| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Generic socket support routines. Memory allocators, socket lock/release |
| * handler for protocols to use and generic option handler. |
| * |
| * Authors: Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * Florian La Roche, <flla@stud.uni-sb.de> |
| * Alan Cox, <A.Cox@swansea.ac.uk> |
| * |
| * Fixes: |
| * Alan Cox : Numerous verify_area() problems |
| * Alan Cox : Connecting on a connecting socket |
| * now returns an error for tcp. |
| * Alan Cox : sock->protocol is set correctly. |
| * and is not sometimes left as 0. |
| * Alan Cox : connect handles icmp errors on a |
| * connect properly. Unfortunately there |
| * is a restart syscall nasty there. I |
| * can't match BSD without hacking the C |
| * library. Ideas urgently sought! |
| * Alan Cox : Disallow bind() to addresses that are |
| * not ours - especially broadcast ones!! |
| * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) |
| * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, |
| * instead they leave that for the DESTROY timer. |
| * Alan Cox : Clean up error flag in accept |
| * Alan Cox : TCP ack handling is buggy, the DESTROY timer |
| * was buggy. Put a remove_sock() in the handler |
| * for memory when we hit 0. Also altered the timer |
| * code. The ACK stuff can wait and needs major |
| * TCP layer surgery. |
| * Alan Cox : Fixed TCP ack bug, removed remove sock |
| * and fixed timer/inet_bh race. |
| * Alan Cox : Added zapped flag for TCP |
| * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code |
| * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb |
| * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources |
| * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. |
| * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... |
| * Rick Sladkey : Relaxed UDP rules for matching packets. |
| * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support |
| * Pauline Middelink : identd support |
| * Alan Cox : Fixed connect() taking signals I think. |
| * Alan Cox : SO_LINGER supported |
| * Alan Cox : Error reporting fixes |
| * Anonymous : inet_create tidied up (sk->reuse setting) |
| * Alan Cox : inet sockets don't set sk->type! |
| * Alan Cox : Split socket option code |
| * Alan Cox : Callbacks |
| * Alan Cox : Nagle flag for Charles & Johannes stuff |
| * Alex : Removed restriction on inet fioctl |
| * Alan Cox : Splitting INET from NET core |
| * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() |
| * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code |
| * Alan Cox : Split IP from generic code |
| * Alan Cox : New kfree_skbmem() |
| * Alan Cox : Make SO_DEBUG superuser only. |
| * Alan Cox : Allow anyone to clear SO_DEBUG |
| * (compatibility fix) |
| * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. |
| * Alan Cox : Allocator for a socket is settable. |
| * Alan Cox : SO_ERROR includes soft errors. |
| * Alan Cox : Allow NULL arguments on some SO_ opts |
| * Alan Cox : Generic socket allocation to make hooks |
| * easier (suggested by Craig Metz). |
| * Michael Pall : SO_ERROR returns positive errno again |
| * Steve Whitehouse: Added default destructor to free |
| * protocol private data. |
| * Steve Whitehouse: Added various other default routines |
| * common to several socket families. |
| * Chris Evans : Call suser() check last on F_SETOWN |
| * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. |
| * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() |
| * Andi Kleen : Fix write_space callback |
| * Chris Evans : Security fixes - signedness again |
| * Arnaldo C. Melo : cleanups, use skb_queue_purge |
| * |
| * To Fix: |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/unaligned.h> |
| #include <linux/capability.h> |
| #include <linux/errno.h> |
| #include <linux/errqueue.h> |
| #include <linux/types.h> |
| #include <linux/socket.h> |
| #include <linux/in.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/timer.h> |
| #include <linux/string.h> |
| #include <linux/sockios.h> |
| #include <linux/net.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/poll.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/init.h> |
| #include <linux/highmem.h> |
| #include <linux/user_namespace.h> |
| #include <linux/static_key.h> |
| #include <linux/memcontrol.h> |
| #include <linux/prefetch.h> |
| #include <linux/compat.h> |
| #include <linux/mroute.h> |
| #include <linux/mroute6.h> |
| #include <linux/icmpv6.h> |
| |
| #include <linux/uaccess.h> |
| |
| #include <linux/netdevice.h> |
| #include <net/protocol.h> |
| #include <linux/skbuff.h> |
| #include <linux/skbuff_ref.h> |
| #include <net/net_namespace.h> |
| #include <net/request_sock.h> |
| #include <net/sock.h> |
| #include <net/proto_memory.h> |
| #include <linux/net_tstamp.h> |
| #include <net/xfrm.h> |
| #include <linux/ipsec.h> |
| #include <net/cls_cgroup.h> |
| #include <net/netprio_cgroup.h> |
| #include <linux/sock_diag.h> |
| |
| #include <linux/filter.h> |
| #include <net/sock_reuseport.h> |
| #include <net/bpf_sk_storage.h> |
| |
| #include <trace/events/sock.h> |
| |
| #include <net/tcp.h> |
| #include <net/busy_poll.h> |
| #include <net/phonet/phonet.h> |
| |
| #include <linux/ethtool.h> |
| |
| #include "dev.h" |
| |
| static DEFINE_MUTEX(proto_list_mutex); |
| static LIST_HEAD(proto_list); |
| |
| static void sock_def_write_space_wfree(struct sock *sk); |
| static void sock_def_write_space(struct sock *sk); |
| |
| /** |
| * sk_ns_capable - General socket capability test |
| * @sk: Socket to use a capability on or through |
| * @user_ns: The user namespace of the capability to use |
| * @cap: The capability to use |
| * |
| * Test to see if the opener of the socket had when the socket was |
| * created and the current process has the capability @cap in the user |
| * namespace @user_ns. |
| */ |
| bool sk_ns_capable(const struct sock *sk, |
| struct user_namespace *user_ns, int cap) |
| { |
| return file_ns_capable(sk->sk_socket->file, user_ns, cap) && |
| ns_capable(user_ns, cap); |
| } |
| EXPORT_SYMBOL(sk_ns_capable); |
| |
| /** |
| * sk_capable - Socket global capability test |
| * @sk: Socket to use a capability on or through |
| * @cap: The global capability to use |
| * |
| * Test to see if the opener of the socket had when the socket was |
| * created and the current process has the capability @cap in all user |
| * namespaces. |
| */ |
| bool sk_capable(const struct sock *sk, int cap) |
| { |
| return sk_ns_capable(sk, &init_user_ns, cap); |
| } |
| EXPORT_SYMBOL(sk_capable); |
| |
| /** |
| * sk_net_capable - Network namespace socket capability test |
| * @sk: Socket to use a capability on or through |
| * @cap: The capability to use |
| * |
| * Test to see if the opener of the socket had when the socket was created |
| * and the current process has the capability @cap over the network namespace |
| * the socket is a member of. |
| */ |
| bool sk_net_capable(const struct sock *sk, int cap) |
| { |
| return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); |
| } |
| EXPORT_SYMBOL(sk_net_capable); |
| |
| /* |
| * Each address family might have different locking rules, so we have |
| * one slock key per address family and separate keys for internal and |
| * userspace sockets. |
| */ |
| static struct lock_class_key af_family_keys[AF_MAX]; |
| static struct lock_class_key af_family_kern_keys[AF_MAX]; |
| static struct lock_class_key af_family_slock_keys[AF_MAX]; |
| static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; |
| |
| /* |
| * Make lock validator output more readable. (we pre-construct these |
| * strings build-time, so that runtime initialization of socket |
| * locks is fast): |
| */ |
| |
| #define _sock_locks(x) \ |
| x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ |
| x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ |
| x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ |
| x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ |
| x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ |
| x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ |
| x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ |
