| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2018-2023 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <djwong@kernel.org> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_btree.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_inode.h" |
| #include "xfs_alloc.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_rmap.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_ag.h" |
| #include "xfs_ag_resv.h" |
| #include "xfs_quota.h" |
| #include "xfs_qm.h" |
| #include "xfs_defer.h" |
| #include "xfs_errortag.h" |
| #include "xfs_error.h" |
| #include "xfs_reflink.h" |
| #include "xfs_health.h" |
| #include "xfs_buf_mem.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_attr.h" |
| #include "xfs_dir2.h" |
| #include "scrub/scrub.h" |
| #include "scrub/common.h" |
| #include "scrub/trace.h" |
| #include "scrub/repair.h" |
| #include "scrub/bitmap.h" |
| #include "scrub/stats.h" |
| #include "scrub/xfile.h" |
| #include "scrub/attr_repair.h" |
| |
| /* |
| * Attempt to repair some metadata, if the metadata is corrupt and userspace |
| * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", |
| * and will set *fixed to true if it thinks it repaired anything. |
| */ |
| int |
| xrep_attempt( |
| struct xfs_scrub *sc, |
| struct xchk_stats_run *run) |
| { |
| u64 repair_start; |
| int error = 0; |
| |
| trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); |
| |
| xchk_ag_btcur_free(&sc->sa); |
| |
| /* Repair whatever's broken. */ |
| ASSERT(sc->ops->repair); |
| run->repair_attempted = true; |
| repair_start = xchk_stats_now(); |
| error = sc->ops->repair(sc); |
| trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); |
| run->repair_ns += xchk_stats_elapsed_ns(repair_start); |
| switch (error) { |
| case 0: |
| /* |
| * Repair succeeded. Commit the fixes and perform a second |
| * scrub so that we can tell userspace if we fixed the problem. |
| */ |
| sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; |
| sc->flags |= XREP_ALREADY_FIXED; |
| run->repair_succeeded = true; |
| return -EAGAIN; |
| case -ECHRNG: |
| sc->flags |= XCHK_NEED_DRAIN; |
| run->retries++; |
| return -EAGAIN; |
| case -EDEADLOCK: |
| /* Tell the caller to try again having grabbed all the locks. */ |
| if (!(sc->flags & XCHK_TRY_HARDER)) { |
| sc->flags |= XCHK_TRY_HARDER; |
| run->retries++; |
| return -EAGAIN; |
| } |
| /* |
| * We tried harder but still couldn't grab all the resources |
| * we needed to fix it. The corruption has not been fixed, |
| * so exit to userspace with the scan's output flags unchanged. |
| */ |
| return 0; |
| default: |
| /* |
| * EAGAIN tells the caller to re-scrub, so we cannot return |
| * that here. |
| */ |
| ASSERT(error != -EAGAIN); |
| return error; |
| } |
| } |
| |
| /* |
| * Complain about unfixable problems in the filesystem. We don't log |
| * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver |
| * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the |
| * administrator isn't running xfs_scrub in no-repairs mode. |
| * |
| * Use this helper function because _ratelimited silently declares a static |
| * structure to track rate limiting information. |
| */ |
| void |
| xrep_failure( |
| struct xfs_mount *mp) |
| { |
| xfs_alert_ratelimited(mp, |
| "Corruption not fixed during online repair. Unmount and run xfs_repair."); |
| } |
| |
| /* |
| * Repair probe -- userspace uses this to probe if we're willing to repair a |
| * given mountpoint. |
| */ |
| int |
| xrep_probe( |
| struct xfs_scrub *sc) |
| { |
| int error = 0; |
| |
| if (xchk_should_terminate(sc, &error)) |
| return error; |
| |
| return 0; |
| } |
| |
| /* |
| * Roll a transaction, keeping the AG headers locked and reinitializing |
| * the btree cursors. |
| */ |
| int |
| xrep_roll_ag_trans( |
| struct xfs_scrub *sc) |
| { |
| int error; |
| |
| /* |
| * Keep the AG header buffers locked while we roll the transaction. |
| * Ensure that both AG buffers are dirty and held when we roll the |
| * transaction so that they move forward in the log without losing the |
| * bli (and hence the bli type) when the transaction commits. |
| * |
| * Normal code would never hold clean buffers across a roll, but repair |
| * needs both buffers to maintain a total lock on the AG. |
| */ |
| if (sc->sa.agi_bp) { |
| xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); |
| xfs_trans_bhold(sc->tp, sc->sa.agi_bp); |
| } |
| |
| if (sc->sa.agf_bp) { |
| xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); |
