac->lock, flags);
icssg_config_set_speed(emac);
icssg_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD);
} else {
icssg_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE);
}
}
if (emac->link) {
/* reactivate the transmit queue */
netif_tx_wake_all_queues(ndev);
} else {
netif_tx_stop_all_queues(ndev);
prueth_cleanup_tx_ts(emac);
}
}
static enum hrtimer_restart emac_rx_timer_callback(struct hrtimer *timer)
{
struct prueth_emac *emac =
container_of(timer, struct prueth_emac, rx_hrtimer);
int rx_flow = PRUETH_RX_FLOW_DATA;
enable_irq(emac->rx_chns.irq[rx_flow]);
return HRTIMER_NORESTART;
}
static int emac_phy_connect(struct prueth_emac *emac)
{
struct prueth *prueth = emac->prueth;
struct net_device *ndev = emac->ndev;
/* connect PHY */
ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
&emac_adjust_link, 0,
emac->phy_if);
if (!ndev->phydev) {
dev_err(prueth->dev, "couldn't connect to phy %s\n",
emac->phy_node->full_name);
return -ENODEV;
}
if (!emac->half_duplex) {
dev_dbg(prueth->dev, "half duplex mode is not supported\n");
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
}
/* remove unsupported modes */
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
if (emac->phy_if == PHY_INTERFACE_MODE_MII)
phy_set_max_speed(ndev->phydev, SPEED_100);
return 0;
}
static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts)
{
u32 hi_rollover_count, hi_rollover_count_r;
struct prueth_emac *emac = clockops_data;
struct prueth *prueth = emac->prueth;
void __iomem *fw_hi_r_count_addr;
void __iomem *fw_count_hi_addr;
u32 iepcount_hi, iepcount_hi_r;
unsigned long flags;
u32 iepcount_lo;
u64 ts = 0;
fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET;
fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET;
local_irq_save(flags);
do {
iepcount_hi = icss_iep_get_count_hi(emac->iep);
iepcount_hi += readl(fw_count_hi_addr);
hi_rollover_count = readl(fw_hi_r_count_addr);
ptp_read_system_prets(sts);
iepcount_lo = icss_iep_get_count_low(emac->iep);
ptp_read_system_postts(sts);
iepcount_hi_r = icss_iep_get_count_hi(emac->iep);
iepcount_hi_r += readl(fw_count_hi_addr);
hi_rollover_count_r = readl(fw_hi_r_count_addr);
} while ((iepcount_hi_r != iepcount_hi) ||
(hi_rollover_count != hi_rollover_count_r));
local_irq_restore(flags);
ts = ((u64)hi_rollover_count) << 23 | iepcount_hi;
ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo;
return ts;
}
static void prueth_iep_settime(void *clockops_data, u64 ns)
{
struct icssg_setclock_desc __iomem *sc_descp;
struct prueth_emac *emac = clockops_data;
struct icssg_setclock_desc sc_desc;
u64 cyclecount;
u32 cycletime;
int timeout;
if (!emac->fw_running)
return;
sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET;
cycletime = IEP_DEFAULT_CYCLE_TIME_NS;
cyclecount = ns / cycletime;
memset(&sc_desc, 0, sizeof(sc_desc));
sc_desc.margin = cycletime - 1000;
sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0);
sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32;
sc_desc.iepcount_set = ns % cycletime;
/* Count from 0 to (cycle time) - emac->iep->def_inc */
sc_desc.CMP0_current = cycletime - emac->iep->def_inc;
memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc));
writeb(1, &sc_descp->request);
timeout = 5; /* fw should take 2-3 ms */
while (timeout--) {
if (readb(&sc_descp->acknowledgment))
return;
usleep_range(500, 1000);
}
dev_err(emac->prueth->dev, "settime timeout\n");
}
static int prueth_perout_enable(void *clockops_data,
struct ptp_perout_request *req, int on,
u64 *cmp)
{
struct prueth_emac *emac = clockops_data;
u32 reduction_factor = 0, offset = 0;
struct timespec64 ts;
u64 current_cycle;
u64 start_offset;
u64 ns_period;
if (!on)
return 0;
/* Any firmware specific stuff for PPS/PEROUT handling */
ts.tv_sec = req->period.sec;
ts.tv_nsec = req->period.nsec;
ns_period = timespec64_to_ns(&ts);
/* f/w doesn't support period less than cycle time */
if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS)
return -ENXIO;
reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS;
offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS;
/* f/w requires at least 1uS within a cycle so CMP
* can trigger after SYNC is enabled
*/
if (offset < 5 * NSEC_PER_USEC)
offset = 5 * NSEC_PER_USEC;
/* if offset is close to cycle time then we will miss
* the CMP event for last tick when IEP rolls over.
* In normal mode, IEP tick is 4ns.
* In slow compensation it could be 0ns or 8ns at
* every slow compensation cycle.