| x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ |
| x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ |
| x "27" , x "28" , x "AF_CAN" , \ |
| x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ |
| x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ |
| x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ |
| x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ |
| x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ |
| x "AF_MCTP" , \ |
| x "AF_MAX" |
| |
| static const char *const af_family_key_strings[AF_MAX+1] = { |
| _sock_locks("sk_lock-") |
| }; |
| static const char *const af_family_slock_key_strings[AF_MAX+1] = { |
| _sock_locks("slock-") |
| }; |
| static const char *const af_family_clock_key_strings[AF_MAX+1] = { |
| _sock_locks("clock-") |
| }; |
| |
| static const char *const af_family_kern_key_strings[AF_MAX+1] = { |
| _sock_locks("k-sk_lock-") |
| }; |
| static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { |
| _sock_locks("k-slock-") |
| }; |
| static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { |
| _sock_locks("k-clock-") |
| }; |
| static const char *const af_family_rlock_key_strings[AF_MAX+1] = { |
| _sock_locks("rlock-") |
| }; |
| static const char *const af_family_wlock_key_strings[AF_MAX+1] = { |
| _sock_locks("wlock-") |
| }; |
| static const char *const af_family_elock_key_strings[AF_MAX+1] = { |
| _sock_locks("elock-") |
| }; |
| |
| /* |
| * sk_callback_lock and sk queues locking rules are per-address-family, |
| * so split the lock classes by using a per-AF key: |
| */ |
| static struct lock_class_key af_callback_keys[AF_MAX]; |
| static struct lock_class_key af_rlock_keys[AF_MAX]; |
| static struct lock_class_key af_wlock_keys[AF_MAX]; |
| static struct lock_class_key af_elock_keys[AF_MAX]; |
| static struct lock_class_key af_kern_callback_keys[AF_MAX]; |
| |
| /* Run time adjustable parameters. */ |
| __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; |
| EXPORT_SYMBOL(sysctl_wmem_max); |
| __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; |
| EXPORT_SYMBOL(sysctl_rmem_max); |
| __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; |
| __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; |
| |
| int sysctl_tstamp_allow_data __read_mostly = 1; |
| |
| DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); |
| EXPORT_SYMBOL_GPL(memalloc_socks_key); |
| |
| /** |
| * sk_set_memalloc - sets %SOCK_MEMALLOC |
| * @sk: socket to set it on |
| * |
| * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. |
| * It's the responsibility of the admin to adjust min_free_kbytes |
| * to meet the requirements |
| */ |
| void sk_set_memalloc(struct sock *sk) |
| { |
| sock_set_flag(sk, SOCK_MEMALLOC); |
| sk->sk_allocation |= __GFP_MEMALLOC; |
| static_branch_inc(&memalloc_socks_key); |
| } |
| EXPORT_SYMBOL_GPL(sk_set_memalloc); |
| |
| void sk_clear_memalloc(struct sock *sk) |
| { |
| sock_reset_flag(sk, SOCK_MEMALLOC); |
| sk->sk_allocation &= ~__GFP_MEMALLOC; |
| static_branch_dec(&memalloc_socks_key); |
| |
| /* |
| * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward |
| * progress of swapping. SOCK_MEMALLOC may be cleared while |
| * it has rmem allocations due to the last swapfile being deactivated |
| * but there is a risk that the socket is unusable due to exceeding |
| * the rmem limits. Reclaim the reserves and obey rmem limits again. |
| */ |
| sk_mem_reclaim(sk); |
| } |
| EXPORT_SYMBOL_GPL(sk_clear_memalloc); |
| |
| int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
| { |
| int ret; |
| unsigned int noreclaim_flag; |
| |
| /* these should have been dropped before queueing */ |
| BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); |
| |
| noreclaim_flag = memalloc_noreclaim_save(); |
| ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, |
| tcp_v6_do_rcv, |
| tcp_v4_do_rcv, |
| sk, skb); |
| memalloc_noreclaim_restore(noreclaim_flag); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(__sk_backlog_rcv); |
| |
| void sk_error_report(struct sock *sk) |
| { |
| sk->sk_error_report(sk); |
| |
| switch (sk->sk_family) { |
| case AF_INET: |
| fallthrough; |
| case AF_INET6: |
| trace_inet_sk_error_report(sk); |
| break; |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL(sk_error_report); |
| |
| int sock_get_timeout(long timeo, void *optval, bool old_timeval) |
| { |
| struct __kernel_sock_timeval tv; |
| |
| if (timeo == MAX_SCHEDULE_TIMEOUT) { |
| tv.tv_sec = 0; |
| tv.tv_usec = 0; |
| } else { |
| tv.tv_sec = timeo / HZ; |
| tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; |
| } |
| |
| if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
| struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; |
| *(struct old_timeval32 *)optval = tv32; |
| return sizeof(tv32); |
| } |
| |
| if (old_timeval) { |
| struct __kernel_old_timeval old_tv; |
| old_tv.tv_sec = tv.tv_sec; |
| old_tv.tv_usec = tv.tv_usec; |
| *(struct __kernel_old_timeval *)optval = old_tv; |
| return sizeof(old_tv); |
| } |
| |
| *(struct __kernel_sock_timeval *)optval = tv; |
| return sizeof(tv); |
| } |
| EXPORT_SYMBOL(sock_get_timeout); |
| |
| int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, |
| sockptr_t optval, int optlen, bool old_timeval) |
| { |
| if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { |
| struct old_timeval32 tv32; |
| |
| if (optlen < sizeof(tv32)) |
| return -EINVAL; |
| |
| if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) |
| return -EFAULT; |
| tv->tv_sec = tv32.tv_sec; |
| tv->tv_usec = tv32.tv_usec; |
| } else if (old_timeval) { |
| struct __kernel_old_timeval old_tv; |
| |
| if (optlen < sizeof(old_tv)) |
| return -EINVAL; |
| if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) |
| return -EFAULT; |
| tv->tv_sec = old_tv.tv_sec; |
| tv->tv_usec = old_tv.tv_usec; |
| } else { |
| if (optlen < sizeof(*tv)) |
| return -EINVAL; |
| if (copy_from_sockptr(tv, optval, sizeof(*tv))) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sock_copy_user_timeval); |
| |
| static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, |
| bool old_timeval) |
| { |
| struct __kernel_sock_timeval tv; |
| int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); |
| long val; |
| |
| if (err) |
| return err; |
| |
| if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) |
| return -EDOM; |
| |
| if (tv.tv_sec < 0) { |
| static int warned __read_mostly; |
| |
| WRITE_ONCE(*timeo_p, 0); |
| if (warned < 10 && net_ratelimit()) { |
| warned++; |
| pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", |
| __func__, current->comm, task_pid_nr(current)); |
| } |
| return 0; |
| } |
| val = MAX_SCHEDULE_TIMEOUT; |
| if ((tv.tv_sec || tv.tv_usec) && |
| (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) |
| val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, |
| USEC_PER_SEC / HZ); |
| WRITE_ONCE(*timeo_p, val); |
| return 0; |
| } |
| |
| static bool sock_needs_netstamp(const struct sock *sk) |
| { |
| switch (sk->sk_family) { |
| case AF_UNSPEC: |
| case AF_UNIX: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| static void sock_disable_timestamp(struct sock *sk, unsigned long flags) |
| { |
| if (sk->sk_flags & flags) { |
| sk->sk_flags &= ~flags; |
| if (sock_needs_netstamp(sk) && |
| !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) |
| net_disable_timestamp(); |
| } |
| } |
| |
| |
| int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| unsigned long flags; |
| struct sk_buff_head *list = &sk->sk_receive_queue; |
| |
| if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) { |
| atomic_inc(&sk->sk_drops); |
| trace_sock_rcvqueue_full(sk, skb); |
| return -ENOMEM; |
| } |
| |
| if (!sk_rmem_schedule(sk, skb, skb->truesize)) { |
| atomic_inc(&sk->sk_drops); |
| return -ENOBUFS; |
| } |
| |
| skb->dev = NULL; |
| skb_set_owner_r(skb, sk); |
| |
| /* we escape from rcu protected region, make sure we dont leak |
| * a norefcounted dst |
| */ |
| skb_dst_force(skb); |
| |
| spin_lock_irqsave(&list->lock, flags); |
| sock_skb_set_dropcount(sk, skb); |
| __skb_queue_tail(list, skb); |
| spin_unlock_irqrestore(&list->lock, flags); |
| |
| if (!sock_flag(sk, SOCK_DEAD)) |