| xfs_trans_bhold(sc->tp, sc->sa.agf_bp); |
| } |
| |
| /* |
| * Roll the transaction. We still hold the AG header buffers locked |
| * regardless of whether or not that succeeds. On failure, the buffers |
| * will be released during teardown on our way out of the kernel. If |
| * successful, join the buffers to the new transaction and move on. |
| */ |
| error = xfs_trans_roll(&sc->tp); |
| if (error) |
| return error; |
| |
| /* Join the AG headers to the new transaction. */ |
| if (sc->sa.agi_bp) |
| xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); |
| if (sc->sa.agf_bp) |
| xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); |
| |
| return 0; |
| } |
| |
| /* Roll the scrub transaction, holding the primary metadata locked. */ |
| int |
| xrep_roll_trans( |
| struct xfs_scrub *sc) |
| { |
| if (!sc->ip) |
| return xrep_roll_ag_trans(sc); |
| return xfs_trans_roll_inode(&sc->tp, sc->ip); |
| } |
| |
| /* Finish all deferred work attached to the repair transaction. */ |
| int |
| xrep_defer_finish( |
| struct xfs_scrub *sc) |
| { |
| int error; |
| |
| /* |
| * Keep the AG header buffers locked while we complete deferred work |
| * items. Ensure that both AG buffers are dirty and held when we roll |
| * the transaction so that they move forward in the log without losing |
| * the bli (and hence the bli type) when the transaction commits. |
| * |
| * Normal code would never hold clean buffers across a roll, but repair |
| * needs both buffers to maintain a total lock on the AG. |
| */ |
| if (sc->sa.agi_bp) { |
| xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); |
| xfs_trans_bhold(sc->tp, sc->sa.agi_bp); |
| } |
| |
| if (sc->sa.agf_bp) { |
| xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); |
| xfs_trans_bhold(sc->tp, sc->sa.agf_bp); |
| } |
| |
| /* |
| * Finish all deferred work items. We still hold the AG header buffers |
| * locked regardless of whether or not that succeeds. On failure, the |
| * buffers will be released during teardown on our way out of the |
| * kernel. If successful, join the buffers to the new transaction |
| * and move on. |
| */ |
| error = xfs_defer_finish(&sc->tp); |
| if (error) |
| return error; |
| |
| /* |
| * Release the hold that we set above because defer_finish won't do |
| * that for us. The defer roll code redirties held buffers after each |
| * roll, so the AG header buffers should be ready for logging. |
| */ |
| if (sc->sa.agi_bp) |
| xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); |
| if (sc->sa.agf_bp) |
| xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); |
| |
| return 0; |
| } |
| |
| /* |
| * Does the given AG have enough space to rebuild a btree? Neither AG |
| * reservation can be critical, and we must have enough space (factoring |
| * in AG reservations) to construct a whole btree. |
| */ |
| bool |
| xrep_ag_has_space( |
| struct xfs_perag *pag, |
| xfs_extlen_t nr_blocks, |
| enum xfs_ag_resv_type type) |
| { |
| return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && |
| !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && |
| pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; |
| } |
| |
| /* |
| * Figure out how many blocks to reserve for an AG repair. We calculate the |
| * worst case estimate for the number of blocks we'd need to rebuild one of |
| * any type of per-AG btree. |
| */ |
| xfs_extlen_t |
| xrep_calc_ag_resblks( |
| struct xfs_scrub *sc) |
| { |
| struct xfs_mount *mp = sc->mp; |
| struct xfs_scrub_metadata *sm = sc->sm; |
| struct xfs_perag *pag; |
| struct xfs_buf *bp; |
| xfs_agino_t icount = NULLAGINO; |
| xfs_extlen_t aglen = NULLAGBLOCK; |
| xfs_extlen_t usedlen; |
| xfs_extlen_t freelen; |
| xfs_extlen_t bnobt_sz; |
| xfs_extlen_t inobt_sz; |
| xfs_extlen_t rmapbt_sz; |
| xfs_extlen_t refcbt_sz; |
| int error; |
| |
| if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) |
| return 0; |
| |
| pag = xfs_perag_get(mp, sm->sm_agno); |
| if (xfs_perag_initialised_agi(pag)) { |
| /* Use in-core icount if possible. */ |
| icount = pag->pagi_count; |
| } else { |
| /* Try to get the actual counters from disk. */ |
| error = xfs_ialloc_read_agi(pag, NULL, 0, &bp); |
| if (!error) { |
| icount = pag->pagi_count; |
| xfs_buf_relse(bp); |
| } |
| } |
| |
| /* Now grab the block counters from the AGF. */ |
| error = xfs_alloc_read_agf(pag, NULL, 0, &bp); |
| if (error) { |
| aglen = pag->block_count; |
| freelen = aglen; |
| usedlen = aglen; |
| } else { |
| struct xfs_agf *agf = bp->b_addr; |
| |
