| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * zswap.c - zswap driver file |
| * |
| * zswap is a cache that takes pages that are in the process |
| * of being swapped out and attempts to compress and store them in a |
| * RAM-based memory pool. This can result in a significant I/O reduction on |
| * the swap device and, in the case where decompressing from RAM is faster |
| * than reading from the swap device, can also improve workload performance. |
| * |
| * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/atomic.h> |
| #include <linux/swap.h> |
| #include <linux/crypto.h> |
| #include <linux/scatterlist.h> |
| #include <linux/mempolicy.h> |
| #include <linux/mempool.h> |
| #include <linux/zpool.h> |
| #include <crypto/acompress.h> |
| #include <linux/zswap.h> |
| #include <linux/mm_types.h> |
| #include <linux/page-flags.h> |
| #include <linux/swapops.h> |
| #include <linux/writeback.h> |
| #include <linux/pagemap.h> |
| #include <linux/workqueue.h> |
| #include <linux/list_lru.h> |
| |
| #include "swap.h" |
| #include "internal.h" |
| |
| /********************************* |
| * statistics |
| **********************************/ |
| /* The number of compressed pages currently stored in zswap */ |
| atomic_t zswap_stored_pages = ATOMIC_INIT(0); |
| |
| /* |
| * The statistics below are not protected from concurrent access for |
| * performance reasons so they may not be a 100% accurate. However, |
| * they do provide useful information on roughly how many times a |
| * certain event is occurring. |
| */ |
| |
| /* Pool limit was hit (see zswap_max_pool_percent) */ |
| static u64 zswap_pool_limit_hit; |
| /* Pages written back when pool limit was reached */ |
| static u64 zswap_written_back_pages; |
| /* Store failed due to a reclaim failure after pool limit was reached */ |
| static u64 zswap_reject_reclaim_fail; |
| /* Store failed due to compression algorithm failure */ |
| static u64 zswap_reject_compress_fail; |
| /* Compressed page was too big for the allocator to (optimally) store */ |
| static u64 zswap_reject_compress_poor; |
| /* Store failed because underlying allocator could not get memory */ |
| static u64 zswap_reject_alloc_fail; |
| /* Store failed because the entry metadata could not be allocated (rare) */ |
| static u64 zswap_reject_kmemcache_fail; |
| |
| /* Shrinker work queue */ |
| static struct workqueue_struct *shrink_wq; |
| /* Pool limit was hit, we need to calm down */ |
| static bool zswap_pool_reached_full; |
| |
| /********************************* |
| * tunables |
| **********************************/ |
| |
| #define ZSWAP_PARAM_UNSET "" |
| |
| static int zswap_setup(void); |
| |
| /* Enable/disable zswap */ |
| static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); |
| static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); |
| static int zswap_enabled_param_set(const char *, |
| const struct kernel_param *); |
| static const struct kernel_param_ops zswap_enabled_param_ops = { |
| .set = zswap_enabled_param_set, |
| .get = param_get_bool, |
| }; |
| module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); |
| |
| /* Crypto compressor to use */ |
| static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; |
| static int zswap_compressor_param_set(const char *, |
| const struct kernel_param *); |
| static const struct kernel_param_ops zswap_compressor_param_ops = { |
| .set = zswap_compressor_param_set, |
| .get = param_get_charp, |
| .free = param_free_charp, |
| }; |
| module_param_cb(compressor, &zswap_compressor_param_ops, |
| &zswap_compressor, 0644); |
| |
| /* Compressed storage zpool to use */ |
| static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; |
| static int zswap_zpool_param_set(const char *, const struct kernel_param *); |
| static const struct kernel_param_ops zswap_zpool_param_ops = { |
| .set = zswap_zpool_param_set, |
| .get = param_get_charp, |
| .free = param_free_charp, |
| }; |
| module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); |
| |
| /* The maximum percentage of memory that the compressed pool can occupy */ |
| static unsigned int zswap_max_pool_percent = 20; |
| module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); |
| |
| /* The threshold for accepting new pages after the max_pool_percent was hit */ |
| static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ |
| module_param_named(accept_threshold_percent, zswap_accept_thr_percent, |
| uint, 0644); |
| |
| /* Enable/disable memory pressure-based shrinker. */ |
| static bool zswap_shrinker_enabled = IS_ENABLED( |
| CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); |
| module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); |
| |
| bool zswap_is_enabled(void) |
| { |
| return zswap_enabled; |
| } |
| |
| bool zswap_never_enabled(void) |
| { |
| return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); |
| } |
| |
| /********************************* |
| * data structures |
| **********************************/ |
| |
| struct crypto_acomp_ctx { |
| struct crypto_acomp *acomp; |
| struct acomp_req *req; |
| struct crypto_wait wait; |
| u8 *buffer; |
| struct mutex mutex; |
| bool is_sleepable; |
| }; |
| |
| /* |
| * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. |
| * The only case where lru_lock is not acquired while holding tree.lock is |
| * when a zswap_entry is taken off the lru for writeback, in that case it |
| * needs to be verified that it's still valid in the tree. |
| */ |
| struct zswap_pool { |
| struct zpool *zpool; |
| struct crypto_acomp_ctx __percpu *acomp_ctx; |
| struct percpu_ref ref; |
| struct list_head list; |
| struct work_struct release_work; |
| struct hlist_node node; |
| char tfm_name[CRYPTO_MAX_ALG_NAME]; |
| }; |
| |
| /* Global LRU lists shared by all zswap pools. */ |
| static struct list_lru zswap_list_lru; |
| |
| /* The lock protects zswap_next_shrink updates. */ |
| static DEFINE_SPINLOCK(zswap_shrink_lock); |
| static struct mem_cgroup *zswap_next_shrink; |
| static struct work_struct zswap_shrink_work; |
| static struct shrinker *zswap_shrinker; |
| |
| /* |
| * struct zswap_entry |
| * |
| * This structure contains the metadata for tracking a single compressed |
| * page within zswap. |
| * |
| * swpentry - associated swap entry, the offset indexes into the red-black tree |
| * length - the length in bytes of the compressed page data. Needed during |
| * decompression. |
| * referenced - true if the entry recently entered the zswap pool. Unset by the |
| * writeback logic. The entry is only reclaimed by the writeback |
| * logic if referenced is unset. See comments in the shrinker |
| * section for context. |
| * pool - the zswap_pool the entry's data is in |