| sk->sk_data_ready(sk); |
| return 0; |
| } |
| EXPORT_SYMBOL(__sock_queue_rcv_skb); |
| |
| int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, |
| enum skb_drop_reason *reason) |
| { |
| enum skb_drop_reason drop_reason; |
| int err; |
| |
| err = sk_filter(sk, skb); |
| if (err) { |
| drop_reason = SKB_DROP_REASON_SOCKET_FILTER; |
| goto out; |
| } |
| err = __sock_queue_rcv_skb(sk, skb); |
| switch (err) { |
| case -ENOMEM: |
| drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; |
| break; |
| case -ENOBUFS: |
| drop_reason = SKB_DROP_REASON_PROTO_MEM; |
| break; |
| default: |
| drop_reason = SKB_NOT_DROPPED_YET; |
| break; |
| } |
| out: |
| if (reason) |
| *reason = drop_reason; |
| return err; |
| } |
| EXPORT_SYMBOL(sock_queue_rcv_skb_reason); |
| |
| int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, |
| const int nested, unsigned int trim_cap, bool refcounted) |
| { |
| int rc = NET_RX_SUCCESS; |
| |
| if (sk_filter_trim_cap(sk, skb, trim_cap)) |
| goto discard_and_relse; |
| |
| skb->dev = NULL; |
| |
| if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) { |
| atomic_inc(&sk->sk_drops); |
| goto discard_and_relse; |
| } |
| if (nested) |
| bh_lock_sock_nested(sk); |
| else |
| bh_lock_sock(sk); |
| if (!sock_owned_by_user(sk)) { |
| /* |
| * trylock + unlock semantics: |
| */ |
| mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); |
| |
| rc = sk_backlog_rcv(sk, skb); |
| |
| mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
| } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { |
| bh_unlock_sock(sk); |
| atomic_inc(&sk->sk_drops); |
| goto discard_and_relse; |
| } |
| |
| bh_unlock_sock(sk); |
| out: |
| if (refcounted) |
| sock_put(sk); |
| return rc; |
| discard_and_relse: |
| kfree_skb(skb); |
| goto out; |
| } |
| EXPORT_SYMBOL(__sk_receive_skb); |
| |
| INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, |
| u32)); |
| INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, |
| u32)); |
| struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) |
| { |
| struct dst_entry *dst = __sk_dst_get(sk); |
| |
| if (dst && dst->obsolete && |
| INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
| dst, cookie) == NULL) { |
| sk_tx_queue_clear(sk); |
| WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
| RCU_INIT_POINTER(sk->sk_dst_cache, NULL); |
| dst_release(dst); |
| return NULL; |
| } |
| |
| return dst; |
| } |
| EXPORT_SYMBOL(__sk_dst_check); |
| |
| struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) |
| { |
| struct dst_entry *dst = sk_dst_get(sk); |
| |
| if (dst && dst->obsolete && |
| INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, |
| dst, cookie) == NULL) { |
| sk_dst_reset(sk); |
| dst_release(dst); |
| return NULL; |
| } |
| |
| return dst; |
| } |
| EXPORT_SYMBOL(sk_dst_check); |
| |
| static int sock_bindtoindex_locked(struct sock *sk, int ifindex) |
| { |
| int ret = -ENOPROTOOPT; |
| #ifdef CONFIG_NETDEVICES |
| struct net *net = sock_net(sk); |
| |
| /* Sorry... */ |
| ret = -EPERM; |
| if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) |
| goto out; |
| |
| ret = -EINVAL; |
| if (ifindex < 0) |
| goto out; |
| |
| /* Paired with all READ_ONCE() done locklessly. */ |
| WRITE_ONCE(sk->sk_bound_dev_if, ifindex); |
| |
| if (sk->sk_prot->rehash) |
| sk->sk_prot->rehash(sk); |
| sk_dst_reset(sk); |
| |
| ret = 0; |
| |
| out: |
| #endif |
| |
| return ret; |
| } |
| |
| int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) |
| { |
| int ret; |
| |
| if (lock_sk) |
| lock_sock(sk); |
| ret = sock_bindtoindex_locked(sk, ifindex); |
| if (lock_sk) |
| release_sock(sk); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(sock_bindtoindex); |
| |
| static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) |
| { |
| int ret = -ENOPROTOOPT; |
| #ifdef CONFIG_NETDEVICES |
| struct net *net = sock_net(sk); |
| char devname[IFNAMSIZ]; |
| int index; |
| |
| ret = -EINVAL; |
| if (optlen < 0) |
| goto out; |
| |
| /* Bind this socket to a particular device like "eth0", |
| * as specified in the passed interface name. If the |
| * name is "" or the option length is zero the socket |
| * is not bound. |
| */ |
| if (optlen > IFNAMSIZ - 1) |
| optlen = IFNAMSIZ - 1; |
| memset(devname, 0, sizeof(devname)); |
| |
| ret = -EFAULT; |
| if (copy_from_sockptr(devname, optval, optlen)) |
| goto out; |
| |
| index = 0; |
| if (devname[0] != '\0') { |
| struct net_device *dev; |
| |
| rcu_read_lock(); |
| dev = dev_get_by_name_rcu(net, devname); |
| if (dev) |
| index = dev->ifindex; |
| rcu_read_unlock(); |
| ret = -ENODEV; |
| if (!dev) |
| goto out; |
| } |
| |
| sockopt_lock_sock(sk); |
| ret = sock_bindtoindex_locked(sk, index); |
| sockopt_release_sock(sk); |
| out: |
| #endif |
| |
| return ret; |
| } |
| |
| static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, |
| sockptr_t optlen, int len) |
| { |
| int ret = -ENOPROTOOPT; |
| #ifdef CONFIG_NETDEVICES |
| int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); |
| struct net *net = sock_net(sk); |
| char devname[IFNAMSIZ]; |
| |
| if (bound_dev_if == 0) { |
| len = 0; |
| goto zero; |
| } |
| |
| ret = -EINVAL; |
| if (len < IFNAMSIZ) |
| goto out; |
| |
| ret = netdev_get_name(net, devname, bound_dev_if); |
| if (ret) |
| goto out; |
| |
| len = strlen(devname) + 1; |
| |
| ret = -EFAULT; |
| if (copy_to_sockptr(optval, devname, len)) |
| goto out; |
| |
| zero: |
| ret = -EFAULT; |
| if (copy_to_sockptr(optlen, &len, sizeof(int))) |
| goto out; |
| |
| ret = 0; |
| |
| out: |
| #endif |
| |
| return ret; |
| } |
| |
| bool sk_mc_loop(const struct sock *sk) |
| { |
| if (dev_recursion_level()) |
| return false; |
| if (!sk) |
| return true; |
| /* IPV6_ADDRFORM can change sk->sk_family under us. */ |
| switch (READ_ONCE(sk->sk_family)) { |
| case AF_INET: |
| return inet_test_bit(MC_LOOP, sk); |
| #if IS_ENABLED(CONFIG_IPV6) |
| case AF_INET6: |
| return inet6_test_bit(MC6_LOOP, sk); |
| #endif |
| } |
| WARN_ON_ONCE(1); |
| return true; |
| } |
| EXPORT_SYMBOL(sk_mc_loop); |
| |
| void sock_set_reuseaddr(struct sock *sk) |
| { |
| lock_sock(sk); |
| sk->sk_reuse = SK_CAN_REUSE; |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_set_reuseaddr); |
| |
| void sock_set_reuseport(struct sock *sk) |
| { |
| lock_sock(sk); |
| sk->sk_reuseport = true; |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_set_reuseport); |
| |
| void sock_no_linger(struct sock *sk) |
| { |
| lock_sock(sk); |
| WRITE_ONCE(sk->sk_lingertime, 0); |
| sock_set_flag(sk, SOCK_LINGER); |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_no_linger); |
| |
| void sock_set_priority(struct sock *sk, u32 priority) |
| { |
| WRITE_ONCE(sk->sk_priority, priority); |
| } |
| EXPORT_SYMBOL(sock_set_priority); |
| |
| void sock_set_sndtimeo(struct sock *sk, s64 secs) |
| { |
| lock_sock(sk); |
| if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) |
| WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); |
| else |
| WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_set_sndtimeo); |
| |
| static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) |
| { |
| if (val) { |
| sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); |
| sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); |
| sock_set_flag(sk, SOCK_RCVTSTAMP); |
| sock_enable_timestamp(sk, SOCK_TIMESTAMP); |
| } else { |
| sock_reset_flag(sk, SOCK_RCVTSTAMP); |
| sock_reset_flag(sk, SOCK_RCVTSTAMPNS); |
| } |
| } |
| |
| void sock_enable_timestamps(struct sock *sk) |
| { |
| lock_sock(sk); |
| __sock_set_timestamps(sk, true, false, true); |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_enable_timestamps); |
| |
| void sock_set_timestamp(struct sock *sk, int optname, bool valbool) |
| { |
| switch (optname) { |
| case SO_TIMESTAMP_OLD: |
| __sock_set_timestamps(sk, valbool, false, false); |
| break; |
| case SO_TIMESTAMP_NEW: |
| __sock_set_timestamps(sk, valbool, true, false); |
| break; |
| case SO_TIMESTAMPNS_OLD: |
| __sock_set_timestamps(sk, valbool, false, true); |
| break; |
| case SO_TIMESTAMPNS_NEW: |
| __sock_set_timestamps(sk, valbool, true, true); |
| break; |
| } |
| } |
| |