| aglen = be32_to_cpu(agf->agf_length); |
| freelen = be32_to_cpu(agf->agf_freeblks); |
| usedlen = aglen - freelen; |
| xfs_buf_relse(bp); |
| } |
| |
| /* If the icount is impossible, make some worst-case assumptions. */ |
| if (icount == NULLAGINO || |
| !xfs_verify_agino(pag, icount)) { |
| icount = pag->agino_max - pag->agino_min + 1; |
| } |
| |
| /* If the block counts are impossible, make worst-case assumptions. */ |
| if (aglen == NULLAGBLOCK || |
| aglen != pag->block_count || |
| freelen >= aglen) { |
| aglen = pag->block_count; |
| freelen = aglen; |
| usedlen = aglen; |
| } |
| xfs_perag_put(pag); |
| |
| trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, |
| freelen, usedlen); |
| |
| /* |
| * Figure out how many blocks we'd need worst case to rebuild |
| * each type of btree. Note that we can only rebuild the |
| * bnobt/cntbt or inobt/finobt as pairs. |
| */ |
| bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); |
| if (xfs_has_sparseinodes(mp)) |
| inobt_sz = xfs_iallocbt_calc_size(mp, icount / |
| XFS_INODES_PER_HOLEMASK_BIT); |
| else |
| inobt_sz = xfs_iallocbt_calc_size(mp, icount / |
| XFS_INODES_PER_CHUNK); |
| if (xfs_has_finobt(mp)) |
| inobt_sz *= 2; |
| if (xfs_has_reflink(mp)) |
| refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); |
| else |
| refcbt_sz = 0; |
| if (xfs_has_rmapbt(mp)) { |
| /* |
| * Guess how many blocks we need to rebuild the rmapbt. |
| * For non-reflink filesystems we can't have more records than |
| * used blocks. However, with reflink it's possible to have |
| * more than one rmap record per AG block. We don't know how |
| * many rmaps there could be in the AG, so we start off with |
| * what we hope is an generous over-estimation. |
| */ |
| if (xfs_has_reflink(mp)) |
| rmapbt_sz = xfs_rmapbt_calc_size(mp, |
| (unsigned long long)aglen * 2); |
| else |
| rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); |
| } else { |
| rmapbt_sz = 0; |
| } |
| |
| trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, |
| inobt_sz, rmapbt_sz, refcbt_sz); |
| |
| return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); |
| } |
| |
| /* |
| * Reconstructing per-AG Btrees |
| * |
| * When a space btree is corrupt, we don't bother trying to fix it. Instead, |
| * we scan secondary space metadata to derive the records that should be in |
| * the damaged btree, initialize a fresh btree root, and insert the records. |
| * Note that for rebuilding the rmapbt we scan all the primary data to |
| * generate the new records. |
| * |
| * However, that leaves the matter of removing all the metadata describing the |
| * old broken structure. For primary metadata we use the rmap data to collect |
| * every extent with a matching rmap owner (bitmap); we then iterate all other |
| * metadata structures with the same rmap owner to collect the extents that |
| * cannot be removed (sublist). We then subtract sublist from bitmap to |
| * derive the blocks that were used by the old btree. These blocks can be |
| * reaped. |
| * |
| * For rmapbt reconstructions we must use different tactics for extent |
| * collection. First we iterate all primary metadata (this excludes the old |
| * rmapbt, obviously) to generate new rmap records. The gaps in the rmap |
| * records are collected as bitmap. The bnobt records are collected as |
| * sublist. As with the other btrees we subtract sublist from bitmap, and the |
| * result (since the rmapbt lives in the free space) are the blocks from the |
| * old rmapbt. |
| */ |
| |
| /* Ensure the freelist is the correct size. */ |
| int |
| xrep_fix_freelist( |
| struct xfs_scrub *sc, |
| int alloc_flags) |
| { |
| struct xfs_alloc_arg args = {0}; |
| |
| args.mp = sc->mp; |
| args.tp = sc->tp; |
| args.agno = sc->sa.pag->pag_agno; |
| args.alignment = 1; |
| args.pag = sc->sa.pag; |
| |
| return xfs_alloc_fix_freelist(&args, alloc_flags); |
| } |
| |
| /* |
| * Finding per-AG Btree Roots for AGF/AGI Reconstruction |
| * |
| * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild |
| * the AG headers by using the rmap data to rummage through the AG looking for |
| * btree roots. This is not guaranteed to work if the AG is heavily damaged |
| * or the rmap data are corrupt. |
| * |
| * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL |
| * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the |
| * AGI is being rebuilt. It must maintain these locks until it's safe for |
| * other threads to change the btrees' shapes. The caller provides |