*/
if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8)
offset = IEP_DEFAULT_CYCLE_TIME_NS - 8;
/* we're in shadow mode so need to set upper 32-bits */
*cmp = (u64)offset << 32;
writel(reduction_factor, emac->prueth->shram.va +
TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET);
current_cycle = icssg_read_time(emac->prueth->shram.va +
TIMESYNC_FW_WC_CYCLECOUNT_OFFSET);
/* Rounding of current_cycle count to next second */
start_offset = roundup(current_cycle, MSEC_PER_SEC);
hi_lo_writeq(start_offset, emac->prueth->shram.va +
TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET);
return 0;
}
const struct icss_iep_clockops prueth_iep_clockops = {
.settime = prueth_iep_settime,
.gettime = prueth_iep_gettime,
.perout_enable = prueth_perout_enable,
};
static int icssg_prueth_add_mcast(struct net_device *ndev, const u8 *addr)
{
struct prueth_emac *emac = netdev_priv(ndev);
int port_mask = BIT(emac->port_id);
port_mask |= icssg_fdb_lookup(emac, addr, 0);
icssg_fdb_add_del(emac, addr, 0, port_mask, true);
icssg_vtbl_modify(emac, 0, port_mask, port_mask, true);
return 0;
}
static int icssg_prueth_del_mcast(struct net_device *ndev, const u8 *addr)
{
struct prueth_emac *emac = netdev_priv(ndev);
int port_mask = BIT(emac->port_id);
int other_port_mask;
other_port_mask = port_mask ^ icssg_fdb_lookup(emac, addr, 0);
icssg_fdb_add_del(emac, addr, 0, port_mask, false);
icssg_vtbl_modify(emac, 0, port_mask, port_mask, false);
if (other_port_mask) {
icssg_fdb_add_del(emac, addr, 0, other_port_mask, true);
icssg_vtbl_modify(emac, 0, other_port_mask, other_port_mask, true);
}
return 0;
}
static int icssg_prueth_hsr_add_mcast(struct net_device *ndev, const u8 *addr)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
icssg_fdb_add_del(emac, addr, prueth->default_vlan,
ICSSG_FDB_ENTRY_P0_MEMBERSHIP |
ICSSG_FDB_ENTRY_P1_MEMBERSHIP |
ICSSG_FDB_ENTRY_P2_MEMBERSHIP |
ICSSG_FDB_ENTRY_BLOCK, true);
icssg_vtbl_modify(emac, emac->port_vlan, BIT(emac->port_id),
BIT(emac->port_id), true);
return 0;
}
static int icssg_prueth_hsr_del_mcast(struct net_device *ndev, const u8 *addr)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
icssg_fdb_add_del(emac, addr, prueth->default_vlan,
ICSSG_FDB_ENTRY_P0_MEMBERSHIP |
ICSSG_FDB_ENTRY_P1_MEMBERSHIP |
ICSSG_FDB_ENTRY_P2_MEMBERSHIP |
ICSSG_FDB_ENTRY_BLOCK, false);
return 0;
}
/**
* emac_ndo_open - EMAC device open
* @ndev: network adapter device
*
* Called when system wants to start the interface.
*
* Return: 0 for a successful open, or appropriate error code
*/
static int emac_ndo_open(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
int ret, i, num_data_chn = emac->tx_ch_num;
struct prueth *prueth = emac->prueth;
int slice = prueth_emac_slice(emac);
struct device *dev = prueth->dev;
int max_rx_flows;
int rx_flow;
/* clear SMEM and MSMC settings for all slices */
if (!prueth->emacs_initialized) {
memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
}
/* set h/w MAC as user might have re-configured */
ether_addr_copy(emac->mac_addr, ndev->dev_addr);
icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
icssg_class_default(prueth->miig_rt, slice, 0, false);
icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
/* Notify the stack of the actual queue counts. */
ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
if (ret) {
dev_err(dev, "cannot set real number of tx queues\n");
return ret;
}
init_completion(&emac->cmd_complete);
ret = prueth_init_tx_chns(emac);
if (ret) {
dev_err(dev, "failed to init tx channel: %d\n", ret);
return ret;
}
max_rx_flows = PRUETH_MAX_RX_FLOWS;
ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
max_rx_flows, PRUETH_MAX_RX_DESC);
if (ret) {
dev_err(dev, "failed to init rx channel: %d\n", ret);
goto cleanup_tx;
}
ret = prueth_ndev_add_tx_napi(emac);
if (ret)
goto cleanup_rx;
/* we use only the highest priority flow for now i.e. @irq[3] */
rx_flow = PRUETH_RX_FLOW_DATA;
ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
IRQF_TRIGGER_HIGH, dev_name(dev), emac);
if (ret) {
dev_err(dev, "unable to request RX IRQ\n");
goto cleanup_napi;
}
/* reset and start PRU firmware */
ret = prueth_emac_start(prueth, emac);
if (ret)
goto free_rx_irq;
icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);
if (!prueth->emacs_initialized) {
ret = icss_iep_init(emac->iep, &prueth_iep_clockops,
emac, IEP_DEFAULT_CYCLE_TIME_NS);
}
ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq,
IRQF_ONESHOT, dev_name(dev), emac);
if (ret)
goto stop;
/* Prepare RX */
ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
if (ret)
goto free_tx_ts_irq;
ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
if (ret)
goto reset_rx_chn;
for (i = 0; i < emac->tx_ch_num; i++) {
ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
if (ret)
goto reset_tx_chan;
}
/* Enable NAPI in Tx and Rx direction */
for (i = 0; i < emac->tx_ch_num; i++)
napi_enable(&emac->tx_chns[i].napi_tx);
napi_enable(&emac->napi_rx);
/* start PHY */
phy_start(ndev->phydev);
prueth->emacs_initialized++;
queue_work(system_long_wq, &emac->stats_work.work);
return 0;
reset_tx_chan:
/* Since interface is not yet up, there is wouldn't be
* any SKB for completion. So set false to free_skb
*/
prueth_reset_tx_chan(emac, i, false);
reset_rx_chn:
prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
free_tx_ts_irq:
free_irq(emac->tx_ts_irq, emac);
stop:
prueth_emac_stop(emac);
free_rx_irq:
free_irq(emac->rx_chns.irq[rx_flow], emac);
cleanup_napi:
prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
cleanup_rx:
prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
cleanup_tx:
prueth_cleanup_tx_chns(emac);
return ret;
}
/**
* emac_ndo_stop - EMAC device stop
* @ndev: network adapter device
*
* Called when system wants to stop or down the interface.