| static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) |
| { |
| struct net *net = sock_net(sk); |
| struct net_device *dev = NULL; |
| bool match = false; |
| int *vclock_index; |
| int i, num; |
| |
| if (sk->sk_bound_dev_if) |
| dev = dev_get_by_index(net, sk->sk_bound_dev_if); |
| |
| if (!dev) { |
| pr_err("%s: sock not bind to device\n", __func__); |
| return -EOPNOTSUPP; |
| } |
| |
| num = ethtool_get_phc_vclocks(dev, &vclock_index); |
| dev_put(dev); |
| |
| for (i = 0; i < num; i++) { |
| if (*(vclock_index + i) == phc_index) { |
| match = true; |
| break; |
| } |
| } |
| |
| if (num > 0) |
| kfree(vclock_index); |
| |
| if (!match) |
| return -EINVAL; |
| |
| WRITE_ONCE(sk->sk_bind_phc, phc_index); |
| |
| return 0; |
| } |
| |
| int sock_set_timestamping(struct sock *sk, int optname, |
| struct so_timestamping timestamping) |
| { |
| int val = timestamping.flags; |
| int ret; |
| |
| if (val & ~SOF_TIMESTAMPING_MASK) |
| return -EINVAL; |
| |
| if (val & SOF_TIMESTAMPING_OPT_ID_TCP && |
| !(val & SOF_TIMESTAMPING_OPT_ID)) |
| return -EINVAL; |
| |
| if (val & SOF_TIMESTAMPING_OPT_ID && |
| !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { |
| if (sk_is_tcp(sk)) { |
| if ((1 << sk->sk_state) & |
| (TCPF_CLOSE | TCPF_LISTEN)) |
| return -EINVAL; |
| if (val & SOF_TIMESTAMPING_OPT_ID_TCP) |
| atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); |
| else |
| atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); |
| } else { |
| atomic_set(&sk->sk_tskey, 0); |
| } |
| } |
| |
| if (val & SOF_TIMESTAMPING_OPT_STATS && |
| !(val & SOF_TIMESTAMPING_OPT_TSONLY)) |
| return -EINVAL; |
| |
| if (val & SOF_TIMESTAMPING_BIND_PHC) { |
| ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); |
| if (ret) |
| return ret; |
| } |
| |
| WRITE_ONCE(sk->sk_tsflags, val); |
| sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); |
| |
| if (val & SOF_TIMESTAMPING_RX_SOFTWARE) |
| sock_enable_timestamp(sk, |
| SOCK_TIMESTAMPING_RX_SOFTWARE); |
| else |
| sock_disable_timestamp(sk, |
| (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); |
| return 0; |
| } |
| |
| void sock_set_keepalive(struct sock *sk) |
| { |
| lock_sock(sk); |
| if (sk->sk_prot->keepalive) |
| sk->sk_prot->keepalive(sk, true); |
| sock_valbool_flag(sk, SOCK_KEEPOPEN, true); |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_set_keepalive); |
| |
| static void __sock_set_rcvbuf(struct sock *sk, int val) |
| { |
| /* Ensure val * 2 fits into an int, to prevent max_t() from treating it |
| * as a negative value. |
| */ |
| val = min_t(int, val, INT_MAX / 2); |
| sk->sk_userlocks |= SOCK_RCVBUF_LOCK; |
| |
| /* We double it on the way in to account for "struct sk_buff" etc. |
| * overhead. Applications assume that the SO_RCVBUF setting they make |
| * will allow that much actual data to be received on that socket. |
| * |
| * Applications are unaware that "struct sk_buff" and other overheads |
| * allocate from the receive buffer during socket buffer allocation. |
| * |
| * And after considering the possible alternatives, returning the value |
| * we actually used in getsockopt is the most desirable behavior. |
| */ |
| WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); |
| } |
| |
| void sock_set_rcvbuf(struct sock *sk, int val) |
| { |
| lock_sock(sk); |
| __sock_set_rcvbuf(sk, val); |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_set_rcvbuf); |
| |
| static void __sock_set_mark(struct sock *sk, u32 val) |
| { |
| if (val != sk->sk_mark) { |
| WRITE_ONCE(sk->sk_mark, val); |
| sk_dst_reset(sk); |
| } |
| } |
| |
| void sock_set_mark(struct sock *sk, u32 val) |
| { |
| lock_sock(sk); |
| __sock_set_mark(sk, val); |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sock_set_mark); |
| |
| static void sock_release_reserved_memory(struct sock *sk, int bytes) |
| { |
| /* Round down bytes to multiple of pages */ |
| bytes = round_down(bytes, PAGE_SIZE); |
| |
| WARN_ON(bytes > sk->sk_reserved_mem); |
| WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); |
| sk_mem_reclaim(sk); |
| } |
| |
| static int sock_reserve_memory(struct sock *sk, int bytes) |
| { |
| long allocated; |
| bool charged; |
| int pages; |
| |
| if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) |
| return -EOPNOTSUPP; |
| |
| if (!bytes) |
| return 0; |
| |
| pages = sk_mem_pages(bytes); |
| |
| /* pre-charge to memcg */ |
| charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, |
| GFP_KERNEL | __GFP_RETRY_MAYFAIL); |
| if (!charged) |
| return -ENOMEM; |
| |
| /* pre-charge to forward_alloc */ |
| sk_memory_allocated_add(sk, pages); |
| allocated = sk_memory_allocated(sk); |
| /* If the system goes into memory pressure with this |
| * precharge, give up and return error. |
| */ |
| if (allocated > sk_prot_mem_limits(sk, 1)) { |
| sk_memory_allocated_sub(sk, pages); |
| mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); |
| return -ENOMEM; |
| } |
| sk_forward_alloc_add(sk, pages << PAGE_SHIFT); |
| |
| WRITE_ONCE(sk->sk_reserved_mem, |
| sk->sk_reserved_mem + (pages << PAGE_SHIFT)); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PAGE_POOL |
| |
| /* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED |
| * in 1 syscall. The limit exists to limit the amount of memory the kernel |
| * allocates to copy these tokens, and to prevent looping over the frags for |
| * too long. |
| */ |
| #define MAX_DONTNEED_TOKENS 128 |
| #define MAX_DONTNEED_FRAGS 1024 |
| |
| static noinline_for_stack int |
| sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen) |
| { |
| unsigned int num_tokens, i, j, k, netmem_num = 0; |
| struct dmabuf_token *tokens; |
| int ret = 0, num_frags = 0; |
| netmem_ref netmems[16]; |
| |
| if (!sk_is_tcp(sk)) |
| return -EBADF; |
| |
| if (optlen % sizeof(*tokens) || |
| optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS) |
| return -EINVAL; |
| |
| num_tokens = optlen / sizeof(*tokens); |
| tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL); |
| if (!tokens) |
| return -ENOMEM; |
| |
| if (copy_from_sockptr(tokens, optval, optlen)) { |
| kvfree(tokens); |
| return -EFAULT; |
| } |
| |
| xa_lock_bh(&sk->sk_user_frags); |
| for (i = 0; i < num_tokens; i++) { |
| for (j = 0; j < tokens[i].token_count; j++) { |
| if (++num_frags > MAX_DONTNEED_FRAGS) |
| goto frag_limit_reached; |
| |
| netmem_ref netmem = (__force netmem_ref)__xa_erase( |
| &sk->sk_user_frags, tokens[i].token_start + j); |
| |
| if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem))) |
| continue; |
| |
| netmems[netmem_num++] = netmem; |
| if (netmem_num == ARRAY_SIZE(netmems)) { |
| xa_unlock_bh(&sk->sk_user_frags); |
| for (k = 0; k < netmem_num; k++) |
| WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); |
| netmem_num = 0; |
| xa_lock_bh(&sk->sk_user_frags); |
| } |
| ret++; |
| } |
| } |
| |
| frag_limit_reached: |
| xa_unlock_bh(&sk->sk_user_frags); |
| for (k = 0; k < netmem_num; k++) |
| WARN_ON_ONCE(!napi_pp_put_page(netmems[k])); |
| |
| kvfree(tokens); |
| return ret; |
| } |
| #endif |
| |
| void sockopt_lock_sock(struct sock *sk) |
| { |
| /* When current->bpf_ctx is set, the setsockopt is called from |
| * a bpf prog. bpf has ensured the sk lock has been |
| * acquired before calling setsockopt(). |
| */ |
| if (has_current_bpf_ctx()) |
| return; |
| |
| lock_sock(sk); |
| } |
| EXPORT_SYMBOL(sockopt_lock_sock); |
| |
| void sockopt_release_sock(struct sock *sk) |
| { |
| if (has_current_bpf_ctx()) |
| return; |
| |
| release_sock(sk); |
| } |
| EXPORT_SYMBOL(sockopt_release_sock); |
| |
| bool sockopt_ns_capable(struct user_namespace *ns, int cap) |
| { |
| return has_current_bpf_ctx() || ns_capable(ns, cap); |
| } |
| EXPORT_SYMBOL(sockopt_ns_capable); |
| |
| bool sockopt_capable(int cap) |
| { |
| return has_current_bpf_ctx() || capable(cap); |
| } |
| EXPORT_SYMBOL(sockopt_capable); |
| |
| static int sockopt_validate_clockid(__kernel_clockid_t value) |
| { |
| switch (value) { |
| case CLOCK_REALTIME: |
| case CLOCK_MONOTONIC: |
| case CLOCK_TAI: |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * This is meant for all protocols to use and covers goings on |
| * at the socket level. Everything here is generic. |