| * information about the btrees to look for by passing in an array of |
| * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. |
| * The (root, height) fields will be set on return if anything is found. The |
| * last element of the array should have a NULL buf_ops to mark the end of the |
| * array. |
| * |
| * For every rmapbt record matching any of the rmap owners in btree_info, |
| * read each block referenced by the rmap record. If the block is a btree |
| * block from this filesystem matching any of the magic numbers and has a |
| * level higher than what we've already seen, remember the block and the |
| * height of the tree required to have such a block. When the call completes, |
| * we return the highest block we've found for each btree description; those |
| * should be the roots. |
| */ |
| |
| struct xrep_findroot { |
| struct xfs_scrub *sc; |
| struct xfs_buf *agfl_bp; |
| struct xfs_agf *agf; |
| struct xrep_find_ag_btree *btree_info; |
| }; |
| |
| /* See if our block is in the AGFL. */ |
| STATIC int |
| xrep_findroot_agfl_walk( |
| struct xfs_mount *mp, |
| xfs_agblock_t bno, |
| void *priv) |
| { |
| xfs_agblock_t *agbno = priv; |
| |
| return (*agbno == bno) ? -ECANCELED : 0; |
| } |
| |
| /* Does this block match the btree information passed in? */ |
| STATIC int |
| xrep_findroot_block( |
| struct xrep_findroot *ri, |
| struct xrep_find_ag_btree *fab, |
| uint64_t owner, |
| xfs_agblock_t agbno, |
| bool *done_with_block) |
| { |
| struct xfs_mount *mp = ri->sc->mp; |
| struct xfs_buf *bp; |
| struct xfs_btree_block *btblock; |
| xfs_daddr_t daddr; |
| int block_level; |
| int error = 0; |
| |
| daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); |
| |
| /* |
| * Blocks in the AGFL have stale contents that might just happen to |
| * have a matching magic and uuid. We don't want to pull these blocks |
| * in as part of a tree root, so we have to filter out the AGFL stuff |
| * here. If the AGFL looks insane we'll just refuse to repair. |
| */ |
| if (owner == XFS_RMAP_OWN_AG) { |
| error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, |
| xrep_findroot_agfl_walk, &agbno); |
| if (error == -ECANCELED) |
| return 0; |
| if (error) |
| return error; |
| } |
| |
| /* |
| * Read the buffer into memory so that we can see if it's a match for |
| * our btree type. We have no clue if it is beforehand, and we want to |
| * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which |
| * will cause needless disk reads in subsequent calls to this function) |
| * and logging metadata verifier failures. |
| * |
| * Therefore, pass in NULL buffer ops. If the buffer was already in |
| * memory from some other caller it will already have b_ops assigned. |
| * If it was in memory from a previous unsuccessful findroot_block |
| * call, the buffer won't have b_ops but it should be clean and ready |
| * for us to try to verify if the read call succeeds. The same applies |
| * if the buffer wasn't in memory at all. |
| * |
| * Note: If we never match a btree type with this buffer, it will be |
| * left in memory with NULL b_ops. This shouldn't be a problem unless |
| * the buffer gets written. |
| */ |
| error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, |
| mp->m_bsize, 0, &bp, NULL); |
| if (error) |
| return error; |
| |
| /* Ensure the block magic matches the btree type we're looking for. */ |
| btblock = XFS_BUF_TO_BLOCK(bp); |
| ASSERT(fab->buf_ops->magic[1] != 0); |
| if (btblock->bb_magic != fab->buf_ops->magic[1]) |
| goto out; |
| |
| /* |
| * If the buffer already has ops applied and they're not the ones for |
| * this btree type, we know this block doesn't match the btree and we |
| * can bail out. |
| * |
| * If the buffer ops match ours, someone else has already validated |
| * the block for us, so we can move on to checking if this is a root |
| * block candidate. |
| * |
| * If the buffer does not have ops, nobody has successfully validated |
| * the contents and the buffer cannot be dirty. If the magic, uuid, |
| * and structure match this btree type then we'll move on to checking |
| * if it's a root block candidate. If there is no match, bail out. |
| */ |
| if (bp->b_ops) { |
| if (bp->b_ops != fab->buf_ops) |
| goto out; |
| } else { |
| ASSERT(!xfs_trans_buf_is_dirty(bp)); |
| if (!uuid_equal(&btblock->bb_u.s.bb_uuid, |
| &mp->m_sb.sb_meta_uuid)) |
| goto out; |
| /* |
| * Read verifiers can reference b_ops, so we set the pointer |
| * here. If the verifier fails we'll reset the buffer state |