*
* Return: Always 0 (Success)
*/
static int emac_ndo_stop(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
int rx_flow = PRUETH_RX_FLOW_DATA;
int max_rx_flows;
int ret, i;
/* inform the upper layers. */
netif_tx_stop_all_queues(ndev);
/* block packets from wire */
if (ndev->phydev)
phy_stop(ndev->phydev);
icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));
if (emac->prueth->is_hsr_offload_mode)
__dev_mc_unsync(ndev, icssg_prueth_hsr_del_mcast);
else
__dev_mc_unsync(ndev, icssg_prueth_del_mcast);
atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
/* ensure new tdown_cnt value is visible */
smp_mb__after_atomic();
/* tear down and disable UDMA channels */
reinit_completion(&emac->tdown_complete);
for (i = 0; i < emac->tx_ch_num; i++)
k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);
ret = wait_for_completion_timeout(&emac->tdown_complete,
msecs_to_jiffies(1000));
if (!ret)
netdev_err(ndev, "tx teardown timeout\n");
prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
for (i = 0; i < emac->tx_ch_num; i++) {
napi_disable(&emac->tx_chns[i].napi_tx);
hrtimer_cancel(&emac->tx_chns[i].tx_hrtimer);
}
max_rx_flows = PRUETH_MAX_RX_FLOWS;
k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);
prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);
napi_disable(&emac->napi_rx);
hrtimer_cancel(&emac->rx_hrtimer);
cancel_work_sync(&emac->rx_mode_work);
/* Destroying the queued work in ndo_stop() */
cancel_delayed_work_sync(&emac->stats_work);
if (prueth->emacs_initialized == 1)
icss_iep_exit(emac->iep);
/* stop PRUs */
prueth_emac_stop(emac);
free_irq(emac->tx_ts_irq, emac);
free_irq(emac->rx_chns.irq[rx_flow], emac);
prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
prueth_cleanup_tx_chns(emac);
prueth->emacs_initialized--;
return 0;
}
static void emac_ndo_set_rx_mode_work(struct work_struct *work)
{
struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work);
struct net_device *ndev = emac->ndev;
bool promisc, allmulti;
if (!netif_running(ndev))
return;
promisc = ndev->flags & IFF_PROMISC;
allmulti = ndev->flags & IFF_ALLMULTI;
icssg_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE);
icssg_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE);
if (promisc) {
icssg_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE);
icssg_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
return;
}
if (allmulti) {
icssg_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
return;
}
if (emac->prueth->is_hsr_offload_mode)
__dev_mc_sync(ndev, icssg_prueth_hsr_add_mcast,
icssg_prueth_hsr_del_mcast);
else
__dev_mc_sync(ndev, icssg_prueth_add_mcast,
icssg_prueth_del_mcast);
}
/**
* emac_ndo_set_rx_mode - EMAC set receive mode function
* @ndev: The EMAC network adapter
*
* Called when system wants to set the receive mode of the device.
*
*/
static void emac_ndo_set_rx_mode(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
queue_work(emac->cmd_wq, &emac->rx_mode_work);
}
static netdev_features_t emac_ndo_fix_features(struct net_device *ndev,
netdev_features_t features)
{
/* hsr tag insertion offload and hsr dup offload are tightly coupled in
* firmware implementation. Both these features need to be enabled /
* disabled together.