| */ |
| |
| int sk_setsockopt(struct sock *sk, int level, int optname, |
| sockptr_t optval, unsigned int optlen) |
| { |
| struct so_timestamping timestamping; |
| struct socket *sock = sk->sk_socket; |
| struct sock_txtime sk_txtime; |
| int val; |
| int valbool; |
| struct linger ling; |
| int ret = 0; |
| |
| /* |
| * Options without arguments |
| */ |
| |
| if (optname == SO_BINDTODEVICE) |
| return sock_setbindtodevice(sk, optval, optlen); |
| |
| if (optlen < sizeof(int)) |
| return -EINVAL; |
| |
| if (copy_from_sockptr(&val, optval, sizeof(val))) |
| return -EFAULT; |
| |
| valbool = val ? 1 : 0; |
| |
| /* handle options which do not require locking the socket. */ |
| switch (optname) { |
| case SO_PRIORITY: |
| if ((val >= 0 && val <= 6) || |
| sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || |
| sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
| sock_set_priority(sk, val); |
| return 0; |
| } |
| return -EPERM; |
| case SO_PASSSEC: |
| assign_bit(SOCK_PASSSEC, &sock->flags, valbool); |
| return 0; |
| case SO_PASSCRED: |
| assign_bit(SOCK_PASSCRED, &sock->flags, valbool); |
| return 0; |
| case SO_PASSPIDFD: |
| assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); |
| return 0; |
| case SO_TYPE: |
| case SO_PROTOCOL: |
| case SO_DOMAIN: |
| case SO_ERROR: |
| return -ENOPROTOOPT; |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| case SO_BUSY_POLL: |
| if (val < 0) |
| return -EINVAL; |
| WRITE_ONCE(sk->sk_ll_usec, val); |
| return 0; |
| case SO_PREFER_BUSY_POLL: |
| if (valbool && !sockopt_capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); |
| return 0; |
| case SO_BUSY_POLL_BUDGET: |
| if (val > READ_ONCE(sk->sk_busy_poll_budget) && |
| !sockopt_capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| if (val < 0 || val > U16_MAX) |
| return -EINVAL; |
| WRITE_ONCE(sk->sk_busy_poll_budget, val); |
| return 0; |
| #endif |
| case SO_MAX_PACING_RATE: |
| { |
| unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; |
| unsigned long pacing_rate; |
| |
| if (sizeof(ulval) != sizeof(val) && |
| optlen >= sizeof(ulval) && |
| copy_from_sockptr(&ulval, optval, sizeof(ulval))) { |
| return -EFAULT; |
| } |
| if (ulval != ~0UL) |
| cmpxchg(&sk->sk_pacing_status, |
| SK_PACING_NONE, |
| SK_PACING_NEEDED); |
| /* Pairs with READ_ONCE() from sk_getsockopt() */ |
| WRITE_ONCE(sk->sk_max_pacing_rate, ulval); |
| pacing_rate = READ_ONCE(sk->sk_pacing_rate); |
| if (ulval < pacing_rate) |
| WRITE_ONCE(sk->sk_pacing_rate, ulval); |
| return 0; |
| } |
| case SO_TXREHASH: |
| if (val < -1 || val > 1) |
| return -EINVAL; |
| if ((u8)val == SOCK_TXREHASH_DEFAULT) |
| val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); |
| /* Paired with READ_ONCE() in tcp_rtx_synack() |
| * and sk_getsockopt(). |
| */ |
| WRITE_ONCE(sk->sk_txrehash, (u8)val); |
| return 0; |
| case SO_PEEK_OFF: |
| { |
| int (*set_peek_off)(struct sock *sk, int val); |
| |
| set_peek_off = READ_ONCE(sock->ops)->set_peek_off; |
| if (set_peek_off) |
| ret = set_peek_off(sk, val); |
| else |
| ret = -EOPNOTSUPP; |
| return ret; |
| } |
| #ifdef CONFIG_PAGE_POOL |
| case SO_DEVMEM_DONTNEED: |
| return sock_devmem_dontneed(sk, optval, optlen); |
| #endif |
| } |
| |
| sockopt_lock_sock(sk); |
| |
| switch (optname) { |
| case SO_DEBUG: |
| if (val && !sockopt_capable(CAP_NET_ADMIN)) |
| ret = -EACCES; |
| else |
| sock_valbool_flag(sk, SOCK_DBG, valbool); |
| break; |
| case SO_REUSEADDR: |
| sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); |
| break; |
| case SO_REUSEPORT: |
| sk->sk_reuseport = valbool; |
| break; |
| case SO_DONTROUTE: |
| sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); |
| sk_dst_reset(sk); |
| break; |
| case SO_BROADCAST: |
| sock_valbool_flag(sk, SOCK_BROADCAST, valbool); |
| break; |
| case SO_SNDBUF: |
| /* Don't error on this BSD doesn't and if you think |
| * about it this is right. Otherwise apps have to |
| * play 'guess the biggest size' games. RCVBUF/SNDBUF |
| * are treated in BSD as hints |
| */ |
| val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); |
| set_sndbuf: |
| /* Ensure val * 2 fits into an int, to prevent max_t() |
| * from treating it as a negative value. |
| */ |
| val = min_t(int, val, INT_MAX / 2); |
| sk->sk_userlocks |= SOCK_SNDBUF_LOCK; |
| WRITE_ONCE(sk->sk_sndbuf, |
| max_t(int, val * 2, SOCK_MIN_SNDBUF)); |
| /* Wake up sending tasks if we upped the value. */ |
| sk->sk_write_space(sk); |
| break; |
| |
| case SO_SNDBUFFORCE: |
| if (!sockopt_capable(CAP_NET_ADMIN)) { |
| ret = -EPERM; |
| break; |
| } |
| |
| /* No negative values (to prevent underflow, as val will be |
| * multiplied by 2). |
| */ |
| if (val < 0) |
| val = 0; |
| goto set_sndbuf; |
| |
| case SO_RCVBUF: |
| /* Don't error on this BSD doesn't and if you think |
| * about it this is right. Otherwise apps have to |
| * play 'guess the biggest size' games. RCVBUF/SNDBUF |
| * are treated in BSD as hints |
| */ |
| __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); |
| break; |
| |
| case SO_RCVBUFFORCE: |
| if (!sockopt_capable(CAP_NET_ADMIN)) { |
| ret = -EPERM; |
| break; |
| } |
| |
| /* No negative values (to prevent underflow, as val will be |
| * multiplied by 2). |
| */ |
| __sock_set_rcvbuf(sk, max(val, 0)); |
| break; |
| |
| case SO_KEEPALIVE: |
| if (sk->sk_prot->keepalive) |
| sk->sk_prot->keepalive(sk, valbool); |
| sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); |
| break; |
| |
| case SO_OOBINLINE: |
| sock_valbool_flag(sk, SOCK_URGINLINE, valbool); |
| break; |
| |
| case SO_NO_CHECK: |
| sk->sk_no_check_tx = valbool; |
| break; |
| |
| case SO_LINGER: |
| if (optlen < sizeof(ling)) { |
| ret = -EINVAL; /* 1003.1g */ |
| break; |
| } |
| if (copy_from_sockptr(&ling, optval, sizeof(ling))) { |
| ret = -EFAULT; |
| break; |
| } |
| if (!ling.l_onoff) { |
| sock_reset_flag(sk, SOCK_LINGER); |
| } else { |
| unsigned long t_sec = ling.l_linger; |
| |
| if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) |
| WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); |
| else |
| WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); |
| sock_set_flag(sk, SOCK_LINGER); |
| } |
| break; |
| |
| case SO_BSDCOMPAT: |
| break; |
| |
| case SO_TIMESTAMP_OLD: |
| case SO_TIMESTAMP_NEW: |
| case SO_TIMESTAMPNS_OLD: |
| case SO_TIMESTAMPNS_NEW: |
| sock_set_timestamp(sk, optname, valbool); |
| break; |
| |
| case SO_TIMESTAMPING_NEW: |
| case SO_TIMESTAMPING_OLD: |
| if (optlen == sizeof(timestamping)) { |
| if (copy_from_sockptr(×tamping, optval, |
| sizeof(timestamping))) { |
| ret = -EFAULT; |
| break; |
| } |
| } else { |
| memset(×tamping, 0, sizeof(timestamping)); |
| timestamping.flags = val; |
| } |
| ret = sock_set_timestamping(sk, optname, timestamping); |
| break; |
| |
| case SO_RCVLOWAT: |
| { |
| int (*set_rcvlowat)(struct sock *sk, int val) = NULL; |
| |
| if (val < 0) |
| val = INT_MAX; |
| if (sock) |
| set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; |
| if (set_rcvlowat) |
| ret = set_rcvlowat(sk, val); |
| else |
| WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); |
| break; |
| } |
| case SO_RCVTIMEO_OLD: |
| case SO_RCVTIMEO_NEW: |
| ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, |
| optlen, optname == SO_RCVTIMEO_OLD); |
| break; |
| |
| case SO_SNDTIMEO_OLD: |
| case SO_SNDTIMEO_NEW: |
| ret = sock_set_timeout(&sk->sk_sndtimeo, optval, |
| optlen, optname == SO_SNDTIMEO_OLD); |
| break; |
| |
| case SO_ATTACH_FILTER: { |
| struct sock_fprog fprog; |
| |
| ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); |
| if (!ret) |
| ret = sk_attach_filter(&fprog, sk); |
| break; |
| } |
| case SO_ATTACH_BPF: |
| ret = -EINVAL; |
| if (optlen == sizeof(u32)) { |
| u32 ufd; |
| |
| ret = -EFAULT; |
| if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) |
| break; |
| |
| ret = sk_attach_bpf(ufd, sk); |
| } |
| break; |
| |
| case SO_ATTACH_REUSEPORT_CBPF: { |
| struct sock_fprog fprog; |
| |
| ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); |
| if (!ret) |
| ret = sk_reuseport_attach_filter(&fprog, sk); |
| break; |
| } |
| case SO_ATTACH_REUSEPORT_EBPF: |
| ret = -EINVAL; |