| * to what it was before we touched the buffer. |
| */ |
| bp->b_ops = fab->buf_ops; |
| fab->buf_ops->verify_read(bp); |
| if (bp->b_error) { |
| bp->b_ops = NULL; |
| bp->b_error = 0; |
| goto out; |
| } |
| |
| /* |
| * Some read verifiers will (re)set b_ops, so we must be |
| * careful not to change b_ops after running the verifier. |
| */ |
| } |
| |
| /* |
| * This block passes the magic/uuid and verifier tests for this btree |
| * type. We don't need the caller to try the other tree types. |
| */ |
| *done_with_block = true; |
| |
| /* |
| * Compare this btree block's level to the height of the current |
| * candidate root block. |
| * |
| * If the level matches the root we found previously, throw away both |
| * blocks because there can't be two candidate roots. |
| * |
| * If level is lower in the tree than the root we found previously, |
| * ignore this block. |
| */ |
| block_level = xfs_btree_get_level(btblock); |
| if (block_level + 1 == fab->height) { |
| fab->root = NULLAGBLOCK; |
| goto out; |
| } else if (block_level < fab->height) { |
| goto out; |
| } |
| |
| /* |
| * This is the highest block in the tree that we've found so far. |
| * Update the btree height to reflect what we've learned from this |
| * block. |
| */ |
| fab->height = block_level + 1; |
| |
| /* |
| * If this block doesn't have sibling pointers, then it's the new root |
| * block candidate. Otherwise, the root will be found farther up the |
| * tree. |
| */ |
| if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && |
| btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) |
| fab->root = agbno; |
| else |
| fab->root = NULLAGBLOCK; |
| |
| trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, |
| be32_to_cpu(btblock->bb_magic), fab->height - 1); |
| out: |
| xfs_trans_brelse(ri->sc->tp, bp); |
| return error; |
| } |
| |
| /* |
| * Do any of the blocks in this rmap record match one of the btrees we're |
| * looking for? |
| */ |
| STATIC int |
| xrep_findroot_rmap( |
| struct xfs_btree_cur *cur, |
| const struct xfs_rmap_irec *rec, |
| void *priv) |
| { |
| struct xrep_findroot *ri = priv; |
| struct xrep_find_ag_btree *fab; |
| xfs_agblock_t b; |
| bool done; |
| int error = 0; |
| |
| /* Ignore anything that isn't AG metadata. */ |
| if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) |
| return 0; |
| |
| /* Otherwise scan each block + btree type. */ |
| for (b = 0; b < rec->rm_blockcount; b++) { |
| done = false; |
| for (fab = ri->btree_info; fab->buf_ops; fab++) { |
| if (rec->rm_owner != fab->rmap_owner) |
| continue; |
| error = xrep_findroot_block(ri, fab, |
| rec->rm_owner, rec->rm_startblock + b, |
| &done); |
| if (error) |
| return error; |
| if (done) |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Find the roots of the per-AG btrees described in btree_info. */ |
| int |
| xrep_find_ag_btree_roots( |
| struct xfs_scrub *sc, |
| struct xfs_buf *agf_bp, |
| struct xrep_find_ag_btree *btree_info, |
| struct xfs_buf *agfl_bp) |
| { |
| struct xfs_mount *mp = sc->mp; |
| struct xrep_findroot ri; |
| struct xrep_find_ag_btree *fab; |
| struct xfs_btree_cur *cur; |
| int error; |
| |
| ASSERT(xfs_buf_islocked(agf_bp)); |
| ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); |
| |
| ri.sc = sc; |
| ri.btree_info = btree_info; |
| ri.agf = agf_bp->b_addr; |
| ri.agfl_bp = agfl_bp; |
| for (fab = btree_info; fab->buf_ops; fab++) { |
| ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); |
| ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); |
| fab->root = NULLAGBLOCK; |
| fab->height = 0; |
| } |
| |
| cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); |
| error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); |
| xfs_btree_del_cursor(cur, error); |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_XFS_QUOTA |
| /* Update some quota flags in the superblock. */ |
| void |
| xrep_update_qflags( |
| struct xfs_scrub *sc, |
| unsigned int clear_flags, |
| unsigned int set_flags) |
| { |
| struct xfs_mount *mp = sc->mp; |
| struct xfs_buf *bp; |
| |
| mutex_lock(&mp->m_quotainfo->qi_quotaofflock); |
| if ((mp->m_qflags & clear_flags) == 0 && |
| (mp->m_qflags & set_flags) == set_flags) |
| goto no_update; |
| |
| mp->m_qflags &= ~clear_flags; |
| mp->m_qflags |= set_flags; |
| |
| spin_lock(&mp->m_sb_lock); |
| mp->m_sb.sb_qflags &= ~clear_flags; |
| mp->m_sb.sb_qflags |= set_flags; |
| spin_unlock(&mp->m_sb_lock); |
| |
| /* |
| * Update the quota flags in the ondisk superblock without touching |