| * handle - zpool allocation handle that stores the compressed page data |
| * objcg - the obj_cgroup that the compressed memory is charged to |
| * lru - handle to the pool's lru used to evict pages. |
| */ |
| struct zswap_entry { |
| swp_entry_t swpentry; |
| unsigned int length; |
| bool referenced; |
| struct zswap_pool *pool; |
| unsigned long handle; |
| struct obj_cgroup *objcg; |
| struct list_head lru; |
| }; |
| |
| static struct xarray *zswap_trees[MAX_SWAPFILES]; |
| static unsigned int nr_zswap_trees[MAX_SWAPFILES]; |
| |
| /* RCU-protected iteration */ |
| static LIST_HEAD(zswap_pools); |
| /* protects zswap_pools list modification */ |
| static DEFINE_SPINLOCK(zswap_pools_lock); |
| /* pool counter to provide unique names to zpool */ |
| static atomic_t zswap_pools_count = ATOMIC_INIT(0); |
| |
| enum zswap_init_type { |
| ZSWAP_UNINIT, |
| ZSWAP_INIT_SUCCEED, |
| ZSWAP_INIT_FAILED |
| }; |
| |
| static enum zswap_init_type zswap_init_state; |
| |
| /* used to ensure the integrity of initialization */ |
| static DEFINE_MUTEX(zswap_init_lock); |
| |
| /* init completed, but couldn't create the initial pool */ |
| static bool zswap_has_pool; |
| |
| /********************************* |
| * helpers and fwd declarations |
| **********************************/ |
| |
| static inline struct xarray *swap_zswap_tree(swp_entry_t swp) |
| { |
| return &zswap_trees[swp_type(swp)][swp_offset(swp) |
| >> SWAP_ADDRESS_SPACE_SHIFT]; |
| } |
| |
| #define zswap_pool_debug(msg, p) \ |
| pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ |
| zpool_get_type((p)->zpool)) |
| |
| /********************************* |
| * pool functions |
| **********************************/ |
| static void __zswap_pool_empty(struct percpu_ref *ref); |
| |
| static struct zswap_pool *zswap_pool_create(char *type, char *compressor) |
| { |
| struct zswap_pool *pool; |
| char name[38]; /* 'zswap' + 32 char (max) num + \0 */ |
| gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; |
| int ret; |
| |
| if (!zswap_has_pool) { |
| /* if either are unset, pool initialization failed, and we |
| * need both params to be set correctly before trying to |
| * create a pool. |
| */ |
| if (!strcmp(type, ZSWAP_PARAM_UNSET)) |
| return NULL; |
| if (!strcmp(compressor, ZSWAP_PARAM_UNSET)) |
| return NULL; |
| } |
| |
| pool = kzalloc(sizeof(*pool), GFP_KERNEL); |
| if (!pool) |
| return NULL; |
| |
| /* unique name for each pool specifically required by zsmalloc */ |
| snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); |
| pool->zpool = zpool_create_pool(type, name, gfp); |
| if (!pool->zpool) { |
| pr_err("%s zpool not available\n", type); |
| goto error; |
| } |
| pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); |
| |
| strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); |
| |
| pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); |
| if (!pool->acomp_ctx) { |
| pr_err("percpu alloc failed\n"); |
| goto error; |
| } |
| |
| ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, |
| &pool->node); |
| if (ret) |
| goto error; |
| |
| /* being the current pool takes 1 ref; this func expects the |
| * caller to always add the new pool as the current pool |
| */ |
| ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, |
| PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); |
| if (ret) |
| goto ref_fail; |
| INIT_LIST_HEAD(&pool->list); |
| |
| zswap_pool_debug("created", pool); |
| |
| return pool; |
| |
| ref_fail: |
| cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); |
| error: |
| if (pool->acomp_ctx) |
| free_percpu(pool->acomp_ctx); |
| if (pool->zpool) |
| zpool_destroy_pool(pool->zpool); |
| kfree(pool); |
| return NULL; |
| } |
| |
| static struct zswap_pool *__zswap_pool_create_fallback(void) |
| { |
| bool has_comp, has_zpool; |
| |
| has_comp = crypto_has_acomp(zswap_compressor, 0, 0); |
| if (!has_comp && strcmp(zswap_compressor, |
| CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { |
| pr_err("compressor %s not available, using default %s\n", |
| zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); |
| param_free_charp(&zswap_compressor); |
| zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; |
| has_comp = crypto_has_acomp(zswap_compressor, 0, 0); |
| } |
| if (!has_comp) { |
| pr_err("default compressor %s not available\n", |
| zswap_compressor); |
| param_free_charp(&zswap_compressor); |
| zswap_compressor = ZSWAP_PARAM_UNSET; |
| } |
| |
| has_zpool = zpool_has_pool(zswap_zpool_type); |
| if (!has_zpool && strcmp(zswap_zpool_type, |
| CONFIG_ZSWAP_ZPOOL_DEFAULT)) { |
| pr_err("zpool %s not available, using default %s\n", |
| zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT); |
| param_free_charp(&zswap_zpool_type); |
| zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; |
| has_zpool = zpool_has_pool(zswap_zpool_type); |
| } |
| if (!has_zpool) { |
| pr_err("default zpool %s not available\n", |
| zswap_zpool_type); |
| param_free_charp(&zswap_zpool_type); |
| zswap_zpool_type = ZSWAP_PARAM_UNSET; |
| } |
| |
| if (!has_comp || !has_zpool) |
| return NULL; |
| |
| return zswap_pool_create(zswap_zpool_type, zswap_compressor); |
| } |
| |
| static void zswap_pool_destroy(struct zswap_pool *pool) |
| { |
| zswap_pool_debug("destroying", pool); |
| |
| cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); |
| free_percpu(pool->acomp_ctx); |
| |
| zpool_destroy_pool(pool->zpool); |
| kfree(pool); |
| } |
| |
| static void __zswap_pool_release(struct work_struct *work) |
| { |
| struct zswap_pool *pool = container_of(work, typeof(*pool), |
| release_work); |
| |
| synchronize_rcu(); |
| |
| /* nobody should have been able to get a ref... */ |
| WARN_ON(!percpu_ref_is_zero(&pool->ref)); |
| percpu_ref_exit(&pool->ref); |
| |
| /* pool is now off zswap_pools list and has no references. */ |
| zswap_pool_destroy(pool); |
| } |
| |
| static struct zswap_pool *zswap_pool_current(void); |
| |
| static void __zswap_pool_empty(struct percpu_ref *ref) |
| { |
| struct zswap_pool *pool; |
| |
| pool = container_of(ref, typeof(*pool), ref); |
| |
| spin_lock_bh(&zswap_pools_lock); |
| |
| WARN_ON(pool == zswap_pool_current()); |
| |
| list_del_rcu(&pool->list); |
| |
| INIT_WORK(&pool->release_work, __zswap_pool_release); |
| schedule_work(&pool->release_work); |
| |
| spin_unlock_bh(&zswap_pools_lock); |
| } |
| |
| static int __must_check zswap_pool_get(struct zswap_pool *pool) |
| { |
| if (!pool) |
| return 0; |
| |
| return percpu_ref_tryget(&pool->ref); |
| } |
| |
| static void zswap_pool_put(struct zswap_pool *pool) |
| { |
| percpu_ref_put(&pool->ref); |
| } |
| |
| static struct zswap_pool *__zswap_pool_current(void) |
| { |
| struct zswap_pool *pool; |
| |
| pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); |