| if (optlen == sizeof(u32)) { |
| u32 ufd; |
| |
| ret = -EFAULT; |
| if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) |
| break; |
| |
| ret = sk_reuseport_attach_bpf(ufd, sk); |
| } |
| break; |
| |
| case SO_DETACH_REUSEPORT_BPF: |
| ret = reuseport_detach_prog(sk); |
| break; |
| |
| case SO_DETACH_FILTER: |
| ret = sk_detach_filter(sk); |
| break; |
| |
| case SO_LOCK_FILTER: |
| if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) |
| ret = -EPERM; |
| else |
| sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); |
| break; |
| |
| case SO_MARK: |
| if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && |
| !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
| ret = -EPERM; |
| break; |
| } |
| |
| __sock_set_mark(sk, val); |
| break; |
| case SO_RCVMARK: |
| sock_valbool_flag(sk, SOCK_RCVMARK, valbool); |
| break; |
| |
| case SO_RXQ_OVFL: |
| sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); |
| break; |
| |
| case SO_WIFI_STATUS: |
| sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); |
| break; |
| |
| case SO_NOFCS: |
| sock_valbool_flag(sk, SOCK_NOFCS, valbool); |
| break; |
| |
| case SO_SELECT_ERR_QUEUE: |
| sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); |
| break; |
| |
| |
| case SO_INCOMING_CPU: |
| reuseport_update_incoming_cpu(sk, val); |
| break; |
| |
| case SO_CNX_ADVICE: |
| if (val == 1) |
| dst_negative_advice(sk); |
| break; |
| |
| case SO_ZEROCOPY: |
| if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { |
| if (!(sk_is_tcp(sk) || |
| (sk->sk_type == SOCK_DGRAM && |
| sk->sk_protocol == IPPROTO_UDP))) |
| ret = -EOPNOTSUPP; |
| } else if (sk->sk_family != PF_RDS) { |
| ret = -EOPNOTSUPP; |
| } |
| if (!ret) { |
| if (val < 0 || val > 1) |
| ret = -EINVAL; |
| else |
| sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); |
| } |
| break; |
| |
| case SO_TXTIME: |
| if (optlen != sizeof(struct sock_txtime)) { |
| ret = -EINVAL; |
| break; |
| } else if (copy_from_sockptr(&sk_txtime, optval, |
| sizeof(struct sock_txtime))) { |
| ret = -EFAULT; |
| break; |
| } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { |
| ret = -EINVAL; |
| break; |
| } |
| /* CLOCK_MONOTONIC is only used by sch_fq, and this packet |
| * scheduler has enough safe guards. |
| */ |
| if (sk_txtime.clockid != CLOCK_MONOTONIC && |
| !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { |
| ret = -EPERM; |
| break; |
| } |
| |
| ret = sockopt_validate_clockid(sk_txtime.clockid); |
| if (ret) |
| break; |
| |
| sock_valbool_flag(sk, SOCK_TXTIME, true); |
| sk->sk_clockid = sk_txtime.clockid; |
| sk->sk_txtime_deadline_mode = |
| !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); |
| sk->sk_txtime_report_errors = |
| !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); |
| break; |
| |
| case SO_BINDTOIFINDEX: |
| ret = sock_bindtoindex_locked(sk, val); |
| break; |
| |
| case SO_BUF_LOCK: |
| if (val & ~SOCK_BUF_LOCK_MASK) { |
| ret = -EINVAL; |
| break; |
| } |
| sk->sk_userlocks = val | (sk->sk_userlocks & |
| ~SOCK_BUF_LOCK_MASK); |
| break; |
| |
| case SO_RESERVE_MEM: |
| { |
| int delta; |
| |
| if (val < 0) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| delta = val - sk->sk_reserved_mem; |
| if (delta < 0) |
| sock_release_reserved_memory(sk, -delta); |
| else |
| ret = sock_reserve_memory(sk, delta); |
| break; |
| } |
| |
| default: |
| ret = -ENOPROTOOPT; |
| break; |
| } |
| sockopt_release_sock(sk); |
| return ret; |
| } |
| |
| int sock_setsockopt(struct socket *sock, int level, int optname, |
| sockptr_t optval, unsigned int optlen) |
| { |
| return sk_setsockopt(sock->sk, level, optname, |
| optval, optlen); |
| } |
| EXPORT_SYMBOL(sock_setsockopt); |
| |
| static const struct cred *sk_get_peer_cred(struct sock *sk) |
| { |
| const struct cred *cred; |
| |
| spin_lock(&sk->sk_peer_lock); |
| cred = get_cred(sk->sk_peer_cred); |
| spin_unlock(&sk->sk_peer_lock); |
| |
| return cred; |
| } |
| |
| static void cred_to_ucred(struct pid *pid, const struct cred *cred, |
| struct ucred *ucred) |
| { |
| ucred->pid = pid_vnr(pid); |
| ucred->uid = ucred->gid = -1; |
| if (cred) { |
| struct user_namespace *current_ns = current_user_ns(); |
| |
| ucred->uid = from_kuid_munged(current_ns, cred->euid); |
| ucred->gid = from_kgid_munged(current_ns, cred->egid); |
| } |
| } |
| |
| static int groups_to_user(sockptr_t dst, const struct group_info *src) |
| { |
| struct user_namespace *user_ns = current_user_ns(); |
| int i; |
| |
| for (i = 0; i < src->ngroups; i++) { |
| gid_t gid = from_kgid_munged(user_ns, src->gid[i]); |
| |
| if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| int sk_getsockopt(struct sock *sk, int level, int optname, |
| sockptr_t optval, sockptr_t optlen) |
| { |
| struct socket *sock = sk->sk_socket; |
| |
| union { |
| int val; |
| u64 val64; |
| unsigned long ulval; |
| struct linger ling; |
| struct old_timeval32 tm32; |
| struct __kernel_old_timeval tm; |
| struct __kernel_sock_timeval stm; |
| struct sock_txtime txtime; |
| struct so_timestamping timestamping; |
| } v; |
| |
| int lv = sizeof(int); |
| int len; |
| |
| if (copy_from_sockptr(&len, optlen, sizeof(int))) |
| return -EFAULT; |
| if (len < 0) |
| return -EINVAL; |
| |
| memset(&v, 0, sizeof(v)); |
| |
| switch (optname) { |
| case SO_DEBUG: |
| v.val = sock_flag(sk, SOCK_DBG); |
| break; |
| |
| case SO_DONTROUTE: |
| v.val = sock_flag(sk, SOCK_LOCALROUTE); |
| break; |
| |
| case SO_BROADCAST: |
| v.val = sock_flag(sk, SOCK_BROADCAST); |
| break; |
| |
| case SO_SNDBUF: |
| v.val = READ_ONCE(sk->sk_sndbuf); |
| break; |
| |
| case SO_RCVBUF: |
| v.val = READ_ONCE(sk->sk_rcvbuf); |
| break; |
| |
| case SO_REUSEADDR: |
| v.val = sk->sk_reuse; |
| break; |
| |
| case SO_REUSEPORT: |
| v.val = sk->sk_reuseport; |
| break; |
| |
| case SO_KEEPALIVE: |
| v.val = sock_flag(sk, SOCK_KEEPOPEN); |
| break; |
| |
| case SO_TYPE: |
| v.val = sk->sk_type; |
| break; |
| |
| case SO_PROTOCOL: |
| v.val = sk->sk_protocol; |
| break; |
| |
| case SO_DOMAIN: |
| v.val = sk->sk_family; |
| break; |
| |
| case SO_ERROR: |
| v.val = -sock_error(sk); |
| if (v.val == 0) |
| v.val = xchg(&sk->sk_err_soft, 0); |
| break; |
| |
| case SO_OOBINLINE: |
| v.val = sock_flag(sk, SOCK_URGINLINE); |
| break; |
| |
| case SO_NO_CHECK: |
| v.val = sk->sk_no_check_tx; |
| break; |
| |
| case SO_PRIORITY: |
| v.val = READ_ONCE(sk->sk_priority); |
| break; |
| |
| case SO_LINGER: |
| lv = sizeof(v.ling); |
| v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); |
| v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; |
| break; |
| |
| case SO_BSDCOMPAT: |
| break; |
| |
| case SO_TIMESTAMP_OLD: |
| v.val = sock_flag(sk, SOCK_RCVTSTAMP) && |
| !sock_flag(sk, SOCK_TSTAMP_NEW) && |
| !sock_flag(sk, SOCK_RCVTSTAMPNS); |
| break; |
| |
| case SO_TIMESTAMPNS_OLD: |
| v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); |
| break; |
| |
| case SO_TIMESTAMP_NEW: |
| v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); |
| break; |
| |
| case SO_TIMESTAMPNS_NEW: |
| v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); |
| break; |
| |
| case SO_TIMESTAMPING_OLD: |
| case SO_TIMESTAMPING_NEW: |
| lv = sizeof(v.timestamping); |
| /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only |
| * returning the flags when they were set through the same option. |
| * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. |
| */ |
| if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { |
| v.timestamping.flags = READ_ONCE(sk->sk_tsflags); |
| v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); |
| } |
| break; |
| |
| case SO_RCVTIMEO_OLD: |
| case SO_RCVTIMEO_NEW: |
| lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, |
| SO_RCVTIMEO_OLD == optname); |
| break; |
| |
| case SO_SNDTIMEO_OLD: |
| case SO_SNDTIMEO_NEW: |
| lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, |
| SO_SNDTIMEO_OLD == optname); |
| break; |
| |
| case SO_RCVLOWAT: |
| v.val = READ_ONCE(sk->sk_rcvlowat); |
| break; |
| |
| case SO_SNDLOWAT: |
| v.val = 1; |
| break; |
| |
| case SO_PASSCRED: |
| v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); |
| break; |
| |
| case SO_PASSPIDFD: |