| * the summary counters. We have not quiesced inode chunk allocation, |
| * so we cannot coordinate with updates to the icount and ifree percpu |
| * counters. |
| */ |
| bp = xfs_trans_getsb(sc->tp); |
| xfs_sb_to_disk(bp->b_addr, &mp->m_sb); |
| xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); |
| xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1); |
| |
| no_update: |
| mutex_unlock(&mp->m_quotainfo->qi_quotaofflock); |
| } |
| |
| /* Force a quotacheck the next time we mount. */ |
| void |
| xrep_force_quotacheck( |
| struct xfs_scrub *sc, |
| xfs_dqtype_t type) |
| { |
| uint flag; |
| |
| flag = xfs_quota_chkd_flag(type); |
| if (!(flag & sc->mp->m_qflags)) |
| return; |
| |
| xrep_update_qflags(sc, flag, 0); |
| } |
| |
| /* |
| * Attach dquots to this inode, or schedule quotacheck to fix them. |
| * |
| * This function ensures that the appropriate dquots are attached to an inode. |
| * We cannot allow the dquot code to allocate an on-disk dquot block here |
| * because we're already in transaction context. The on-disk dquot should |
| * already exist anyway. If the quota code signals corruption or missing quota |
| * information, schedule quotacheck, which will repair corruptions in the quota |
| * metadata. |
| */ |
| int |
| xrep_ino_dqattach( |
| struct xfs_scrub *sc) |
| { |
| int error; |
| |
| ASSERT(sc->tp != NULL); |
| ASSERT(sc->ip != NULL); |
| |
| error = xfs_qm_dqattach(sc->ip); |
| switch (error) { |
| case -EFSBADCRC: |
| case -EFSCORRUPTED: |
| case -ENOENT: |
| xfs_err_ratelimited(sc->mp, |
| "inode %llu repair encountered quota error %d, quotacheck forced.", |
| (unsigned long long)sc->ip->i_ino, error); |
| if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) |
| xrep_force_quotacheck(sc, XFS_DQTYPE_USER); |
| if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) |
| xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); |
| if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) |
| xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); |
| fallthrough; |
| case -ESRCH: |
| error = 0; |
| break; |
| default: |
| break; |
| } |
| |
| return error; |
| } |
| #endif /* CONFIG_XFS_QUOTA */ |
| |
| /* |
| * Ensure that the inode being repaired is ready to handle a certain number of |
| * extents, or return EFSCORRUPTED. Caller must hold the ILOCK of the inode |
| * being repaired and have joined it to the scrub transaction. |
| */ |
| int |
| xrep_ino_ensure_extent_count( |
| struct xfs_scrub *sc, |
| int whichfork, |
| xfs_extnum_t nextents) |
| { |
| xfs_extnum_t max_extents; |
| bool inode_has_nrext64; |
| |
| inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip); |
| max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork); |
| if (nextents <= max_extents) |
| return 0; |
| if (inode_has_nrext64) |
| return -EFSCORRUPTED; |
| if (!xfs_has_large_extent_counts(sc->mp)) |
| return -EFSCORRUPTED; |
| |
| max_extents = xfs_iext_max_nextents(true, whichfork); |
| if (nextents > max_extents) |
| return -EFSCORRUPTED; |
| |
| sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; |
| xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE); |
| return 0; |
| } |
| |
| /* |
| * Initialize all the btree cursors for an AG repair except for the btree that |
| * we're rebuilding. |
| */ |
| void |
| xrep_ag_btcur_init( |
| struct xfs_scrub *sc, |
| struct xchk_ag *sa) |
| { |
| struct xfs_mount *mp = sc->mp; |
| |
| /* Set up a bnobt cursor for cross-referencing. */ |
| if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT && |
| sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) { |
| sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, |
| sc->sa.pag); |
| sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, |
| sc->sa.pag); |
| } |
| |
| /* Set up a inobt cursor for cross-referencing. */ |
| if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT && |
| sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) { |
| sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, |
| sa->agi_bp); |
| if (xfs_has_finobt(mp)) |
| sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag, |
| sc->tp, sa->agi_bp); |
| } |
| |
| /* Set up a rmapbt cursor for cross-referencing. */ |
| if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT && |
| xfs_has_rmapbt(mp)) |
| sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, |
| sc->sa.pag); |
| |
| /* Set up a refcountbt cursor for cross-referencing. */ |