| WARN_ONCE(!pool && zswap_has_pool, |
| "%s: no page storage pool!\n", __func__); |
| |
| return pool; |
| } |
| |
| static struct zswap_pool *zswap_pool_current(void) |
| { |
| assert_spin_locked(&zswap_pools_lock); |
| |
| return __zswap_pool_current(); |
| } |
| |
| static struct zswap_pool *zswap_pool_current_get(void) |
| { |
| struct zswap_pool *pool; |
| |
| rcu_read_lock(); |
| |
| pool = __zswap_pool_current(); |
| if (!zswap_pool_get(pool)) |
| pool = NULL; |
| |
| rcu_read_unlock(); |
| |
| return pool; |
| } |
| |
| /* type and compressor must be null-terminated */ |
| static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) |
| { |
| struct zswap_pool *pool; |
| |
| assert_spin_locked(&zswap_pools_lock); |
| |
| list_for_each_entry_rcu(pool, &zswap_pools, list) { |
| if (strcmp(pool->tfm_name, compressor)) |
| continue; |
| if (strcmp(zpool_get_type(pool->zpool), type)) |
| continue; |
| /* if we can't get it, it's about to be destroyed */ |
| if (!zswap_pool_get(pool)) |
| continue; |
| return pool; |
| } |
| |
| return NULL; |
| } |
| |
| static unsigned long zswap_max_pages(void) |
| { |
| return totalram_pages() * zswap_max_pool_percent / 100; |
| } |
| |
| static unsigned long zswap_accept_thr_pages(void) |
| { |
| return zswap_max_pages() * zswap_accept_thr_percent / 100; |
| } |
| |
| unsigned long zswap_total_pages(void) |
| { |
| struct zswap_pool *pool; |
| unsigned long total = 0; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(pool, &zswap_pools, list) |
| total += zpool_get_total_pages(pool->zpool); |
| rcu_read_unlock(); |
| |
| return total; |
| } |
| |
| static bool zswap_check_limits(void) |
| { |
| unsigned long cur_pages = zswap_total_pages(); |
| unsigned long max_pages = zswap_max_pages(); |
| |
| if (cur_pages >= max_pages) { |
| zswap_pool_limit_hit++; |
| zswap_pool_reached_full = true; |
| } else if (zswap_pool_reached_full && |
| cur_pages <= zswap_accept_thr_pages()) { |
| zswap_pool_reached_full = false; |
| } |
| return zswap_pool_reached_full; |
| } |
| |
| /********************************* |
| * param callbacks |
| **********************************/ |
| |
| static bool zswap_pool_changed(const char *s, const struct kernel_param *kp) |
| { |
| /* no change required */ |
| if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool) |
| return false; |
| return true; |
| } |
| |
| /* val must be a null-terminated string */ |
| static int __zswap_param_set(const char *val, const struct kernel_param *kp, |
| char *type, char *compressor) |
| { |
| struct zswap_pool *pool, *put_pool = NULL; |
| char *s = strstrip((char *)val); |
| int ret = 0; |
| bool new_pool = false; |
| |
| mutex_lock(&zswap_init_lock); |
| switch (zswap_init_state) { |
| case ZSWAP_UNINIT: |
| /* if this is load-time (pre-init) param setting, |
| * don't create a pool; that's done during init. |
| */ |
| ret = param_set_charp(s, kp); |
| break; |
| case ZSWAP_INIT_SUCCEED: |
| new_pool = zswap_pool_changed(s, kp); |
| break; |
| case ZSWAP_INIT_FAILED: |
| pr_err("can't set param, initialization failed\n"); |
| ret = -ENODEV; |
| } |
| mutex_unlock(&zswap_init_lock); |
| |
| /* no need to create a new pool, return directly */ |
| if (!new_pool) |
| return ret; |
| |
| if (!type) { |
| if (!zpool_has_pool(s)) { |
| pr_err("zpool %s not available\n", s); |
| return -ENOENT; |
| } |
| type = s; |
| } else if (!compressor) { |
| if (!crypto_has_acomp(s, 0, 0)) { |
| pr_err("compressor %s not available\n", s); |
| return -ENOENT; |
| } |
| compressor = s; |
| } else { |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| spin_lock_bh(&zswap_pools_lock); |
| |
| pool = zswap_pool_find_get(type, compressor); |
| if (pool) { |
| zswap_pool_debug("using existing", pool); |
| WARN_ON(pool == zswap_pool_current()); |
| list_del_rcu(&pool->list); |
| } |
| |
| spin_unlock_bh(&zswap_pools_lock); |
| |
| if (!pool) |
| pool = zswap_pool_create(type, compressor); |
| else { |
| /* |
| * Restore the initial ref dropped by percpu_ref_kill() |
| * when the pool was decommissioned and switch it again |
| * to percpu mode. |
| */ |
| percpu_ref_resurrect(&pool->ref); |
| |
| /* Drop the ref from zswap_pool_find_get(). */ |
| zswap_pool_put(pool); |
| } |
| |
| if (pool) |
| ret = param_set_charp(s, kp); |
| else |
| ret = -EINVAL; |
| |
| spin_lock_bh(&zswap_pools_lock); |
| |
| if (!ret) { |
| put_pool = zswap_pool_current(); |
| list_add_rcu(&pool->list, &zswap_pools); |
| zswap_has_pool = true; |
| } else if (pool) { |
| /* add the possibly pre-existing pool to the end of the pools |
| * list; if it's new (and empty) then it'll be removed and |
| * destroyed by the put after we drop the lock |
| */ |
| list_add_tail_rcu(&pool->list, &zswap_pools); |
| put_pool = pool; |
| } |
| |
| spin_unlock_bh(&zswap_pools_lock); |
| |
| if (!zswap_has_pool && !pool) { |
| /* if initial pool creation failed, and this pool creation also |
| * failed, maybe both compressor and zpool params were bad. |
| * Allow changing this param, so pool creation will succeed |
| * when the other param is changed. We already verified this |
| * param is ok in the zpool_has_pool() or crypto_has_acomp() |
| * checks above. |
| */ |
| ret = param_set_charp(s, kp); |
| } |
| |
| /* drop the ref from either the old current pool, |
| * or the new pool we failed to add |
| */ |
| if (put_pool) |
| percpu_ref_kill(&put_pool->ref); |
| |
| return ret; |
| } |
| |
| static int zswap_compressor_param_set(const char *val, |
| const struct kernel_param *kp) |
| { |
| return __zswap_param_set(val, kp, zswap_zpool_type, NULL); |
| } |
| |
| static int zswap_zpool_param_set(const char *val, |
| const struct kernel_param *kp) |
| { |
| return __zswap_param_set(val, kp, NULL, zswap_compressor); |
| } |
| |
| static int zswap_enabled_param_set(const char *val, |
| const struct kernel_param *kp) |
| { |
| int ret = -ENODEV; |
| |
| /* if this is load-time (pre-init) param setting, only set param. */ |
| if (system_state != SYSTEM_RUNNING) |
| return param_set_bool(val, kp); |
| |
| mutex_lock(&zswap_init_lock); |
| switch (zswap_init_state) { |
| case ZSWAP_UNINIT: |
| if (zswap_setup()) |
| break; |
| fallthrough; |
| case ZSWAP_INIT_SUCCEED: |
| if (!zswap_has_pool) |
| pr_err("can't enable, no pool configured\n"); |
| else |
| ret = param_set_bool(val, kp); |
| break; |
| case ZSWAP_INIT_FAILED: |
| pr_err("can't enable, initialization failed\n"); |
| } |
| mutex_unlock(&zswap_init_lock); |
| |
| return ret; |
| } |
| |
| /********************************* |
| * lru functions |
| **********************************/ |
| |
| /* should be called under RCU */ |
| #ifdef CONFIG_MEMCG |
| static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) |
| { |