*/
if (!(ndev->features & (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_TAG_INS)))
if ((features & NETIF_F_HW_HSR_DUP) ||
(features & NETIF_F_HW_HSR_TAG_INS))
features |= NETIF_F_HW_HSR_DUP |
NETIF_F_HW_HSR_TAG_INS;
if ((ndev->features & NETIF_F_HW_HSR_DUP) ||
(ndev->features & NETIF_F_HW_HSR_TAG_INS))
if (!(features & NETIF_F_HW_HSR_DUP) ||
!(features & NETIF_F_HW_HSR_TAG_INS))
features &= ~(NETIF_F_HW_HSR_DUP |
NETIF_F_HW_HSR_TAG_INS);
return features;
}
static const struct net_device_ops emac_netdev_ops = {
.ndo_open = emac_ndo_open,
.ndo_stop = emac_ndo_stop,
.ndo_start_xmit = icssg_ndo_start_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = icssg_ndo_tx_timeout,
.ndo_set_rx_mode = emac_ndo_set_rx_mode,
.ndo_eth_ioctl = icssg_ndo_ioctl,
.ndo_get_stats64 = icssg_ndo_get_stats64,
.ndo_get_phys_port_name = icssg_ndo_get_phys_port_name,
.ndo_fix_features = emac_ndo_fix_features,
};
static int prueth_netdev_init(struct prueth *prueth,
struct device_node *eth_node)
{
int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES;
struct prueth_emac *emac;
struct net_device *ndev;
enum prueth_port port;
const char *irq_name;
enum prueth_mac mac;
port = prueth_node_port(eth_node);
if (port == PRUETH_PORT_INVALID)
return -EINVAL;
mac = prueth_node_mac(eth_node);
if (mac == PRUETH_MAC_INVALID)
return -EINVAL;
ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
if (!ndev)
return -ENOMEM;
emac = netdev_priv(ndev);
emac->prueth = prueth;
emac->ndev = ndev;
emac->port_id = port;
emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
if (!emac->cmd_wq) {
ret = -ENOMEM;
goto free_ndev;
}
INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work);
INIT_DELAYED_WORK(&emac->stats_work, icssg_stats_work_handler);
ret = pruss_request_mem_region(prueth->pruss,
port == PRUETH_PORT_MII0 ?
PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
&emac->dram);
if (ret) {
dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
ret = -ENOMEM;
goto free_wq;
}
emac->tx_ch_num = 1;
irq_name = "tx_ts0";
if (emac->port_id == PRUETH_PORT_MII1)
irq_name = "tx_ts1";
emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name);
if (emac->tx_ts_irq < 0) {
ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n");
goto free;
}
SET_NETDEV_DEV(ndev, prueth->dev);
spin_lock_init(&emac->lock);
mutex_init(&emac->cmd_lock);
emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
dev_err(prueth->dev, "couldn't find phy-handle\n");
ret = -ENODEV;
goto free;
} else if (of_phy_is_fixed_link(eth_node)) {
ret = of_phy_register_fixed_link(eth_node);
if (ret) {
ret = dev_err_probe(prueth->dev, ret,
"failed to register fixed-link phy\n");
goto free;
}
emac->phy_node = eth_node;
}
ret = of_get_phy_mode(eth_node, &emac->phy_if);
if (ret) {
dev_err(prueth->dev, "could not get phy-mode property\n");
goto free;
}
if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
!phy_interface_mode_is_rgmii(emac->phy_if)) {
dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
ret = -EINVAL;
goto free;
}
/* AM65 SR2.0 has TX Internal delay always enabled by hardware
* and it is not possible to disable TX Internal delay. The below
* switch case block describes how we handle different phy modes
* based on hardware restriction.
*/
switch (emac->phy_if) {
case PHY_INTERFACE_MODE_RGMII_ID:
emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
emac->phy_if = PHY_INTERFACE_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_RXID:
dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
ret = -EINVAL;
goto free;
default:
break;
}
/* get mac address from DT and set private and netdev addr */
ret = of_get_ethdev_address(eth_node, ndev);
if (!is_valid_ether_addr(ndev->dev_addr)) {
eth_hw_addr_random(ndev);
dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
port, ndev->dev_addr);
}
ether_addr_copy(emac->mac_addr, ndev->dev_addr);
ndev->dev.of_node = eth_node;
ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