| if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT && |
| xfs_has_reflink(mp)) |
| sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, |
| sa->agf_bp, sc->sa.pag); |
| } |
| |
| /* |
| * Reinitialize the in-core AG state after a repair by rereading the AGF |
| * buffer. We had better get the same AGF buffer as the one that's attached |
| * to the scrub context. |
| */ |
| int |
| xrep_reinit_pagf( |
| struct xfs_scrub *sc) |
| { |
| struct xfs_perag *pag = sc->sa.pag; |
| struct xfs_buf *bp; |
| int error; |
| |
| ASSERT(pag); |
| ASSERT(xfs_perag_initialised_agf(pag)); |
| |
| clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); |
| error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp); |
| if (error) |
| return error; |
| |
| if (bp != sc->sa.agf_bp) { |
| ASSERT(bp == sc->sa.agf_bp); |
| return -EFSCORRUPTED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reinitialize the in-core AG state after a repair by rereading the AGI |
| * buffer. We had better get the same AGI buffer as the one that's attached |
| * to the scrub context. |
| */ |
| int |
| xrep_reinit_pagi( |
| struct xfs_scrub *sc) |
| { |
| struct xfs_perag *pag = sc->sa.pag; |
| struct xfs_buf *bp; |
| int error; |
| |
| ASSERT(pag); |
| ASSERT(xfs_perag_initialised_agi(pag)); |
| |
| clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); |
| error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp); |
| if (error) |
| return error; |
| |
| if (bp != sc->sa.agi_bp) { |
| ASSERT(bp == sc->sa.agi_bp); |
| return -EFSCORRUPTED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Given an active reference to a perag structure, load AG headers and cursors. |
| * This should only be called to scan an AG while repairing file-based metadata. |
| */ |
| int |
| xrep_ag_init( |
| struct xfs_scrub *sc, |
| struct xfs_perag *pag, |
| struct xchk_ag *sa) |
| { |
| int error; |
| |
| ASSERT(!sa->pag); |
| |
| error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp); |
| if (error) |
| return error; |
| |
| error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp); |
| if (error) |
| return error; |
| |
| /* Grab our own passive reference from the caller's ref. */ |
| sa->pag = xfs_perag_hold(pag); |
| xrep_ag_btcur_init(sc, sa); |
| return 0; |
| } |
| |
| /* Reinitialize the per-AG block reservation for the AG we just fixed. */ |
| int |
| xrep_reset_perag_resv( |
| struct xfs_scrub *sc) |
| { |
| int error; |
| |
| if (!(sc->flags & XREP_RESET_PERAG_RESV)) |
| return 0; |
| |
| ASSERT(sc->sa.pag != NULL); |
| ASSERT(sc->ops->type == ST_PERAG); |
| ASSERT(sc->tp); |
| |
| sc->flags &= ~XREP_RESET_PERAG_RESV; |
| xfs_ag_resv_free(sc->sa.pag); |
| error = xfs_ag_resv_init(sc->sa.pag, sc->tp); |
| if (error == -ENOSPC) { |
| xfs_err(sc->mp, |
| "Insufficient free space to reset per-AG reservation for AG %u after repair.", |
| sc->sa.pag->pag_agno); |
| error = 0; |
| } |
| |
| return error; |
| } |
| |
| /* Decide if we are going to call the repair function for a scrub type. */ |
| bool |
| xrep_will_attempt( |
| struct xfs_scrub *sc) |
| { |
| /* Userspace asked us to rebuild the structure regardless. */ |
| if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) |
| return true; |
| |
| /* Let debug users force us into the repair routines. */ |
| if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR)) |
| return true; |
| |
| /* Metadata is corrupt or failed cross-referencing. */ |
| if (xchk_needs_repair(sc->sm)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Try to fix some part of a metadata inode by calling another scrubber. */ |
| STATIC int |
| xrep_metadata_inode_subtype( |
| struct xfs_scrub *sc, |
| unsigned int scrub_type) |
| { |
| struct xfs_scrub_subord *sub; |
| int error; |
| |
| /* |
| * Let's see if the inode needs repair. Use a subordinate scrub context |
| * to call the scrub and repair functions so that we can hang on to the |
| * resources that we already acquired instead of using the standard |
| * setup/teardown routines. |
| */ |
| sub = xchk_scrub_create_subord(sc, scrub_type); |
| error = sub->sc.ops->scrub(&sub->sc); |
| if (error) |
| goto out; |
| if (!xrep_will_attempt(&sub->sc)) |
| goto out; |
| |
| /* |
| * Repair some part of the inode. This will potentially join the inode |
| * to the transaction. |
| */ |
| error = sub->sc.ops->repair(&sub->sc); |
| if (error) |
| goto out; |
| |
| /* |
| * Finish all deferred intent items and then roll the transaction so |
| * that the inode will not be joined to the transaction when we exit |