| return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; |
| } |
| #else |
| static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static inline int entry_to_nid(struct zswap_entry *entry) |
| { |
| return page_to_nid(virt_to_page(entry)); |
| } |
| |
| static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) |
| { |
| int nid = entry_to_nid(entry); |
| struct mem_cgroup *memcg; |
| |
| /* |
| * Note that it is safe to use rcu_read_lock() here, even in the face of |
| * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection |
| * used in list_lru lookup, only two scenarios are possible: |
| * |
| * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The |
| * new entry will be reparented to memcg's parent's list_lru. |
| * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The |
| * new entry will be added directly to memcg's parent's list_lru. |
| * |
| * Similar reasoning holds for list_lru_del(). |
| */ |
| rcu_read_lock(); |
| memcg = mem_cgroup_from_entry(entry); |
| /* will always succeed */ |
| list_lru_add(list_lru, &entry->lru, nid, memcg); |
| rcu_read_unlock(); |
| } |
| |
| static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) |
| { |
| int nid = entry_to_nid(entry); |
| struct mem_cgroup *memcg; |
| |
| rcu_read_lock(); |
| memcg = mem_cgroup_from_entry(entry); |
| /* will always succeed */ |
| list_lru_del(list_lru, &entry->lru, nid, memcg); |
| rcu_read_unlock(); |
| } |
| |
| void zswap_lruvec_state_init(struct lruvec *lruvec) |
| { |
| atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0); |
| } |
| |
| void zswap_folio_swapin(struct folio *folio) |
| { |
| struct lruvec *lruvec; |
| |
| if (folio) { |
| lruvec = folio_lruvec(folio); |
| atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins); |
| } |
| } |
| |
| /* |
| * This function should be called when a memcg is being offlined. |
| * |
| * Since the global shrinker shrink_worker() may hold a reference |
| * of the memcg, we must check and release the reference in |
| * zswap_next_shrink. |
| * |
| * shrink_worker() must handle the case where this function releases |
| * the reference of memcg being shrunk. |
| */ |
| void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) |
| { |
| /* lock out zswap shrinker walking memcg tree */ |
| spin_lock(&zswap_shrink_lock); |
| if (zswap_next_shrink == memcg) { |
| do { |
| zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); |
| } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink)); |
| } |
| spin_unlock(&zswap_shrink_lock); |
| } |
| |
| /********************************* |
| * zswap entry functions |
| **********************************/ |
| static struct kmem_cache *zswap_entry_cache; |
| |
| static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) |
| { |
| struct zswap_entry *entry; |
| entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); |
| if (!entry) |
| return NULL; |
| return entry; |
| } |
| |
| static void zswap_entry_cache_free(struct zswap_entry *entry) |
| { |
| kmem_cache_free(zswap_entry_cache, entry); |
| } |
| |
| /* |
| * Carries out the common pattern of freeing and entry's zpool allocation, |
| * freeing the entry itself, and decrementing the number of stored pages. |
| */ |
| static void zswap_entry_free(struct zswap_entry *entry) |
| { |
| zswap_lru_del(&zswap_list_lru, entry); |
| zpool_free(entry->pool->zpool, entry->handle); |
| zswap_pool_put(entry->pool); |
| if (entry->objcg) { |
| obj_cgroup_uncharge_zswap(entry->objcg, entry->length); |
| obj_cgroup_put(entry->objcg); |
| } |
| zswap_entry_cache_free(entry); |
| atomic_dec(&zswap_stored_pages); |
| } |
| |
| /********************************* |
| * compressed storage functions |
| **********************************/ |
| static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) |
| { |
| struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); |
| struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); |
| struct crypto_acomp *acomp; |
| struct acomp_req *req; |
| int ret; |
| |
| mutex_init(&acomp_ctx->mutex); |
| |
| acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); |
| if (!acomp_ctx->buffer) |
| return -ENOMEM; |
| |
| acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); |
| if (IS_ERR(acomp)) { |
| pr_err("could not alloc crypto acomp %s : %ld\n", |
| pool->tfm_name, PTR_ERR(acomp)); |
| ret = PTR_ERR(acomp); |
| goto acomp_fail; |
| } |
| acomp_ctx->acomp = acomp; |
| acomp_ctx->is_sleepable = acomp_is_async(acomp); |
| |
| req = acomp_request_alloc(acomp_ctx->acomp); |
| if (!req) { |
| pr_err("could not alloc crypto acomp_request %s\n", |
| pool->tfm_name); |
| ret = -ENOMEM; |
| goto req_fail; |
| } |
| acomp_ctx->req = req; |
| |
| crypto_init_wait(&acomp_ctx->wait); |
| /* |
| * if the backend of acomp is async zip, crypto_req_done() will wakeup |
| * crypto_wait_req(); if the backend of acomp is scomp, the callback |
| * won't be called, crypto_wait_req() will return without blocking. |
| */ |
| acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &acomp_ctx->wait); |
| |
| return 0; |
| |
| req_fail: |
| crypto_free_acomp(acomp_ctx->acomp); |
| acomp_fail: |
| kfree(acomp_ctx->buffer); |
| return ret; |
| } |
| |
| static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) |
| { |
| struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); |
| struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); |
| |
| if (!IS_ERR_OR_NULL(acomp_ctx)) { |
| if (!IS_ERR_OR_NULL(acomp_ctx->req)) |
| acomp_request_free(acomp_ctx->req); |
| if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) |
| crypto_free_acomp(acomp_ctx->acomp); |
| kfree(acomp_ctx->buffer); |
| } |
| |
| return 0; |
| } |
| |
| static bool zswap_compress(struct folio *folio, struct zswap_entry *entry) |
| { |
| struct crypto_acomp_ctx *acomp_ctx; |
| struct scatterlist input, output; |
| int comp_ret = 0, alloc_ret = 0; |
| unsigned int dlen = PAGE_SIZE; |
| unsigned long handle; |
| struct zpool *zpool; |
| char *buf; |
| gfp_t gfp; |
| u8 *dst; |
| |
| acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); |
| |
| mutex_lock(&acomp_ctx->mutex); |
| |
| dst = acomp_ctx->buffer; |
| sg_init_table(&input, 1); |
| sg_set_folio(&input, folio, PAGE_SIZE, 0); |
| |
| /* |
| * We need PAGE_SIZE * 2 here since there maybe over-compression case, |
| * and hardware-accelerators may won't check the dst buffer size, so |
| * giving the dst buffer with enough length to avoid buffer overflow. |
| */ |
| sg_init_one(&output, dst, PAGE_SIZE * 2); |
| acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); |
| |
| /* |
| * it maybe looks a little bit silly that we send an asynchronous request, |
| * then wait for its completion synchronously. This makes the process look |
| * synchronous in fact. |
