| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "bkey_buf.h" |
| #include "btree_locking.h" |
| #include "btree_update.h" |
| #include "btree_update_interior.h" |
| #include "btree_write_buffer.h" |
| #include "disk_accounting.h" |
| #include "error.h" |
| #include "extents.h" |
| #include "journal.h" |
| #include "journal_io.h" |
| #include "journal_reclaim.h" |
| |
| #include <linux/prefetch.h> |
| #include <linux/sort.h> |
| |
| static int bch2_btree_write_buffer_journal_flush(struct journal *, |
| struct journal_entry_pin *, u64); |
| |
| static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *); |
| |
| static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) |
| { |
| return (cmp_int(l->hi, r->hi) ?: |
| cmp_int(l->mi, r->mi) ?: |
| cmp_int(l->lo, r->lo)) >= 0; |
| } |
| |
| static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r) |
| { |
| #ifdef CONFIG_X86_64 |
| int cmp; |
| |
| asm("mov (%[l]), %%rax;" |
| "sub (%[r]), %%rax;" |
| "mov 8(%[l]), %%rax;" |
| "sbb 8(%[r]), %%rax;" |
| "mov 16(%[l]), %%rax;" |
| "sbb 16(%[r]), %%rax;" |
| : "=@ccae" (cmp) |
| : [l] "r" (l), [r] "r" (r) |
| : "rax", "cc"); |
| |
| EBUG_ON(cmp != __wb_key_ref_cmp(l, r)); |
| return cmp; |
| #else |
| return __wb_key_ref_cmp(l, r); |
| #endif |
| } |
| |
| static int wb_key_seq_cmp(const void *_l, const void *_r) |
| { |
| const struct btree_write_buffered_key *l = _l; |
| const struct btree_write_buffered_key *r = _r; |
| |
| return cmp_int(l->journal_seq, r->journal_seq); |
| } |
| |
| /* Compare excluding idx, the low 24 bits: */ |
| static inline bool wb_key_eq(const void *_l, const void *_r) |
| { |
| const struct wb_key_ref *l = _l; |
| const struct wb_key_ref *r = _r; |
| |
| return !((l->hi ^ r->hi)| |
| (l->mi ^ r->mi)| |
| ((l->lo >> 24) ^ (r->lo >> 24))); |
| } |
| |
| static noinline void wb_sort(struct wb_key_ref *base, size_t num) |
| { |
| size_t n = num, a = num / 2; |
| |
| if (!a) /* num < 2 || size == 0 */ |
| return; |
| |
| for (;;) { |
| size_t b, c, d; |
| |
| if (a) /* Building heap: sift down --a */ |
| --a; |
| else if (--n) /* Sorting: Extract root to --n */ |
| swap(base[0], base[n]); |
| else /* Sort complete */ |
| break; |
| |
| /* |
| * Sift element at "a" down into heap. This is the |
| * "bottom-up" variant, which significantly reduces |
| * calls to cmp_func(): we find the sift-down path all |
| * the way to the leaves (one compare per level), then |
| * backtrack to find where to insert the target element. |
| * |
| * Because elements tend to sift down close to the leaves, |
| * this uses fewer compares than doing two per level |
| * on the way down. (A bit more than half as many on |
| * average, 3/4 worst-case.) |
| */ |
| for (b = a; c = 2*b + 1, (d = c + 1) < n;) |
| b = wb_key_ref_cmp(base + c, base + d) ? c : d; |
| if (d == n) /* Special case last leaf with no sibling */ |
| b = c; |
| |
| /* Now backtrack from "b" to the correct location for "a" */ |
| while (b != a && wb_key_ref_cmp(base + a, base + b)) |
| b = (b - 1) / 2; |
| c = b; /* Where "a" belongs */ |
| while (b != a) { /* Shift it into place */ |
| b = (b - 1) / 2; |
| swap(base[b], base[c]); |
| } |
| } |
| } |
| |
| static noinline int wb_flush_one_slowpath(struct btree_trans *trans, |
| struct btree_iter *iter, |
| struct btree_write_buffered_key *wb) |
| { |
| struct btree_path *path = btree_iter_path(trans, iter); |
| |
| bch2_btree_node_unlock_write(trans, path, path->l[0].b); |
| |
| trans->journal_res.seq = wb->journal_seq; |
| |
| return bch2_trans_update(trans, iter, &wb->k, |
| BTREE_UPDATE_internal_snapshot_node) ?: |
| bch2_trans_commit(trans, NULL, NULL, |
| BCH_TRANS_COMMIT_no_enospc| |
| BCH_TRANS_COMMIT_no_check_rw| |
| BCH_TRANS_COMMIT_no_journal_res| |
| BCH_TRANS_COMMIT_journal_reclaim); |
| } |
| |
| static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter, |
| struct btree_write_buffered_key *wb, |
| bool *write_locked, |
| bool *accounting_accumulated, |
| size_t *fast) |
| { |
| struct btree_path *path; |
| int ret; |
| |
| EBUG_ON(!wb->journal_seq); |
| EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq); |
| EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq); |
| |
| ret = bch2_btree_iter_traverse(iter); |
| if (ret) |
| return ret; |
| |
| if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) { |
| struct bkey u; |
| struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u); |
| |
| if (k.k->type == KEY_TYPE_accounting) |
| bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k), |
| bkey_s_c_to_accounting(k)); |
| } |
| *accounting_accumulated = true; |
| |
| /* |
| * We can't clone a path that has write locks: unshare it now, before |
| * set_pos and traverse(): |
| */ |
| if (btree_iter_path(trans, iter)->ref > 1) |
| iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_); |
| |
| path = btree_iter_path(trans, iter); |
| |
| if (!*write_locked) { |
| ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); |
| if (ret) |
| return ret; |
| |
| bch2_btree_node_prep_for_write(trans, path, path->l[0].b); |
| *write_locked = true; |
| } |
| |
| if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) { |
| *write_locked = false; |
| return wb_flush_one_slowpath(trans, iter, wb); |
| } |
| |
| bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); |
| (*fast)++; |
| return 0; |
| } |
| |
| /* |
| * Update a btree with a write buffered key using the journal seq of the |
| * original write buffer insert. |
| * |
| * It is not safe to rejournal the key once it has been inserted into the write |
| * buffer because that may break recovery ordering. For example, the key may |
| * have already been modified in the active write buffer in a seq that comes |
| * before the current transaction. If we were to journal this key again and |
| * crash, recovery would process updates in the wrong order. |
| */ |
| static int |
| btree_write_buffered_insert(struct btree_trans *trans, |
| struct btree_write_buffered_key *wb) |
| { |
| struct btree_iter iter; |
| int ret; |
| |
| bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), |
| BTREE_ITER_cached|BTREE_ITER_intent); |
| |
| trans->journal_res.seq = wb->journal_seq; |
| |
| ret = bch2_btree_iter_traverse(&iter) ?: |
| bch2_trans_update(trans, &iter, &wb->k, |
| BTREE_UPDATE_internal_snapshot_node); |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb) |
| { |
| struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer); |
| struct journal *j = &c->journal; |
| |
| if (!wb->inc.keys.nr) |
| return; |
| |
| bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin, |
| bch2_btree_write_buffer_journal_flush); |
| |
| darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr)); |
| darray_resize(&wb->sorted, wb->flushing.keys.size); |
| |
| if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) { |
| swap(wb->flushing.keys, wb->inc.keys); |
| goto out; |
| } |
| |
| size_t nr = min(darray_room(wb->flushing.keys), |
| wb->sorted.size - wb->flushing.keys.nr); |
| nr = min(nr, wb->inc.keys.nr); |
| |
| memcpy(&darray_top(wb->flushing.keys), |
| wb->inc.keys.data, |
| sizeof(wb->inc.keys.data[0]) * nr); |
| |
| memmove(wb->inc.keys.data, |
| wb->inc.keys.data + nr, |
| sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr)); |
| |
| wb->flushing.keys.nr += nr; |
| wb->inc.keys.nr -= nr; |
| out: |
| if (!wb->inc.keys.nr) |
| bch2_journal_pin_drop(j, &wb->inc.pin); |
| else |
| bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin, |
| bch2_btree_write_buffer_journal_flush); |
| |
| if (j->watermark) { |
| spin_lock(&j->lock); |
| bch2_journal_set_watermark(j); |
| spin_unlock(&j->lock); |
| } |
| |
| BUG_ON(wb->sorted.size < wb->flushing.keys.nr); |
| } |
| |
| static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans) |
| { |
| struct bch_fs *c = trans->c; |
| struct journal *j = &c->journal; |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| struct btree_iter iter = { NULL }; |
| size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0; |
| bool write_locked = false; |
| bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags); |
| int ret = 0; |
| |
| ret = bch2_journal_error(&c->journal); |
| if (ret) |