ndev->max_mtu = PRUETH_MAX_MTU;
ndev->netdev_ops = &emac_netdev_ops;
ndev->ethtool_ops = &icssg_ethtool_ops;
ndev->hw_features = NETIF_F_SG;
ndev->features = ndev->hw_features;
ndev->hw_features |= NETIF_PRUETH_HSR_OFFLOAD_FEATURES;
netif_napi_add(ndev, &emac->napi_rx, icssg_napi_rx_poll);
hrtimer_init(&emac->rx_hrtimer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
emac->rx_hrtimer.function = &emac_rx_timer_callback;
prueth->emac[mac] = emac;
return 0;
free:
pruss_release_mem_region(prueth->pruss, &emac->dram);
free_wq:
destroy_workqueue(emac->cmd_wq);
free_ndev:
emac->ndev = NULL;
prueth->emac[mac] = NULL;
free_netdev(ndev);
return ret;
}
bool prueth_dev_check(const struct net_device *ndev)
{
if (ndev->netdev_ops == &emac_netdev_ops && netif_running(ndev)) {
struct prueth_emac *emac = netdev_priv(ndev);
return emac->prueth->is_switch_mode;
}
return false;
}
static void prueth_offload_fwd_mark_update(struct prueth *prueth)
{
int set_val = 0;
int i;
if (prueth->br_members == (BIT(PRUETH_PORT_MII0) | BIT(PRUETH_PORT_MII1)))
set_val = 1;
dev_dbg(prueth->dev, "set offload_fwd_mark %d\n", set_val);
for (i = PRUETH_MAC0; i < PRUETH_NUM_MACS; i++) {
struct prueth_emac *emac = prueth->emac[i];
if (!emac || !emac->ndev)
continue;
emac->offload_fwd_mark = set_val;
}
}
static void prueth_emac_restart(struct prueth *prueth)
{
struct prueth_emac *emac0 = prueth->emac[PRUETH_MAC0];
struct prueth_emac *emac1 = prueth->emac[PRUETH_MAC1];
/* Detach the net_device for both PRUeth ports*/
if (netif_running(emac0->ndev))
netif_device_detach(emac0->ndev);
if (netif_running(emac1->ndev))
netif_device_detach(emac1->ndev);
/* Disable both PRUeth ports */
icssg_set_port_state(emac0, ICSSG_EMAC_PORT_DISABLE);
icssg_set_port_state(emac1, ICSSG_EMAC_PORT_DISABLE);
/* Stop both pru cores for both PRUeth ports*/
prueth_emac_stop(emac0);
prueth->emacs_initialized--;
prueth_emac_stop(emac1);
prueth->emacs_initialized--;
/* Start both pru cores for both PRUeth ports */
prueth_emac_start(prueth, emac0);
prueth->emacs_initialized++;
prueth_emac_start(prueth, emac1);
prueth->emacs_initialized++;
/* Enable forwarding for both PRUeth ports */
icssg_set_port_state(emac0, ICSSG_EMAC_PORT_FORWARD);
icssg_set_port_state(emac1, ICSSG_EMAC_PORT_FORWARD);
/* Attache net_device for both PRUeth ports */
netif_device_attach(emac0->ndev);
netif_device_attach(emac1->ndev);
}
static void icssg_change_mode(struct prueth *prueth)
{
struct prueth_emac *emac;
int mac;
prueth_emac_restart(prueth);
for (mac = PRUETH_MAC0; mac < PRUETH_NUM_MACS; mac++) {
emac = prueth->emac[mac];
if (prueth->is_hsr_offload_mode) {
if (emac->ndev->features & NETIF_F_HW_HSR_TAG_RM)
icssg_set_port_state(emac, ICSSG_EMAC_HSR_RX_OFFLOAD_ENABLE);
else
icssg_set_port_state(emac, ICSSG_EMAC_HSR_RX_OFFLOAD_DISABLE);
}
if (netif_running(emac->ndev)) {
icssg_fdb_add_del(emac, eth_stp_addr, prueth->default_vlan,
ICSSG_FDB_ENTRY_P0_MEMBERSHIP |
ICSSG_FDB_ENTRY_P1_MEMBERSHIP |
ICSSG_FDB_ENTRY_P2_MEMBERSHIP |
ICSSG_FDB_ENTRY_BLOCK,
true);
icssg_vtbl_modify(emac, emac->port_vlan | DEFAULT_VID,
BIT(emac->port_id) | DEFAULT_PORT_MASK,
BIT(emac->port_id) | DEFAULT_UNTAG_MASK,
true);
if (prueth->is_hsr_offload_mode)
icssg_vtbl_modify(emac, DEFAULT_VID,
DEFAULT_PORT_MASK,
DEFAULT_UNTAG_MASK, true);
icssg_set_pvid(prueth, emac->port_vlan, emac->port_id);
if (prueth->is_switch_mode)
icssg_set_port_state(emac, ICSSG_EMAC_PORT_VLAN_AWARE_ENABLE);
}
}
}
static int prueth_netdevice_port_link(struct net_device *ndev,
struct net_device *br_ndev,
struct netlink_ext_ack *extack)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
int err;
if (!prueth->br_members) {
prueth->hw_bridge_dev = br_ndev;
} else {
/* This is adding the port to a second bridge, this is
* unsupported
*/
if (prueth->hw_bridge_dev != br_ndev)
return -EOPNOTSUPP;
}
err = switchdev_bridge_port_offload(br_ndev, ndev, emac,
&prueth->prueth_switchdev_nb,
&prueth->prueth_switchdev_bl_nb,
false, extack);