| v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); |
| break; |
| |
| case SO_PEERCRED: |
| { |
| struct ucred peercred; |
| if (len > sizeof(peercred)) |
| len = sizeof(peercred); |
| |
| spin_lock(&sk->sk_peer_lock); |
| cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); |
| spin_unlock(&sk->sk_peer_lock); |
| |
| if (copy_to_sockptr(optval, &peercred, len)) |
| return -EFAULT; |
| goto lenout; |
| } |
| |
| case SO_PEERPIDFD: |
| { |
| struct pid *peer_pid; |
| struct file *pidfd_file = NULL; |
| int pidfd; |
| |
| if (len > sizeof(pidfd)) |
| len = sizeof(pidfd); |
| |
| spin_lock(&sk->sk_peer_lock); |
| peer_pid = get_pid(sk->sk_peer_pid); |
| spin_unlock(&sk->sk_peer_lock); |
| |
| if (!peer_pid) |
| return -ENODATA; |
| |
| pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); |
| put_pid(peer_pid); |
| if (pidfd < 0) |
| return pidfd; |
| |
| if (copy_to_sockptr(optval, &pidfd, len) || |
| copy_to_sockptr(optlen, &len, sizeof(int))) { |
| put_unused_fd(pidfd); |
| fput(pidfd_file); |
| |
| return -EFAULT; |
| } |
| |
| fd_install(pidfd, pidfd_file); |
| return 0; |
| } |
| |
| case SO_PEERGROUPS: |
| { |
| const struct cred *cred; |
| int ret, n; |
| |
| cred = sk_get_peer_cred(sk); |
| if (!cred) |
| return -ENODATA; |
| |
| n = cred->group_info->ngroups; |
| if (len < n * sizeof(gid_t)) { |
| len = n * sizeof(gid_t); |
| put_cred(cred); |
| return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; |
| } |
| len = n * sizeof(gid_t); |
| |
| ret = groups_to_user(optval, cred->group_info); |
| put_cred(cred); |
| if (ret) |
| return ret; |
| goto lenout; |
| } |
| |
| case SO_PEERNAME: |
| { |
| struct sockaddr_storage address; |
| |
| lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); |
| if (lv < 0) |
| return -ENOTCONN; |
| if (lv < len) |
| return -EINVAL; |
| if (copy_to_sockptr(optval, &address, len)) |
| return -EFAULT; |
| goto lenout; |
| } |
| |
| /* Dubious BSD thing... Probably nobody even uses it, but |
| * the UNIX standard wants it for whatever reason... -DaveM |
| */ |
| case SO_ACCEPTCONN: |
| v.val = sk->sk_state == TCP_LISTEN; |
| break; |
| |
| case SO_PASSSEC: |
| v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); |
| break; |
| |
| case SO_PEERSEC: |
| return security_socket_getpeersec_stream(sock, |
| optval, optlen, len); |
| |
| case SO_MARK: |
| v.val = READ_ONCE(sk->sk_mark); |
| break; |
| |
| case SO_RCVMARK: |
| v.val = sock_flag(sk, SOCK_RCVMARK); |
| break; |
| |
| case SO_RXQ_OVFL: |
| v.val = sock_flag(sk, SOCK_RXQ_OVFL); |
| break; |
| |
| case SO_WIFI_STATUS: |
| v.val = sock_flag(sk, SOCK_WIFI_STATUS); |
| break; |
| |
| case SO_PEEK_OFF: |
| if (!READ_ONCE(sock->ops)->set_peek_off) |
| return -EOPNOTSUPP; |
| |
| v.val = READ_ONCE(sk->sk_peek_off); |
| break; |
| case SO_NOFCS: |
| v.val = sock_flag(sk, SOCK_NOFCS); |
| break; |
| |
| case SO_BINDTODEVICE: |
| return sock_getbindtodevice(sk, optval, optlen, len); |
| |
| case SO_GET_FILTER: |
| len = sk_get_filter(sk, optval, len); |
| if (len < 0) |
| return len; |
| |
| goto lenout; |
| |
| case SO_LOCK_FILTER: |
| v.val = sock_flag(sk, SOCK_FILTER_LOCKED); |
| break; |
| |
| case SO_BPF_EXTENSIONS: |
| v.val = bpf_tell_extensions(); |
| break; |
| |
| case SO_SELECT_ERR_QUEUE: |
| v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); |
| break; |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| case SO_BUSY_POLL: |
| v.val = READ_ONCE(sk->sk_ll_usec); |
| break; |
| case SO_PREFER_BUSY_POLL: |
| v.val = READ_ONCE(sk->sk_prefer_busy_poll); |
| break; |
| #endif |
| |
| case SO_MAX_PACING_RATE: |
| /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ |
| if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { |
| lv = sizeof(v.ulval); |
| v.ulval = READ_ONCE(sk->sk_max_pacing_rate); |
| } else { |
| /* 32bit version */ |
| v.val = min_t(unsigned long, ~0U, |
| READ_ONCE(sk->sk_max_pacing_rate)); |
| } |
| break; |
| |
| case SO_INCOMING_CPU: |
| v.val = READ_ONCE(sk->sk_incoming_cpu); |
| break; |
| |
| case SO_MEMINFO: |
| { |
| u32 meminfo[SK_MEMINFO_VARS]; |
| |
| sk_get_meminfo(sk, meminfo); |
| |
| len = min_t(unsigned int, len, sizeof(meminfo)); |
| if (copy_to_sockptr(optval, &meminfo, len)) |
| return -EFAULT; |
| |
| goto lenout; |
| } |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| case SO_INCOMING_NAPI_ID: |
| v.val = READ_ONCE(sk->sk_napi_id); |
| |
| /* aggregate non-NAPI IDs down to 0 */ |
| if (v.val < MIN_NAPI_ID) |
| v.val = 0; |
| |
| break; |
| #endif |
| |
| case SO_COOKIE: |
| lv = sizeof(u64); |
| if (len < lv) |
| return -EINVAL; |
| v.val64 = sock_gen_cookie(sk); |
| break; |
| |
| case SO_ZEROCOPY: |
| v.val = sock_flag(sk, SOCK_ZEROCOPY); |
| break; |
| |
| case SO_TXTIME: |
| lv = sizeof(v.txtime); |
| v.txtime.clockid = sk->sk_clockid; |
| v.txtime.flags |= sk->sk_txtime_deadline_mode ? |
| SOF_TXTIME_DEADLINE_MODE : 0; |
| v.txtime.flags |= sk->sk_txtime_report_errors ? |
| SOF_TXTIME_REPORT_ERRORS : 0; |
| break; |
| |
| case SO_BINDTOIFINDEX: |
| v.val = READ_ONCE(sk->sk_bound_dev_if); |
| break; |
| |
| case SO_NETNS_COOKIE: |
| lv = sizeof(u64); |
| if (len != lv) |
| return -EINVAL; |
| v.val64 = sock_net(sk)->net_cookie; |
| break; |
| |
| case SO_BUF_LOCK: |
| v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; |
| break; |
| |
| case SO_RESERVE_MEM: |
| v.val = READ_ONCE(sk->sk_reserved_mem); |
| break; |
| |
| case SO_TXREHASH: |
| /* Paired with WRITE_ONCE() in sk_setsockopt() */ |
| v.val = READ_ONCE(sk->sk_txrehash); |
| break; |
| |
| default: |
| /* We implement the SO_SNDLOWAT etc to not be settable |
| * (1003.1g 7). |
| */ |
| return -ENOPROTOOPT; |
| } |
| |
| if (len > lv) |
| len = lv; |
| if (copy_to_sockptr(optval, &v, len)) |
| return -EFAULT; |
| lenout: |
| if (copy_to_sockptr(optlen, &len, sizeof(int))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* |
| * Initialize an sk_lock. |
| * |
| * (We also register the sk_lock with the lock validator.) |
| */ |
| static inline void sock_lock_init(struct sock *sk) |
| { |
| if (sk->sk_kern_sock) |
| sock_lock_init_class_and_name( |
| sk, |
| af_family_kern_slock_key_strings[sk->sk_family], |
| af_family_kern_slock_keys + sk->sk_family, |
| af_family_kern_key_strings[sk->sk_family], |
| af_family_kern_keys + sk->sk_family); |
| else |
| sock_lock_init_class_and_name( |
| sk, |
| af_family_slock_key_strings[sk->sk_family], |
| af_family_slock_keys + sk->sk_family, |
| af_family_key_strings[sk->sk_family], |
| af_family_keys + sk->sk_family); |
| } |
| |
| /* |
| * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, |
| * even temporarily, because of RCU lookups. sk_node should also be left as is. |
| * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end |
| */ |
| static void sock_copy(struct sock *nsk, const struct sock *osk) |
| { |
| const struct proto *prot = READ_ONCE(osk->sk_prot); |
| #ifdef CONFIG_SECURITY_NETWORK |
| void *sptr = nsk->sk_security; |
| #endif |
| |
| /* If we move sk_tx_queue_mapping out of the private section, |
| * we must check if sk_tx_queue_clear() is called after |
| * sock_copy() in sk_clone_lock(). |
| */ |
| BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < |
| offsetof(struct sock, sk_dontcopy_begin) || |
| offsetof(struct sock, sk_tx_queue_mapping) >= |
| offsetof(struct sock, sk_dontcopy_end)); |
| |
| memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); |
| |
| unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, |
| prot->obj_size - offsetof(struct sock, sk_dontcopy_end), |
| /* alloc is larger than struct, see sk_prot_alloc() */); |
| |
| #ifdef CONFIG_SECURITY_NETWORK |
| nsk->sk_security = sptr; |
| security_sk_clone(osk, nsk); |
| #endif |
| } |
| |
| static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, |
| int family) |
| { |
| struct sock *sk; |
| struct kmem_cache *slab; |
| |
| slab = prot->slab; |
| if (slab != NULL) { |
| sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); |
| if (!sk) |
| return sk; |
| if (want_init_on_alloc(priority)) |
| sk_prot_clear_nulls(sk, prot->obj_size); |
| } else |
| sk = kmalloc(prot->obj_size, priority); |
| |
| if (sk != NULL) { |