| return ret; |
| |
| bch2_trans_unlock(trans); |
| bch2_trans_begin(trans); |
| |
| mutex_lock(&wb->inc.lock); |
| move_keys_from_inc_to_flushing(wb); |
| mutex_unlock(&wb->inc.lock); |
| |
| for (size_t i = 0; i < wb->flushing.keys.nr; i++) { |
| wb->sorted.data[i].idx = i; |
| wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree; |
| memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos)); |
| } |
| wb->sorted.nr = wb->flushing.keys.nr; |
| |
| /* |
| * We first sort so that we can detect and skip redundant updates, and |
| * then we attempt to flush in sorted btree order, as this is most |
| * efficient. |
| * |
| * However, since we're not flushing in the order they appear in the |
| * journal we won't be able to drop our journal pin until everything is |
| * flushed - which means this could deadlock the journal if we weren't |
| * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail |
| * if it would block taking a journal reservation. |
| * |
| * If that happens, simply skip the key so we can optimistically insert |
| * as many keys as possible in the fast path. |
| */ |
| wb_sort(wb->sorted.data, wb->sorted.nr); |
| |
| darray_for_each(wb->sorted, i) { |
| struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx]; |
| |
| for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++) |
| prefetch(&wb->flushing.keys.data[n->idx]); |
| |
| BUG_ON(!k->journal_seq); |
| |
| if (!accounting_replay_done && |
| k->k.k.type == KEY_TYPE_accounting) { |
| slowpath++; |
| continue; |
| } |
| |
| if (i + 1 < &darray_top(wb->sorted) && |
| wb_key_eq(i, i + 1)) { |
| struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx]; |
| |
| if (k->k.k.type == KEY_TYPE_accounting && |
| n->k.k.type == KEY_TYPE_accounting) |
| bch2_accounting_accumulate(bkey_i_to_accounting(&n->k), |
| bkey_i_to_s_c_accounting(&k->k)); |
| |
| overwritten++; |
| n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq); |
| k->journal_seq = 0; |
| continue; |
| } |
| |
| if (write_locked) { |
| struct btree_path *path = btree_iter_path(trans, &iter); |
| |
| if (path->btree_id != i->btree || |
| bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) { |
| bch2_btree_node_unlock_write(trans, path, path->l[0].b); |
| write_locked = false; |
| |
| ret = lockrestart_do(trans, |
| bch2_btree_iter_traverse(&iter) ?: |
| bch2_foreground_maybe_merge(trans, iter.path, 0, |
| BCH_WATERMARK_reclaim| |
| BCH_TRANS_COMMIT_journal_reclaim| |
| BCH_TRANS_COMMIT_no_check_rw| |
| BCH_TRANS_COMMIT_no_enospc)); |
| if (ret) |
| goto err; |
| } |
| } |
| |
| if (!iter.path || iter.btree_id != k->btree) { |
| bch2_trans_iter_exit(trans, &iter); |
| bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p, |
| BTREE_ITER_intent|BTREE_ITER_all_snapshots); |
| } |
| |
| bch2_btree_iter_set_pos(&iter, k->k.k.p); |
| btree_iter_path(trans, &iter)->preserve = false; |
| |
| bool accounting_accumulated = false; |
| do { |
| if (race_fault()) { |
| ret = -BCH_ERR_journal_reclaim_would_deadlock; |
| break; |
| } |
| |
| ret = wb_flush_one(trans, &iter, k, &write_locked, |
| &accounting_accumulated, &fast); |
| if (!write_locked) |
| bch2_trans_begin(trans); |
| } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); |
| |
| if (!ret) { |
| k->journal_seq = 0; |
| } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { |
| slowpath++; |
| ret = 0; |
| } else |
| break; |
| } |
| |
| if (write_locked) { |
| struct btree_path *path = btree_iter_path(trans, &iter); |
| bch2_btree_node_unlock_write(trans, path, path->l[0].b); |
| } |
| bch2_trans_iter_exit(trans, &iter); |
| |
| if (ret) |
| goto err; |
| |
| if (slowpath) { |
| /* |
| * Flush in the order they were present in the journal, so that |
| * we can release journal pins: |
| * The fastpath zapped the seq of keys that were successfully flushed so |
| * we can skip those here. |
| */ |
| trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr); |
| |
| sort(wb->flushing.keys.data, |
| wb->flushing.keys.nr, |
| sizeof(wb->flushing.keys.data[0]), |
| wb_key_seq_cmp, NULL); |
| |
| darray_for_each(wb->flushing.keys, i) { |