if (err)
return err;
prueth->br_members |= BIT(emac->port_id);
if (!prueth->is_switch_mode) {
if (prueth->br_members & BIT(PRUETH_PORT_MII0) &&
prueth->br_members & BIT(PRUETH_PORT_MII1)) {
prueth->is_switch_mode = true;
prueth->default_vlan = 1;
emac->port_vlan = prueth->default_vlan;
icssg_change_mode(prueth);
}
}
prueth_offload_fwd_mark_update(prueth);
return NOTIFY_DONE;
}
static void prueth_netdevice_port_unlink(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
prueth->br_members &= ~BIT(emac->port_id);
if (prueth->is_switch_mode) {
prueth->is_switch_mode = false;
emac->port_vlan = 0;
prueth_emac_restart(prueth);
}
prueth_offload_fwd_mark_update(prueth);
if (!prueth->br_members)
prueth->hw_bridge_dev = NULL;
}
static int prueth_hsr_port_link(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
struct prueth_emac *emac0;
struct prueth_emac *emac1;
emac0 = prueth->emac[PRUETH_MAC0];
emac1 = prueth->emac[PRUETH_MAC1];
if (prueth->is_switch_mode)
return -EOPNOTSUPP;
prueth->hsr_members |= BIT(emac->port_id);
if (!prueth->is_hsr_offload_mode) {
if (prueth->hsr_members & BIT(PRUETH_PORT_MII0) &&
prueth->hsr_members & BIT(PRUETH_PORT_MII1)) {
if (!(emac0->ndev->features &
NETIF_PRUETH_HSR_OFFLOAD_FEATURES) &&
!(emac1->ndev->features &
NETIF_PRUETH_HSR_OFFLOAD_FEATURES))
return -EOPNOTSUPP;
prueth->is_hsr_offload_mode = true;
prueth->default_vlan = 1;
emac0->port_vlan = prueth->default_vlan;
emac1->port_vlan = prueth->default_vlan;
icssg_change_mode(prueth);
netdev_dbg(ndev, "Enabling HSR offload mode\n");
}
}
return 0;
}
static void prueth_hsr_port_unlink(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
struct prueth_emac *emac0;
struct prueth_emac *emac1;
emac0 = prueth->emac[PRUETH_MAC0];
emac1 = prueth->emac[PRUETH_MAC1];
prueth->hsr_members &= ~BIT(emac->port_id);
if (prueth->is_hsr_offload_mode) {
prueth->is_hsr_offload_mode = false;
emac0->port_vlan = 0;
emac1->port_vlan = 0;
prueth->hsr_dev = NULL;
prueth_emac_restart(prueth);
netdev_dbg(ndev, "Disabling HSR Offload mode\n");
}
}
/* netdev notifier */
static int prueth_netdevice_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr);
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct netdev_notifier_changeupper_info *info;
struct prueth_emac *emac = netdev_priv(ndev);
struct prueth *prueth = emac->prueth;
int ret = NOTIFY_DONE;
if (ndev->netdev_ops != &emac_netdev_ops)
return NOTIFY_DONE;
switch (event) {
case NETDEV_CHANGEUPPER:
info = ptr;
if ((ndev->features & NETIF_PRUETH_HSR_OFFLOAD_FEATURES) &&
is_hsr_master(info->upper_dev)) {
if (info->linking) {
if (!prueth->hsr_dev) {
prueth->hsr_dev = info->upper_dev;
icssg_class_set_host_mac_addr(prueth->miig_rt,
prueth->hsr_dev->dev_addr);
} else {
if (prueth->hsr_dev != info->upper_dev) {
netdev_dbg(ndev, "Both interfaces must be linked to same upper device\n");
return -EOPNOTSUPP;
}
}
prueth_hsr_port_link(ndev);
} else {
prueth_hsr_port_unlink(ndev);
}
}
if (netif_is_bridge_master(info->upper_dev)) {
if (info->linking)
ret = prueth_netdevice_port_link(ndev, info->upper_dev, extack);
else
prueth_netdevice_port_unlink(ndev);
}
break;
default:
return NOTIFY_DONE;
}
return notifier_from_errno(ret);
}
static int prueth_register_notifiers(struct prueth *prueth)
{
int ret = 0;
prueth->prueth_netdevice_nb.notifier_call = &prueth_netdevice_event;
ret = register_netdevice_notifier(&prueth->prueth_netdevice_nb);
if (ret) {
dev_err(prueth->dev, "can't register netdevice notifier\n");
return ret;
}
ret = prueth_switchdev_register_notifiers(prueth);
if (ret)
unregister_netdevice_notifier(&prueth->prueth_netdevice_nb);
return ret;
}
static void prueth_unregister_notifiers(struct prueth *prueth)
{
prueth_switchdev_unregister_notifiers(prueth);
unregister_netdevice_notifier(&prueth->prueth_netdevice_nb);
}
static int prueth_probe(struct platform_device *pdev)
{
struct device_node *eth_node, *eth_ports_node;
struct device_node *eth0_node = NULL;