| * Theoretically, acomp supports users send multiple acomp requests in one |
| * acomp instance, then get those requests done simultaneously. but in this |
| * case, zswap actually does store and load page by page, there is no |
| * existing method to send the second page before the first page is done |
| * in one thread doing zwap. |
| * but in different threads running on different cpu, we have different |
| * acomp instance, so multiple threads can do (de)compression in parallel. |
| */ |
| comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); |
| dlen = acomp_ctx->req->dlen; |
| if (comp_ret) |
| goto unlock; |
| |
| zpool = entry->pool->zpool; |
| gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; |
| if (zpool_malloc_support_movable(zpool)) |
| gfp |= __GFP_HIGHMEM | __GFP_MOVABLE; |
| alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle); |
| if (alloc_ret) |
| goto unlock; |
| |
| buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO); |
| memcpy(buf, dst, dlen); |
| zpool_unmap_handle(zpool, handle); |
| |
| entry->handle = handle; |
| entry->length = dlen; |
| |
| unlock: |
| if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) |
| zswap_reject_compress_poor++; |
| else if (comp_ret) |
| zswap_reject_compress_fail++; |
| else if (alloc_ret) |
| zswap_reject_alloc_fail++; |
| |
| mutex_unlock(&acomp_ctx->mutex); |
| return comp_ret == 0 && alloc_ret == 0; |
| } |
| |
| static void zswap_decompress(struct zswap_entry *entry, struct folio *folio) |
| { |
| struct zpool *zpool = entry->pool->zpool; |
| struct scatterlist input, output; |
| struct crypto_acomp_ctx *acomp_ctx; |
| u8 *src; |
| |
| acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); |
| mutex_lock(&acomp_ctx->mutex); |
| |
| src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO); |
| /* |
| * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer |
| * to do crypto_acomp_decompress() which might sleep. In such cases, we must |
| * resort to copying the buffer to a temporary one. |
| * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer, |
| * such as a kmap address of high memory or even ever a vmap address. |
| * However, sg_init_one is only equipped to handle linearly mapped low memory. |
| * In such cases, we also must copy the buffer to a temporary and lowmem one. |
| */ |
| if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) || |
| !virt_addr_valid(src)) { |
| memcpy(acomp_ctx->buffer, src, entry->length); |
| src = acomp_ctx->buffer; |
| zpool_unmap_handle(zpool, entry->handle); |
| } |
| |
| sg_init_one(&input, src, entry->length); |
| sg_init_table(&output, 1); |
| sg_set_folio(&output, folio, PAGE_SIZE, 0); |
| acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); |
| BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait)); |
| BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE); |
| mutex_unlock(&acomp_ctx->mutex); |
| |
| if (src != acomp_ctx->buffer) |
| zpool_unmap_handle(zpool, entry->handle); |
| } |
| |
| /********************************* |
| * writeback code |
| **********************************/ |
| /* |
| * Attempts to free an entry by adding a folio to the swap cache, |
| * decompressing the entry data into the folio, and issuing a |
| * bio write to write the folio back to the swap device. |
| * |
| * This can be thought of as a "resumed writeback" of the folio |
| * to the swap device. We are basically resuming the same swap |
| * writeback path that was intercepted with the zswap_store() |
| * in the first place. After the folio has been decompressed into |
| * the swap cache, the compressed version stored by zswap can be |
| * freed. |
| */ |
| static int zswap_writeback_entry(struct zswap_entry *entry, |
| swp_entry_t swpentry) |
| { |
| struct xarray *tree; |
| pgoff_t offset = swp_offset(swpentry); |
| struct folio *folio; |
| struct mempolicy *mpol; |
| bool folio_was_allocated; |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_NONE, |
| }; |
| |
| /* try to allocate swap cache folio */ |
| mpol = get_task_policy(current); |
| folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, |
| NO_INTERLEAVE_INDEX, &folio_was_allocated, true); |
| if (!folio) |
| return -ENOMEM; |
| |
| /* |
| * Found an existing folio, we raced with swapin or concurrent |
| * shrinker. We generally writeback cold folios from zswap, and |
| * swapin means the folio just became hot, so skip this folio. |
| * For unlikely concurrent shrinker case, it will be unlinked |
| * and freed when invalidated by the concurrent shrinker anyway. |
| */ |
| if (!folio_was_allocated) { |
| folio_put(folio); |
| return -EEXIST; |
| } |
| |
| /* |
| * folio is locked, and the swapcache is now secured against |
| * concurrent swapping to and from the slot, and concurrent |
| * swapoff so we can safely dereference the zswap tree here. |
| * Verify that the swap entry hasn't been invalidated and recycled |
| * behind our backs, to avoid overwriting a new swap folio with |
| * old compressed data. Only when this is successful can the entry |
| * be dereferenced. |
| */ |
| tree = swap_zswap_tree(swpentry); |
| if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) { |
| delete_from_swap_cache(folio); |
| folio_unlock(folio); |
| folio_put(folio); |
| return -ENOMEM; |
| } |
| |
| zswap_decompress(entry, folio); |
| |
| count_vm_event(ZSWPWB); |
| if (entry->objcg) |
| count_objcg_events(entry->objcg, ZSWPWB, 1); |
| |
| zswap_entry_free(entry); |
| |
| /* folio is up to date */ |
| folio_mark_uptodate(folio); |
| |
| /* move it to the tail of the inactive list after end_writeback */ |
| folio_set_reclaim(folio); |
| |
| /* start writeback */ |
| __swap_writepage(folio, &wbc); |
| folio_put(folio); |
| |
| return 0; |
| } |
| |
| /********************************* |
| * shrinker functions |
| **********************************/ |
| /* |
| * The dynamic shrinker is modulated by the following factors: |
| * |
| * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving |
| * the entry a second chance) before rotating it in the LRU list. If the |
| * entry is considered again by the shrinker, with its referenced bit unset, |
| * it is written back. The writeback rate as a result is dynamically |
| * adjusted by the pool activities - if the pool is dominated by new entries |
| * (i.e lots of recent zswapouts), these entries will be protected and |
| * the writeback rate will slow down. On the other hand, if the pool has a |
| * lot of stagnant entries, these entries will be reclaimed immediately, |
| * effectively increasing the writeback rate. |
| * |
| * 2. Swapins counter: If we observe swapins, it is a sign that we are |
| * overshrinking and should slow down. We maintain a swapins counter, which |