| * the function. |
| */ |
| error = xfs_defer_finish(&sub->sc.tp); |
| if (error) |
| goto out; |
| error = xfs_trans_roll(&sub->sc.tp); |
| if (error) |
| goto out; |
| |
| /* |
| * Clear the corruption flags and re-check the metadata that we just |
| * repaired. |
| */ |
| sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; |
| error = sub->sc.ops->scrub(&sub->sc); |
| if (error) |
| goto out; |
| |
| /* If corruption persists, the repair has failed. */ |
| if (xchk_needs_repair(sub->sc.sm)) { |
| error = -EFSCORRUPTED; |
| goto out; |
| } |
| out: |
| xchk_scrub_free_subord(sub); |
| return error; |
| } |
| |
| /* |
| * Repair the ondisk forks of a metadata inode. The caller must ensure that |
| * sc->ip points to the metadata inode and the ILOCK is held on that inode. |
| * The inode must not be joined to the transaction before the call, and will |
| * not be afterwards. |
| */ |
| int |
| xrep_metadata_inode_forks( |
| struct xfs_scrub *sc) |
| { |
| bool dirty = false; |
| int error; |
| |
| /* Repair the inode record and the data fork. */ |
| error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); |
| if (error) |
| return error; |
| |
| error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); |
| if (error) |
| return error; |
| |
| /* Make sure the attr fork looks ok before we delete it. */ |
| if (xfs_inode_hasattr(sc->ip)) { |
| error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA); |
| if (error) |
| return error; |
| } |
| |
| /* Clear the reflink flag since metadata never shares. */ |
| if (xfs_is_reflink_inode(sc->ip)) { |
| dirty = true; |
| xfs_trans_ijoin(sc->tp, sc->ip, 0); |
| error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp); |
| if (error) |
| return error; |
| } |
| |
| /* Clear the attr forks since metadata shouldn't have that. */ |
| if (xfs_inode_hasattr(sc->ip)) { |
| if (!dirty) { |
| dirty = true; |
| xfs_trans_ijoin(sc->tp, sc->ip, 0); |
| } |
| error = xrep_xattr_reset_fork(sc); |
| if (error) |
| return error; |
| } |
| |
| /* |
| * If we modified the inode, roll the transaction but don't rejoin the |
| * inode to the new transaction because xrep_bmap_data can do that. |
| */ |
| if (dirty) { |
| error = xfs_trans_roll(&sc->tp); |
| if (error) |
| return error; |
| dirty = false; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Set up an in-memory buffer cache so that we can use the xfbtree. Allocating |
| * a shmem file might take loks, so we cannot be in transaction context. Park |
| * our resources in the scrub context and let the teardown function take care |
| * of them at the right time. |
| */ |
| int |
| xrep_setup_xfbtree( |
| struct xfs_scrub *sc, |
| const char *descr) |
| { |
| ASSERT(sc->tp == NULL); |
| |
| return xmbuf_alloc(sc->mp, descr, &sc->xmbtp); |
| } |
| |
| /* |
| * Create a dummy transaction for use in a live update hook function. This |
| * function MUST NOT be called from regular repair code because the current |
| * process' transaction is saved via the cookie. |
| */ |
| int |
| xrep_trans_alloc_hook_dummy( |
| struct xfs_mount *mp, |
| void **cookiep, |
| struct xfs_trans **tpp) |
| { |
| int error; |
| |
| *cookiep = current->journal_info; |
| current->journal_info = NULL; |
| |
| error = xfs_trans_alloc_empty(mp, tpp); |
| if (!error) |
| return 0; |
| |
| current->journal_info = *cookiep; |
| *cookiep = NULL; |
| return error; |
| } |
| |
| /* Cancel a dummy transaction used by a live update hook function. */ |
| void |
| xrep_trans_cancel_hook_dummy( |
| void **cookiep, |
| struct xfs_trans *tp) |
| { |
| xfs_trans_cancel(tp); |
| current->journal_info = *cookiep; |
| *cookiep = NULL; |
| } |
| |
| /* |
| * See if this buffer can pass the given ->verify_struct() function. |
| * |
| * If the buffer already has ops attached and they're not the ones that were |
| * passed in, we reject the buffer. Otherwise, we perform the structure test |
| * (note that we do not check CRCs) and return the outcome of the test. The |
| * buffer ops and error state are left unchanged. |
| */ |
| bool |
| xrep_buf_verify_struct( |
| struct xfs_buf *bp, |
| const struct xfs_buf_ops *ops) |
| { |
| const struct xfs_buf_ops *old_ops = bp->b_ops; |
| xfs_failaddr_t fa; |
| int old_error; |
| |
| if (old_ops) { |
| if (old_ops != ops) |
| return false; |
| } |
| |
| old_error = bp->b_error; |
| bp->b_ops = ops; |
| fa = bp->b_ops->verify_struct(bp); |
| bp->b_ops = old_ops; |
| bp->b_error = old_error; |
| |
| return fa == NULL; |
| } |