struct device_node *eth1_node = NULL;
struct genpool_data_align gp_data = {
.align = SZ_64K,
};
struct device *dev = &pdev->dev;
struct device_node *np;
struct prueth *prueth;
struct pruss *pruss;
u32 msmc_ram_size;
int i, ret;
np = dev->of_node;
prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
if (!prueth)
return -ENOMEM;
dev_set_drvdata(dev, prueth);
prueth->pdev = pdev;
prueth->pdata = *(const struct prueth_pdata *)device_get_match_data(dev);
prueth->dev = dev;
eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
if (!eth_ports_node)
return -ENOENT;
for_each_child_of_node(eth_ports_node, eth_node) {
u32 reg;
if (strcmp(eth_node->name, "port"))
continue;
ret = of_property_read_u32(eth_node, "reg", &reg);
if (ret < 0) {
dev_err(dev, "%pOF error reading port_id %d\n",
eth_node, ret);
}
of_node_get(eth_node);
if (reg == 0) {
eth0_node = eth_node;
if (!of_device_is_available(eth0_node)) {
of_node_put(eth0_node);
eth0_node = NULL;
}
} else if (reg == 1) {
eth1_node = eth_node;
if (!of_device_is_available(eth1_node)) {
of_node_put(eth1_node);
eth1_node = NULL;
}
} else {
dev_err(dev, "port reg should be 0 or 1\n");
}
}
of_node_put(eth_ports_node);
/* At least one node must be present and available else we fail */
if (!eth0_node && !eth1_node) {
dev_err(dev, "neither port0 nor port1 node available\n");
return -ENODEV;
}
if (eth0_node == eth1_node) {
dev_err(dev, "port0 and port1 can't have same reg\n");
of_node_put(eth0_node);
return -ENODEV;
}
prueth->eth_node[PRUETH_MAC0] = eth0_node;
prueth->eth_node[PRUETH_MAC1] = eth1_node;
prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
if (IS_ERR(prueth->miig_rt)) {
dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
return -ENODEV;
}
prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
if (IS_ERR(prueth->mii_rt)) {
dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
return -ENODEV;
}
prueth->pa_stats = syscon_regmap_lookup_by_phandle(np, "ti,pa-stats");
if (IS_ERR(prueth->pa_stats)) {
dev_err(dev, "couldn't get ti,pa-stats syscon regmap\n");
prueth->pa_stats = NULL;
}
if (eth0_node) {
ret = prueth_get_cores(prueth, ICSS_SLICE0, false);
if (ret)
goto put_cores;
}
if (eth1_node) {
ret = prueth_get_cores(prueth, ICSS_SLICE1, false);
if (ret)
goto put_cores;
}
pruss = pruss_get(eth0_node ?
prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
if (IS_ERR(pruss)) {
ret = PTR_ERR(pruss);
dev_err(dev, "unable to get pruss handle\n");
goto put_cores;
}
prueth->pruss = pruss;
ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
&prueth->shram);
if (ret) {
dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
goto put_pruss;
}
prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
if (!prueth->sram_pool) {
dev_err(dev, "unable to get SRAM pool\n");
ret = -ENODEV;
goto put_mem;
}
msmc_ram_size = MSMC_RAM_SIZE;
prueth->is_switchmode_supported = prueth->pdata.switch_mode;
if (prueth->is_switchmode_supported)
msmc_ram_size = MSMC_RAM_SIZE_SWITCH_MODE;
/* NOTE: FW bug needs buffer base to be 64KB aligned */
prueth->msmcram.va =
(void __iomem *)gen_pool_alloc_algo(prueth->sram_pool,
msmc_ram_size,
gen_pool_first_fit_align,
&gp_data);
if (!prueth->msmcram.va) {
ret = -ENOMEM;
dev_err(dev, "unable to allocate MSMC resource\n");
goto put_mem;
}
prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
(unsigned long)prueth->msmcram.va);
prueth->msmcram.size = msmc_ram_size;
memset_io(prueth->msmcram.va, 0, msmc_ram_size);
dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
prueth->msmcram.va, prueth->msmcram.size);
prueth->iep0 = icss_iep_get_idx(np, 0);
if (IS_ERR(prueth->iep0)) {
ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n");
prueth->iep0 = NULL;
goto free_pool;
}
prueth->iep1 = icss_iep_get_idx(np, 1);
if (IS_ERR(prueth->iep1)) {
ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n");
goto put_iep0;
}
if (prueth->pdata.quirk_10m_link_issue) {
/* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX
* traffic.