| if (!i->journal_seq) |
| continue; |
| |
| if (!accounting_replay_done && |
| i->k.k.type == KEY_TYPE_accounting) { |
| could_not_insert++; |
| continue; |
| } |
| |
| if (!could_not_insert) |
| bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin, |
| bch2_btree_write_buffer_journal_flush); |
| |
| bch2_trans_begin(trans); |
| |
| ret = commit_do(trans, NULL, NULL, |
| BCH_WATERMARK_reclaim| |
| BCH_TRANS_COMMIT_journal_reclaim| |
| BCH_TRANS_COMMIT_no_check_rw| |
| BCH_TRANS_COMMIT_no_enospc| |
| BCH_TRANS_COMMIT_no_journal_res , |
| btree_write_buffered_insert(trans, i)); |
| if (ret) |
| goto err; |
| |
| i->journal_seq = 0; |
| } |
| |
| /* |
| * If journal replay hasn't finished with accounting keys we |
| * can't flush accounting keys at all - condense them and leave |
| * them for next time. |
| * |
| * Q: Can the write buffer overflow? |
| * A Shouldn't be any actual risk. It's just new accounting |
| * updates that the write buffer can't flush, and those are only |
| * going to be generated by interior btree node updates as |
| * journal replay has to split/rewrite nodes to make room for |
| * its updates. |
| * |
| * And for those new acounting updates, updates to the same |
| * counters get accumulated as they're flushed from the journal |
| * to the write buffer - see the patch for eytzingcer tree |
| * accumulated. So we could only overflow if the number of |
| * distinct counters touched somehow was very large. |
| */ |
| if (could_not_insert) { |
| struct btree_write_buffered_key *dst = wb->flushing.keys.data; |
| |
| darray_for_each(wb->flushing.keys, i) |
| if (i->journal_seq) |
| *dst++ = *i; |
| wb->flushing.keys.nr = dst - wb->flushing.keys.data; |
| } |
| } |
| err: |
| if (ret || !could_not_insert) { |
| bch2_journal_pin_drop(j, &wb->flushing.pin); |
| wb->flushing.keys.nr = 0; |
| } |
| |
| bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret)); |
| trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0); |
| return ret; |
| } |
| |
| static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq) |
| { |
| struct journal *j = &c->journal; |
| struct journal_buf *buf; |
| int ret = 0; |
| |
| while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) { |
| ret = bch2_journal_keys_to_write_buffer(c, buf); |
| mutex_unlock(&j->buf_lock); |
| } |
| |
| return ret; |
| } |
| |
| static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq, |
| bool *did_work) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| int ret = 0, fetch_from_journal_err; |
| |
| do { |
| bch2_trans_unlock(trans); |
| |
| fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq); |
| |
| *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr; |
| |
| /* |
| * On memory allocation failure, bch2_btree_write_buffer_flush_locked() |
| * is not guaranteed to empty wb->inc: |
| */ |
| mutex_lock(&wb->flushing.lock); |
| ret = bch2_btree_write_buffer_flush_locked(trans); |
| mutex_unlock(&wb->flushing.lock); |
| } while (!ret && |
| (fetch_from_journal_err || |
| (wb->inc.pin.seq && wb->inc.pin.seq <= seq) || |
| (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq))); |
| |
| return ret; |
| } |
| |
| static int bch2_btree_write_buffer_journal_flush(struct journal *j, |
| struct journal_entry_pin *_pin, u64 seq) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| bool did_work = false; |
| |
| return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work)); |
| } |
| |
| int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) |
| { |
| struct bch_fs *c = trans->c; |
| bool did_work = false; |
| |
| trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_); |
| |
| return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work); |
| } |
| |
| /* |
| * The write buffer requires flushing when going RO: keys in the journal for the |
| * write buffer don't have a journal pin yet |
| */ |
| bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c) |
| { |
| if (bch2_journal_error(&c->journal)) |
| return false; |
| |
| bool did_work = false; |
| bch2_trans_run(c, btree_write_buffer_flush_seq(trans, |