| * is consumed and subtract from the number of eligible objects on the LRU |
| * in zswap_shrinker_count(). |
| * |
| * 3. Compression ratio. The better the workload compresses, the less gains we |
| * can expect from writeback. We scale down the number of objects available |
| * for reclaim by this ratio. |
| */ |
| static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, |
| spinlock_t *lock, void *arg) |
| { |
| struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); |
| bool *encountered_page_in_swapcache = (bool *)arg; |
| swp_entry_t swpentry; |
| enum lru_status ret = LRU_REMOVED_RETRY; |
| int writeback_result; |
| |
| /* |
| * Second chance algorithm: if the entry has its referenced bit set, give it |
| * a second chance. Only clear the referenced bit and rotate it in the |
| * zswap's LRU list. |
| */ |
| if (entry->referenced) { |
| entry->referenced = false; |
| return LRU_ROTATE; |
| } |
| |
| /* |
| * As soon as we drop the LRU lock, the entry can be freed by |
| * a concurrent invalidation. This means the following: |
| * |
| * 1. We extract the swp_entry_t to the stack, allowing |
| * zswap_writeback_entry() to pin the swap entry and |
| * then validate the zwap entry against that swap entry's |
| * tree using pointer value comparison. Only when that |
| * is successful can the entry be dereferenced. |
| * |
| * 2. Usually, objects are taken off the LRU for reclaim. In |
| * this case this isn't possible, because if reclaim fails |
| * for whatever reason, we have no means of knowing if the |
| * entry is alive to put it back on the LRU. |
| * |
| * So rotate it before dropping the lock. If the entry is |
| * written back or invalidated, the free path will unlink |
| * it. For failures, rotation is the right thing as well. |
| * |
| * Temporary failures, where the same entry should be tried |
| * again immediately, almost never happen for this shrinker. |
| * We don't do any trylocking; -ENOMEM comes closest, |
| * but that's extremely rare and doesn't happen spuriously |
| * either. Don't bother distinguishing this case. |
| */ |
| list_move_tail(item, &l->list); |
| |
| /* |
| * Once the lru lock is dropped, the entry might get freed. The |
| * swpentry is copied to the stack, and entry isn't deref'd again |
| * until the entry is verified to still be alive in the tree. |
| */ |
| swpentry = entry->swpentry; |
| |
| /* |
| * It's safe to drop the lock here because we return either |
| * LRU_REMOVED_RETRY or LRU_RETRY. |
| */ |
| spin_unlock(lock); |
| |
| writeback_result = zswap_writeback_entry(entry, swpentry); |
| |
| if (writeback_result) { |
| zswap_reject_reclaim_fail++; |
| ret = LRU_RETRY; |
| |
| /* |
| * Encountering a page already in swap cache is a sign that we are shrinking |
| * into the warmer region. We should terminate shrinking (if we're in the dynamic |
| * shrinker context). |
| */ |
| if (writeback_result == -EEXIST && encountered_page_in_swapcache) { |
| ret = LRU_STOP; |
| *encountered_page_in_swapcache = true; |
| } |
| } else { |
| zswap_written_back_pages++; |
| } |
| |
| spin_lock(lock); |
| return ret; |
| } |
| |
| static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, |
| struct shrink_control *sc) |
| { |
| unsigned long shrink_ret; |
| bool encountered_page_in_swapcache = false; |
| |
| if (!zswap_shrinker_enabled || |
| !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { |
| sc->nr_scanned = 0; |
| return SHRINK_STOP; |
| } |
| |
| shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, |
| &encountered_page_in_swapcache); |
| |
| if (encountered_page_in_swapcache) |
| return SHRINK_STOP; |
| |
| return shrink_ret ? shrink_ret : SHRINK_STOP; |
| } |
| |
| static unsigned long zswap_shrinker_count(struct shrinker *shrinker, |
| struct shrink_control *sc) |
| { |
| struct mem_cgroup *memcg = sc->memcg; |
| struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); |
| atomic_long_t *nr_disk_swapins = |
| &lruvec->zswap_lruvec_state.nr_disk_swapins; |
| unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur, |
| nr_remain; |
| |
| if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) |
| return 0; |
| |
| /* |
| * The shrinker resumes swap writeback, which will enter block |
| * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS |
| * rules (may_enter_fs()), which apply on a per-folio basis. |
| */ |
| if (!gfp_has_io_fs(sc->gfp_mask)) |
| return 0; |
| |
| /* |
| * For memcg, use the cgroup-wide ZSWAP stats since we don't |
| * have them per-node and thus per-lruvec. Careful if memcg is |
| * runtime-disabled: we can get sc->memcg == NULL, which is ok |
| * for the lruvec, but not for memcg_page_state(). |
| * |
| * Without memcg, use the zswap pool-wide metrics. |
| */ |
| if (!mem_cgroup_disabled()) { |
| mem_cgroup_flush_stats(memcg); |
| nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; |
| nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); |
| } else { |
| nr_backing = zswap_total_pages(); |
| nr_stored = atomic_read(&zswap_stored_pages); |
| } |
| |
| if (!nr_stored) |
| return 0; |
| |
| nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); |
| if (!nr_freeable) |
| return 0; |
| |
| /* |
| * Subtract from the lru size the number of pages that are recently swapped |
| * in from disk. The idea is that had we protect the zswap's LRU by this |
| * amount of pages, these disk swapins would not have happened. |
| */ |
| nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins); |
| do { |
| if (nr_freeable >= nr_disk_swapins_cur) |
| nr_remain = 0; |
| else |
| nr_remain = nr_disk_swapins_cur - nr_freeable; |
| } while (!atomic_long_try_cmpxchg( |
| nr_disk_swapins, &nr_disk_swapins_cur, nr_remain)); |
| |
| nr_freeable -= nr_disk_swapins_cur - nr_remain; |
| if (!nr_freeable) |
| return 0; |
| |
| /* |
| * Scale the number of freeable pages by the memory saving factor. |
| * This ensures that the better zswap compresses memory, the fewer |
| * pages we will evict to swap (as it will otherwise incur IO for |
| * relatively small memory saving). |
| */ |
| return mult_frac(nr_freeable, nr_backing, nr_stored); |
| } |
| |
| static struct shrinker *zswap_alloc_shrinker(void) |
| { |
| struct shrinker *shrinker; |
| |
| shrinker = |
| shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); |
| if (!shrinker) |
| return NULL; |
| |
| shrinker->scan_objects = zswap_shrinker_scan; |
| shrinker->count_objects = zswap_shrinker_count; |
| shrinker->batch = 0; |
| shrinker->seeks = DEFAULT_SEEKS; |
| return shrinker; |
| } |
| |
| static int shrink_memcg(struct mem_cgroup *memcg) |
| { |
| int nid, shrunk = 0, scanned = 0; |
| |
| if (!mem_cgroup_zswap_writeback_enabled(memcg)) |
| return -ENOENT; |
| |
| /* |
| * Skip zombies because their LRUs are reparented and we would be |