*/
icss_iep_init_fw(prueth->iep1);
}
spin_lock_init(&prueth->vtbl_lock);
/* setup netdev interfaces */
if (eth0_node) {
ret = prueth_netdev_init(prueth, eth0_node);
if (ret) {
dev_err_probe(dev, ret, "netdev init %s failed\n",
eth0_node->name);
goto exit_iep;
}
prueth->emac[PRUETH_MAC0]->half_duplex =
of_property_read_bool(eth0_node, "ti,half-duplex-capable");
prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
}
if (eth1_node) {
ret = prueth_netdev_init(prueth, eth1_node);
if (ret) {
dev_err_probe(dev, ret, "netdev init %s failed\n",
eth1_node->name);
goto netdev_exit;
}
prueth->emac[PRUETH_MAC1]->half_duplex =
of_property_read_bool(eth1_node, "ti,half-duplex-capable");
prueth->emac[PRUETH_MAC1]->iep = prueth->iep0;
}
/* register the network devices */
if (eth0_node) {
ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
if (ret) {
dev_err(dev, "can't register netdev for port MII0");
goto netdev_exit;
}
prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;
ret = emac_phy_connect(prueth->emac[PRUETH_MAC0]);
if (ret) {
dev_err(dev,
"can't connect to MII0 PHY, error -%d", ret);
goto netdev_unregister;
}
phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
}
if (eth1_node) {
ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
if (ret) {
dev_err(dev, "can't register netdev for port MII1");
goto netdev_unregister;
}
prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
ret = emac_phy_connect(prueth->emac[PRUETH_MAC1]);
if (ret) {
dev_err(dev,
"can't connect to MII1 PHY, error %d", ret);
goto netdev_unregister;
}
phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
}
if (prueth->is_switchmode_supported) {
ret = prueth_register_notifiers(prueth);
if (ret)
goto netdev_unregister;
sprintf(prueth->switch_id, "%s", dev_name(dev));
}
dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n",
(!eth0_node || !eth1_node) ? "single" : "dual");
if (eth1_node)
of_node_put(eth1_node);
if (eth0_node)
of_node_put(eth0_node);
return 0;
netdev_unregister:
for (i = 0; i < PRUETH_NUM_MACS; i++) {
if (!prueth->registered_netdevs[i])
continue;
if (prueth->emac[i]->ndev->phydev) {
phy_disconnect(prueth->emac[i]->ndev->phydev);
prueth->emac[i]->ndev->phydev = NULL;
}
unregister_netdev(prueth->registered_netdevs[i]);
}
netdev_exit:
for (i = 0; i < PRUETH_NUM_MACS; i++) {
eth_node = prueth->eth_node[i];
if (!eth_node)
continue;
prueth_netdev_exit(prueth, eth_node);
}
exit_iep:
if (prueth->pdata.quirk_10m_link_issue)
icss_iep_exit_fw(prueth->iep1);
icss_iep_put(prueth->iep1);
put_iep0:
icss_iep_put(prueth->iep0);
prueth->iep0 = NULL;
prueth->iep1 = NULL;
free_pool:
gen_pool_free(prueth->sram_pool,
(unsigned long)prueth->msmcram.va, msmc_ram_size);
put_mem:
pruss_release_mem_region(prueth->pruss, &prueth->shram);
put_pruss:
pruss_put(prueth->pruss);
put_cores:
if (eth1_node) {
prueth_put_cores(prueth, ICSS_SLICE1);
of_node_put(eth1_node);
}
if (eth0_node) {
prueth_put_cores(prueth, ICSS_SLICE0);
of_node_put(eth0_node);
}
return ret;
}
static void prueth_remove(struct platform_device *pdev)
{
struct prueth *prueth = platform_get_drvdata(pdev);
struct device_node *eth_node;
int i;
prueth_unregister_notifiers(prueth);
for (i = 0; i < PRUETH_NUM_MACS; i++) {
if (!prueth->registered_netdevs[i])
continue;
phy_stop(prueth->emac[i]->ndev->phydev);
phy_disconnect(prueth->emac[i]->ndev->phydev);
prueth->emac[i]->ndev->phydev = NULL;
unregister_netdev(prueth->registered_netdevs[i]);
}
for (i = 0; i < PRUETH_NUM_MACS; i++) {
eth_node = prueth->eth_node[i];
if (!eth_node)
continue;
prueth_netdev_exit(prueth, eth_node);
}
if (prueth->pdata.quirk_10m_link_issue)
icss_iep_exit_fw(prueth->iep1);
icss_iep_put(prueth->iep1);
icss_iep_put(prueth->iep0);
gen_pool_free(prueth->sram_pool,
(unsigned long)prueth->msmcram.va,
MSMC_RAM_SIZE);
pruss_release_mem_region(prueth->pruss, &prueth->shram);
pruss_put(prueth->pruss);
if (prueth->eth_node[PRUETH_MAC1])
prueth_put_cores(prueth, ICSS_SLICE1);
if (prueth->eth_node[PRUETH_MAC0])
prueth_put_cores(prueth, ICSS_SLICE0);
}
static const struct prueth_pdata am654_icssg_pdata = {
.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
.quirk_10m_link_issue = 1,
.switch_mode = 1,
};
static const struct prueth_pdata am64x_icssg_pdata = {
.fdqring_mode = K3_RINGACC_RING_MODE_RING,
.quirk_10m_link_issue = 1,
.switch_mode = 1,
};
static const struct of_device_id prueth_dt_match[] = {
{ .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata },
{ .compatible = "ti,am642-icssg-prueth", .data = &am64x_icssg_pdata },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, prueth_dt_match);
static struct platform_driver prueth_driver = {
.probe = prueth_probe,
.remove_new = prueth_remove,
.driver = {
.name = "icssg-prueth",
.of_match_table = prueth_dt_match,
.pm = &prueth_dev_pm_ops,
},
};
module_platform_driver(prueth_driver);
MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver");
MODULE_LICENSE("GPL");