| journal_cur_seq(&c->journal), &did_work)); |
| return did_work; |
| } |
| |
| int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| int ret = 0; |
| |
| if (mutex_trylock(&wb->flushing.lock)) { |
| ret = bch2_btree_write_buffer_flush_locked(trans); |
| mutex_unlock(&wb->flushing.lock); |
| } |
| |
| return ret; |
| } |
| |
| int bch2_btree_write_buffer_tryflush(struct btree_trans *trans) |
| { |
| struct bch_fs *c = trans->c; |
| |
| if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer)) |
| return -BCH_ERR_erofs_no_writes; |
| |
| int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans); |
| bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); |
| return ret; |
| } |
| |
| /* |
| * In check and repair code, when checking references to write buffer btrees we |
| * need to issue a flush before we have a definitive error: this issues a flush |
| * if this is a key we haven't yet checked. |
| */ |
| int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans, |
| struct bkey_s_c referring_k, |
| struct bkey_buf *last_flushed) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_buf tmp; |
| int ret = 0; |
| |
| bch2_bkey_buf_init(&tmp); |
| |
| if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) { |
| bch2_bkey_buf_reassemble(&tmp, c, referring_k); |
| |
| if (bkey_is_btree_ptr(referring_k.k)) { |
| bch2_trans_unlock(trans); |
| bch2_btree_interior_updates_flush(c); |
| } |
| |
| ret = bch2_btree_write_buffer_flush_sync(trans); |
| if (ret) |
| goto err; |
| |
| bch2_bkey_buf_copy(last_flushed, c, tmp.k); |
| ret = -BCH_ERR_transaction_restart_write_buffer_flush; |
| } |
| err: |
| bch2_bkey_buf_exit(&tmp, c); |
| return ret; |
| } |
| |
| static void bch2_btree_write_buffer_flush_work(struct work_struct *work) |
| { |
| struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work); |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| int ret; |
| |
| mutex_lock(&wb->flushing.lock); |
| do { |
| ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans)); |
| } while (!ret && bch2_btree_write_buffer_should_flush(c)); |
| mutex_unlock(&wb->flushing.lock); |
| |
| bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); |
| } |
| |
| static void wb_accounting_sort(struct btree_write_buffer *wb) |
| { |
| eytzinger0_sort(wb->accounting.data, wb->accounting.nr, |
| sizeof(wb->accounting.data[0]), |
| wb_key_cmp, NULL); |
| } |
| |
| int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree, |
| struct bkey_i_accounting *k) |
| { |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| struct btree_write_buffered_key new = { .btree = btree }; |
| |
| bkey_copy(&new.k, &k->k_i); |
| |
| int ret = darray_push(&wb->accounting, new); |
| if (ret) |
| return ret; |
| |
| wb_accounting_sort(wb); |
| return 0; |
| } |
| |
| int bch2_journal_key_to_wb_slowpath(struct bch_fs *c, |
| struct journal_keys_to_wb *dst, |
| enum btree_id btree, struct bkey_i *k) |
| { |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| int ret; |
| retry: |
| ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL); |
| if (!ret && dst->wb == &wb->flushing) |
| ret = darray_resize(&wb->sorted, wb->flushing.keys.size); |
| |
| if (unlikely(ret)) { |
| if (dst->wb == &c->btree_write_buffer.flushing) { |
| mutex_unlock(&dst->wb->lock); |
| dst->wb = &c->btree_write_buffer.inc; |
| bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin, |
| bch2_btree_write_buffer_journal_flush); |
| goto retry; |
| } |
| |
| return ret; |
| } |
| |
| dst->room = darray_room(dst->wb->keys); |
| if (dst->wb == &wb->flushing) |
| dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); |
| BUG_ON(!dst->room); |
| BUG_ON(!dst->seq); |
| |
| struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys); |
| wb_k->journal_seq = dst->seq; |
| wb_k->btree = btree; |
| bkey_copy(&wb_k->k, k); |
| dst->wb->keys.nr++; |
| dst->room--; |
| return 0; |
| } |
| |
| void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq) |
| { |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| |
| if (mutex_trylock(&wb->flushing.lock)) { |
| mutex_lock(&wb->inc.lock); |