| * reclaiming from the parent instead of the dead memcg. |
| */ |
| if (memcg && !mem_cgroup_online(memcg)) |
| return -ENOENT; |
| |
| for_each_node_state(nid, N_NORMAL_MEMORY) { |
| unsigned long nr_to_walk = 1; |
| |
| shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, |
| &shrink_memcg_cb, NULL, &nr_to_walk); |
| scanned += 1 - nr_to_walk; |
| } |
| |
| if (!scanned) |
| return -ENOENT; |
| |
| return shrunk ? 0 : -EAGAIN; |
| } |
| |
| static void shrink_worker(struct work_struct *w) |
| { |
| struct mem_cgroup *memcg; |
| int ret, failures = 0, attempts = 0; |
| unsigned long thr; |
| |
| /* Reclaim down to the accept threshold */ |
| thr = zswap_accept_thr_pages(); |
| |
| /* |
| * Global reclaim will select cgroup in a round-robin fashion from all |
| * online memcgs, but memcgs that have no pages in zswap and |
| * writeback-disabled memcgs (memory.zswap.writeback=0) are not |
| * candidates for shrinking. |
| * |
| * Shrinking will be aborted if we encounter the following |
| * MAX_RECLAIM_RETRIES times: |
| * - No writeback-candidate memcgs found in a memcg tree walk. |
| * - Shrinking a writeback-candidate memcg failed. |
| * |
| * We save iteration cursor memcg into zswap_next_shrink, |
| * which can be modified by the offline memcg cleaner |
| * zswap_memcg_offline_cleanup(). |
| * |
| * Since the offline cleaner is called only once, we cannot leave an |
| * offline memcg reference in zswap_next_shrink. |
| * We can rely on the cleaner only if we get online memcg under lock. |
| * |
| * If we get an offline memcg, we cannot determine if the cleaner has |
| * already been called or will be called later. We must put back the |
| * reference before returning from this function. Otherwise, the |
| * offline memcg left in zswap_next_shrink will hold the reference |
| * until the next run of shrink_worker(). |
| */ |
| do { |
| /* |
| * Start shrinking from the next memcg after zswap_next_shrink. |
| * When the offline cleaner has already advanced the cursor, |
| * advancing the cursor here overlooks one memcg, but this |
| * should be negligibly rare. |
| * |
| * If we get an online memcg, keep the extra reference in case |
| * the original one obtained by mem_cgroup_iter() is dropped by |
| * zswap_memcg_offline_cleanup() while we are shrinking the |
| * memcg. |
| */ |
| spin_lock(&zswap_shrink_lock); |
| do { |
| memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); |
| zswap_next_shrink = memcg; |
| } while (memcg && !mem_cgroup_tryget_online(memcg)); |
| spin_unlock(&zswap_shrink_lock); |
| |
| if (!memcg) { |
| /* |
| * Continue shrinking without incrementing failures if |
| * we found candidate memcgs in the last tree walk. |
| */ |
| if (!attempts && ++failures == MAX_RECLAIM_RETRIES) |
| break; |
| |
| attempts = 0; |
| goto resched; |
| } |
| |
| ret = shrink_memcg(memcg); |
| /* drop the extra reference */ |
| mem_cgroup_put(memcg); |
| |
| /* |
| * There are no writeback-candidate pages in the memcg. |
| * This is not an issue as long as we can find another memcg |
| * with pages in zswap. Skip this without incrementing attempts |
| * and failures. |
| */ |
| if (ret == -ENOENT) |
| continue; |
| ++attempts; |
| |
| if (ret && ++failures == MAX_RECLAIM_RETRIES) |
| break; |
| resched: |
| cond_resched(); |
| } while (zswap_total_pages() > thr); |
| } |
| |
| /********************************* |
| * main API |
| **********************************/ |
| bool zswap_store(struct folio *folio) |
| { |
| swp_entry_t swp = folio->swap; |
| pgoff_t offset = swp_offset(swp); |
| struct xarray *tree = swap_zswap_tree(swp); |
| struct zswap_entry *entry, *old; |
| struct obj_cgroup *objcg = NULL; |
| struct mem_cgroup *memcg = NULL; |
| |
| VM_WARN_ON_ONCE(!folio_test_locked(folio)); |
| VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); |
| |
| /* Large folios aren't supported */ |
| if (folio_test_large(folio)) |
| return false; |
| |
| if (!zswap_enabled) |
| goto check_old; |
| |
| /* Check cgroup limits */ |
| objcg = get_obj_cgroup_from_folio(folio); |
| if (objcg && !obj_cgroup_may_zswap(objcg)) { |
| memcg = get_mem_cgroup_from_objcg(objcg); |
| if (shrink_memcg(memcg)) { |
| mem_cgroup_put(memcg); |
| goto reject; |
| } |
| mem_cgroup_put(memcg); |
| } |
| |
| if (zswap_check_limits()) |
| goto reject; |
| |
| /* allocate entry */ |
| entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio)); |
| if (!entry) { |
| zswap_reject_kmemcache_fail++; |
| goto reject; |
| } |
| |
| /* if entry is successfully added, it keeps the reference */ |
| entry->pool = zswap_pool_current_get(); |
| if (!entry->pool) |
| goto freepage; |
| |
| if (objcg) { |
| memcg = get_mem_cgroup_from_objcg(objcg); |
| if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { |
| mem_cgroup_put(memcg); |
| goto put_pool; |
| } |
| mem_cgroup_put(memcg); |
| } |
| |
| if (!zswap_compress(folio, entry)) |
| goto put_pool; |
| |
| entry->swpentry = swp; |
| entry->objcg = objcg; |
| entry->referenced = true; |
| |
| old = xa_store(tree, offset, entry, GFP_KERNEL); |
| if (xa_is_err(old)) { |
| int err = xa_err(old); |
| |
| WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); |
| zswap_reject_alloc_fail++; |
| goto store_failed; |
| } |
| |
| /* |
| * We may have had an existing entry that became stale when |
| * the folio was redirtied and now the new version is being |
| * swapped out. Get rid of the old. |
| */ |
| if (old) |
| zswap_entry_free(old); |
| |
| if (objcg) { |
| obj_cgroup_charge_zswap(objcg, entry->length); |
| count_objcg_events(objcg, ZSWPOUT, 1); |
| } |
| |
| /* |
| * We finish initializing the entry while it's already in xarray. |
| * This is safe because: |
| * |
| * 1. Concurrent stores and invalidations are excluded by folio lock. |
| * |
| * 2. Writeback is excluded by the entry not being on the LRU yet. |
| * The publishing order matters to prevent writeback from seeing |
| * an incoherent entry. |
| */ |
| if (entry->length) { |
| INIT_LIST_HEAD(&entry->lru); |
| zswap_lru_add(&zswap_list_lru, entry); |
| } |
| |
| /* update stats */ |
| atomic_inc(&zswap_stored_pages); |
| count_vm_event(ZSWPOUT); |
| |
| return true; |
| |
| store_failed: |
| zpool_free(entry->pool->zpool, entry->handle); |
| put_pool: |
| zswap_pool_put(entry->pool); |
| freepage: |
| zswap_entry_cache_free(entry); |
| reject: |
| obj_cgroup_put(objcg); |
| if (zswap_pool_reached_full) |
| queue_work(shrink_wq, &zswap_shrink_work); |
| check_old: |
| /* |
| * If the zswap store fails or zswap is disabled, we must invalidate the |
| * possibly stale entry which was previously stored at this offset. |
| * Otherwise, writeback could overwrite the new data in the swapfile. |
| */ |
| entry = xa_erase(tree, offset); |
| if (entry) |