| move_keys_from_inc_to_flushing(wb); |
| |
| /* |
| * Attempt to skip wb->inc, and add keys directly to |
| * wb->flushing, saving us a copy later: |
| */ |
| |
| if (!wb->inc.keys.nr) { |
| dst->wb = &wb->flushing; |
| } else { |
| mutex_unlock(&wb->flushing.lock); |
| dst->wb = &wb->inc; |
| } |
| } else { |
| mutex_lock(&wb->inc.lock); |
| dst->wb = &wb->inc; |
| } |
| |
| dst->room = darray_room(dst->wb->keys); |
| if (dst->wb == &wb->flushing) |
| dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr); |
| dst->seq = seq; |
| |
| bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin, |
| bch2_btree_write_buffer_journal_flush); |
| |
| darray_for_each(wb->accounting, i) |
| memset(&i->k.v, 0, bkey_val_bytes(&i->k.k)); |
| } |
| |
| int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst) |
| { |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| unsigned live_accounting_keys = 0; |
| int ret = 0; |
| |
| darray_for_each(wb->accounting, i) |
| if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) { |
| i->journal_seq = dst->seq; |
| live_accounting_keys++; |
| ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k); |
| if (ret) |
| break; |
| } |
| |
| if (live_accounting_keys * 2 < wb->accounting.nr) { |
| struct btree_write_buffered_key *dst = wb->accounting.data; |
| |
| darray_for_each(wb->accounting, src) |
| if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k))) |
| *dst++ = *src; |
| wb->accounting.nr = dst - wb->accounting.data; |
| wb_accounting_sort(wb); |
| } |
| |
| if (!dst->wb->keys.nr) |
| bch2_journal_pin_drop(&c->journal, &dst->wb->pin); |
| |
| if (bch2_btree_write_buffer_should_flush(c) && |
| __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) && |
| !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work)) |
| bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer); |
| |
| if (dst->wb == &wb->flushing) |
| mutex_unlock(&wb->flushing.lock); |
| mutex_unlock(&wb->inc.lock); |
| |
| return ret; |
| } |
| |
| static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf) |
| { |
| struct journal_keys_to_wb dst; |
| int ret = 0; |
| |
| bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq)); |
| |
| for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) { |
| jset_entry_for_each_key(entry, k) { |
| ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k); |
| if (ret) |
| goto out; |
| } |
| |
| entry->type = BCH_JSET_ENTRY_btree_keys; |
| } |
| |
| spin_lock(&c->journal.lock); |
| buf->need_flush_to_write_buffer = false; |
| spin_unlock(&c->journal.lock); |
| out: |
| ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret; |
| return ret; |
| } |
| |
| static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size) |
| { |
| if (wb->keys.size >= new_size) |
| return 0; |
| |
| if (!mutex_trylock(&wb->lock)) |
| return -EINTR; |
| |
| int ret = darray_resize(&wb->keys, new_size); |
| mutex_unlock(&wb->lock); |
| return ret; |
| } |
| |
| int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size) |
| { |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| |
| return wb_keys_resize(&wb->flushing, new_size) ?: |
| wb_keys_resize(&wb->inc, new_size); |
| } |
| |
| void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) |
| { |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| |
| BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) && |
| !bch2_journal_error(&c->journal)); |
| |
| darray_exit(&wb->accounting); |
| darray_exit(&wb->sorted); |
| darray_exit(&wb->flushing.keys); |
| darray_exit(&wb->inc.keys); |
| } |
| |
| int bch2_fs_btree_write_buffer_init(struct bch_fs *c) |
| { |
| struct btree_write_buffer *wb = &c->btree_write_buffer; |
| |
| mutex_init(&wb->inc.lock); |
| mutex_init(&wb->flushing.lock); |
| INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work); |
| |
| /* Will be resized by journal as needed: */ |
| unsigned initial_size = 1 << 16; |
| |
| return darray_make_room(&wb->inc.keys, initial_size) ?: |
| darray_make_room(&wb->flushing.keys, initial_size) ?: |
| darray_make_room(&wb->sorted, initial_size); |
| } |