| zswap_entry_free(entry); |
| return false; |
| } |
| |
| bool zswap_load(struct folio *folio) |
| { |
| swp_entry_t swp = folio->swap; |
| pgoff_t offset = swp_offset(swp); |
| bool swapcache = folio_test_swapcache(folio); |
| struct xarray *tree = swap_zswap_tree(swp); |
| struct zswap_entry *entry; |
| |
| VM_WARN_ON_ONCE(!folio_test_locked(folio)); |
| |
| if (zswap_never_enabled()) |
| return false; |
| |
| /* |
| * Large folios should not be swapped in while zswap is being used, as |
| * they are not properly handled. Zswap does not properly load large |
| * folios, and a large folio may only be partially in zswap. |
| * |
| * Return true without marking the folio uptodate so that an IO error is |
| * emitted (e.g. do_swap_page() will sigbus). |
| */ |
| if (WARN_ON_ONCE(folio_test_large(folio))) |
| return true; |
| |
| /* |
| * When reading into the swapcache, invalidate our entry. The |
| * swapcache can be the authoritative owner of the page and |
| * its mappings, and the pressure that results from having two |
| * in-memory copies outweighs any benefits of caching the |
| * compression work. |
| * |
| * (Most swapins go through the swapcache. The notable |
| * exception is the singleton fault on SWP_SYNCHRONOUS_IO |
| * files, which reads into a private page and may free it if |
| * the fault fails. We remain the primary owner of the entry.) |
| */ |
| if (swapcache) |
| entry = xa_erase(tree, offset); |
| else |
| entry = xa_load(tree, offset); |
| |
| if (!entry) |
| return false; |
| |
| zswap_decompress(entry, folio); |
| |
| count_vm_event(ZSWPIN); |
| if (entry->objcg) |
| count_objcg_events(entry->objcg, ZSWPIN, 1); |
| |
| if (swapcache) { |
| zswap_entry_free(entry); |
| folio_mark_dirty(folio); |
| } |
| |
| folio_mark_uptodate(folio); |
| return true; |
| } |
| |
| void zswap_invalidate(swp_entry_t swp) |
| { |
| pgoff_t offset = swp_offset(swp); |
| struct xarray *tree = swap_zswap_tree(swp); |
| struct zswap_entry *entry; |
| |
| entry = xa_erase(tree, offset); |
| if (entry) |
| zswap_entry_free(entry); |
| } |
| |
| int zswap_swapon(int type, unsigned long nr_pages) |
| { |
| struct xarray *trees, *tree; |
| unsigned int nr, i; |
| |
| nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); |
| trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); |
| if (!trees) { |
| pr_err("alloc failed, zswap disabled for swap type %d\n", type); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < nr; i++) |
| xa_init(trees + i); |
| |
| nr_zswap_trees[type] = nr; |
| zswap_trees[type] = trees; |
| return 0; |
| } |
| |
| void zswap_swapoff(int type) |
| { |
| struct xarray *trees = zswap_trees[type]; |
| unsigned int i; |
| |
| if (!trees) |
| return; |
| |
| /* try_to_unuse() invalidated all the entries already */ |
| for (i = 0; i < nr_zswap_trees[type]; i++) |
| WARN_ON_ONCE(!xa_empty(trees + i)); |
| |
| kvfree(trees); |
| nr_zswap_trees[type] = 0; |
| zswap_trees[type] = NULL; |
| } |
| |
| /********************************* |
| * debugfs functions |
| **********************************/ |
| #ifdef CONFIG_DEBUG_FS |
| #include <linux/debugfs.h> |
| |
| static struct dentry *zswap_debugfs_root; |
| |
| static int debugfs_get_total_size(void *data, u64 *val) |
| { |
| *val = zswap_total_pages() * PAGE_SIZE; |
| return 0; |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); |
| |
| static int zswap_debugfs_init(void) |
| { |
| if (!debugfs_initialized()) |
| return -ENODEV; |
| |
| zswap_debugfs_root = debugfs_create_dir("zswap", NULL); |
| |
| debugfs_create_u64("pool_limit_hit", 0444, |
| zswap_debugfs_root, &zswap_pool_limit_hit); |
| debugfs_create_u64("reject_reclaim_fail", 0444, |
| zswap_debugfs_root, &zswap_reject_reclaim_fail); |
| debugfs_create_u64("reject_alloc_fail", 0444, |
| zswap_debugfs_root, &zswap_reject_alloc_fail); |
| debugfs_create_u64("reject_kmemcache_fail", 0444, |
| zswap_debugfs_root, &zswap_reject_kmemcache_fail); |
| debugfs_create_u64("reject_compress_fail", 0444, |
| zswap_debugfs_root, &zswap_reject_compress_fail); |
| debugfs_create_u64("reject_compress_poor", 0444, |
| zswap_debugfs_root, &zswap_reject_compress_poor); |
| debugfs_create_u64("written_back_pages", 0444, |
| zswap_debugfs_root, &zswap_written_back_pages); |
| debugfs_create_file("pool_total_size", 0444, |
| zswap_debugfs_root, NULL, &total_size_fops); |
| debugfs_create_atomic_t("stored_pages", 0444, |
| zswap_debugfs_root, &zswap_stored_pages); |
| |
| return 0; |
| } |
| #else |
| static int zswap_debugfs_init(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| /********************************* |
| * module init and exit |
| **********************************/ |
| static int zswap_setup(void) |
| { |
| struct zswap_pool *pool; |
| int ret; |
| |
| zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); |
| if (!zswap_entry_cache) { |
| pr_err("entry cache creation failed\n"); |
| goto cache_fail; |
| } |
| |
| ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, |
| "mm/zswap_pool:prepare", |
| zswap_cpu_comp_prepare, |
| zswap_cpu_comp_dead); |
| if (ret) |
| goto hp_fail; |
| |
| shrink_wq = alloc_workqueue("zswap-shrink", |
| WQ_UNBOUND|WQ_MEM_RECLAIM, 1); |
| if (!shrink_wq) |
| goto shrink_wq_fail; |
| |
| zswap_shrinker = zswap_alloc_shrinker(); |
| if (!zswap_shrinker) |
| goto shrinker_fail; |
| if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) |
| goto lru_fail; |
| shrinker_register(zswap_shrinker); |
| |
| INIT_WORK(&zswap_shrink_work, shrink_worker); |
| |
| pool = __zswap_pool_create_fallback(); |
| if (pool) { |
| pr_info("loaded using pool %s/%s\n", pool->tfm_name, |
| zpool_get_type(pool->zpool)); |
| list_add(&pool->list, &zswap_pools); |
| zswap_has_pool = true; |
| static_branch_enable(&zswap_ever_enabled); |
| } else { |
| pr_err("pool creation failed\n"); |
| zswap_enabled = false; |
| } |
| |
| if (zswap_debugfs_init()) |
| pr_warn("debugfs initialization failed\n"); |
| zswap_init_state = ZSWAP_INIT_SUCCEED; |
| return 0; |
| |
| lru_fail: |
| shrinker_free(zswap_shrinker); |
| shrinker_fail: |
| destroy_workqueue(shrink_wq); |
| shrink_wq_fail: |
| cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); |
| hp_fail: |
| kmem_cache_destroy(zswap_entry_cache); |
| cache_fail: |
| /* if built-in, we aren't unloaded on failure; don't allow use */ |
| zswap_init_state = ZSWAP_INIT_FAILED; |
| zswap_enabled = false; |
| return -ENOMEM; |
| } |
| |
| static int __init zswap_init(void) |
| { |
| if (!zswap_enabled) |
| return 0; |
| return zswap_setup(); |
| } |
| /* must be late so crypto has time to come up */ |
| late_initcall(zswap_init); |
| |
| MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); |
| MODULE_DESCRIPTION("Compressed cache for swap pages"); |