| if (security_sk_alloc(sk, family, priority)) |
| goto out_free; |
| |
| if (!try_module_get(prot->owner)) |
| goto out_free_sec; |
| } |
| |
| return sk; |
| |
| out_free_sec: |
| security_sk_free(sk); |
| out_free: |
| if (slab != NULL) |
| kmem_cache_free(slab, sk); |
| else |
| kfree(sk); |
| return NULL; |
| } |
| |
| static void sk_prot_free(struct proto *prot, struct sock *sk) |
| { |
| struct kmem_cache *slab; |
| struct module *owner; |
| |
| owner = prot->owner; |
| slab = prot->slab; |
| |
| cgroup_sk_free(&sk->sk_cgrp_data); |
| mem_cgroup_sk_free(sk); |
| security_sk_free(sk); |
| if (slab != NULL) |
| kmem_cache_free(slab, sk); |
| else |
| kfree(sk); |
| module_put(owner); |
| } |
| |
| /** |
| * sk_alloc - All socket objects are allocated here |
| * @net: the applicable net namespace |
| * @family: protocol family |
| * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
| * @prot: struct proto associated with this new sock instance |
| * @kern: is this to be a kernel socket? |
| */ |
| struct sock *sk_alloc(struct net *net, int family, gfp_t priority, |
| struct proto *prot, int kern) |
| { |
| struct sock *sk; |
| |
| sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); |
| if (sk) { |
| sk->sk_family = family; |
| /* |
| * See comment in struct sock definition to understand |
| * why we need sk_prot_creator -acme |
| */ |
| sk->sk_prot = sk->sk_prot_creator = prot; |
| sk->sk_kern_sock = kern; |
| sock_lock_init(sk); |
| sk->sk_net_refcnt = kern ? 0 : 1; |
| if (likely(sk->sk_net_refcnt)) { |
| get_net_track(net, &sk->ns_tracker, priority); |
| sock_inuse_add(net, 1); |
| } else { |
| __netns_tracker_alloc(net, &sk->ns_tracker, |
| false, priority); |
| } |
| |
| sock_net_set(sk, net); |
| refcount_set(&sk->sk_wmem_alloc, 1); |
| |
| mem_cgroup_sk_alloc(sk); |
| cgroup_sk_alloc(&sk->sk_cgrp_data); |
| sock_update_classid(&sk->sk_cgrp_data); |
| sock_update_netprioidx(&sk->sk_cgrp_data); |
| sk_tx_queue_clear(sk); |
| } |
| |
| return sk; |
| } |
| EXPORT_SYMBOL(sk_alloc); |
| |
| /* Sockets having SOCK_RCU_FREE will call this function after one RCU |
| * grace period. This is the case for UDP sockets and TCP listeners. |
| */ |
| static void __sk_destruct(struct rcu_head *head) |
| { |
| struct sock *sk = container_of(head, struct sock, sk_rcu); |
| struct sk_filter *filter; |
| |
| if (sk->sk_destruct) |
| sk->sk_destruct(sk); |
| |
| filter = rcu_dereference_check(sk->sk_filter, |
| refcount_read(&sk->sk_wmem_alloc) == 0); |
| if (filter) { |
| sk_filter_uncharge(sk, filter); |
| RCU_INIT_POINTER(sk->sk_filter, NULL); |
| } |
| |
| sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); |
| |
| #ifdef CONFIG_BPF_SYSCALL |
| bpf_sk_storage_free(sk); |
| #endif |
| |
| if (atomic_read(&sk->sk_omem_alloc)) |
| pr_debug("%s: optmem leakage (%d bytes) detected\n", |
| __func__, atomic_read(&sk->sk_omem_alloc)); |
| |
| if (sk->sk_frag.page) { |
| put_page(sk->sk_frag.page); |
| sk->sk_frag.page = NULL; |
| } |
| |
| /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ |
| put_cred(sk->sk_peer_cred); |
| put_pid(sk->sk_peer_pid); |
| |
| if (likely(sk->sk_net_refcnt)) |
| put_net_track(sock_net(sk), &sk->ns_tracker); |
| else |
| __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); |
| |
| sk_prot_free(sk->sk_prot_creator, sk); |
| } |
| |
| void sk_destruct(struct sock *sk) |
| { |
| bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); |
| |
| if (rcu_access_pointer(sk->sk_reuseport_cb)) { |
| reuseport_detach_sock(sk); |
| use_call_rcu = true; |
| } |
| |
| if (use_call_rcu) |
| call_rcu(&sk->sk_rcu, __sk_destruct); |
| else |
| __sk_destruct(&sk->sk_rcu); |
| } |
| |
| static void __sk_free(struct sock *sk) |
| { |
| if (likely(sk->sk_net_refcnt)) |
| sock_inuse_add(sock_net(sk), -1); |
| |
| if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) |
| sock_diag_broadcast_destroy(sk); |
| else |
| sk_destruct(sk); |
| } |
| |
| void sk_free(struct sock *sk) |
| { |
| /* |
| * We subtract one from sk_wmem_alloc and can know if |
| * some packets are still in some tx queue. |
| * If not null, sock_wfree() will call __sk_free(sk) later |
| */ |
| if (refcount_dec_and_test(&sk->sk_wmem_alloc)) |
| __sk_free(sk); |
| } |
| EXPORT_SYMBOL(sk_free); |
| |
| static void sk_init_common(struct sock *sk) |
| { |
| skb_queue_head_init(&sk->sk_receive_queue); |
| skb_queue_head_init(&sk->sk_write_queue); |
| skb_queue_head_init(&sk->sk_error_queue); |
| |
| rwlock_init(&sk->sk_callback_lock); |
| lockdep_set_class_and_name(&sk->sk_receive_queue.lock, |
| af_rlock_keys + sk->sk_family, |
| af_family_rlock_key_strings[sk->sk_family]); |
| lockdep_set_class_and_name(&sk->sk_write_queue.lock, |
| af_wlock_keys + sk->sk_family, |
| af_family_wlock_key_strings[sk->sk_family]); |
| lockdep_set_class_and_name(&sk->sk_error_queue.lock, |
| af_elock_keys + sk->sk_family, |
| af_family_elock_key_strings[sk->sk_family]); |
| if (sk->sk_kern_sock) |
| lockdep_set_class_and_name(&sk->sk_callback_lock, |
| af_kern_callback_keys + sk->sk_family, |
| af_family_kern_clock_key_strings[sk->sk_family]); |
| else |
| lockdep_set_class_and_name(&sk->sk_callback_lock, |
| af_callback_keys + sk->sk_family, |
| af_family_clock_key_strings[sk->sk_family]); |
| } |
| |
| /** |
| * sk_clone_lock - clone a socket, and lock its clone |
| * @sk: the socket to clone |
| * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) |
| * |
| * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) |
| */ |
| struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) |
| { |
| struct proto *prot = READ_ONCE(sk->sk_prot); |
| struct sk_filter *filter; |
| bool is_charged = true; |
| struct sock *newsk; |
| |
| newsk = sk_prot_alloc(prot, priority, sk->sk_family); |
| if (!newsk) |
| goto out; |
| |
| sock_copy(newsk, sk); |
| |
| newsk->sk_prot_creator = prot; |
| |
| /* SANITY */ |
| if (likely(newsk->sk_net_refcnt)) { |
| get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); |
| sock_inuse_add(sock_net(newsk), 1); |
| } else { |
| /* Kernel sockets are not elevating the struct net refcount. |
| * Instead, use a tracker to more easily detect if a layer |
| * is not properly dismantling its kernel sockets at netns |
| * destroy time. |
| */ |
| __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, |
| false, priority); |
| } |
| sk_node_init(&newsk->sk_node); |
| sock_lock_init(newsk); |
| bh_lock_sock(newsk); |
| newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; |
| newsk->sk_backlog.len = 0; |
| |
| atomic_set(&newsk->sk_rmem_alloc, 0); |
| |
| /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ |
| refcount_set(&newsk->sk_wmem_alloc, 1); |
| |
| atomic_set(&newsk->sk_omem_alloc, 0); |
| sk_init_common(newsk); |
| |
| newsk->sk_dst_cache = NULL; |
| newsk->sk_dst_pending_confirm = 0; |
| newsk->sk_wmem_queued = 0; |
| newsk->sk_forward_alloc = 0; |
| newsk->sk_reserved_mem = 0; |
| atomic_set(&newsk->sk_drops, 0); |
| newsk->sk_send_head = NULL; |
| newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; |
| atomic_set(&newsk->sk_zckey, 0); |
| |
| sock_reset_flag(newsk, SOCK_DONE); |
| |
| /* sk->sk_memcg will be populated at accept() time */ |
| newsk->sk_memcg = NULL; |
| |
| cgroup_sk_clone(&newsk->sk_cgrp_data); |
| |
| rcu_read_lock(); |
| filter = rcu_dereference(sk->sk_filter); |
| if (filter != NULL) |
| /* though it's an empty new sock, the charging may fail |
| * if sysctl_optmem_max was changed between creation of |
| * original socket and cloning |
| */ |
| is_charged = sk_filter_charge(newsk, filter); |
| RCU_INIT_POINTER(newsk->sk_filter, filter); |
| rcu_read_unlock(); |
| |
| if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { |
| /* We need to make sure that we don't uncharge the new |
| * socket if we couldn't charge it in the first place |
| * as otherwise we uncharge the parent's filter. |
| */ |
| if (!is_charged) |
| RCU_INIT_POINTER(newsk->sk_filter, NULL); |
| sk_free_unlock_clone(newsk); |
| newsk = NULL; |
| goto out; |
| } |
| RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); |
| |
| if (bpf_sk_storage_clone(sk, newsk)) { |
| sk_free_unlock_clone(newsk); |
| newsk = NULL; |
| goto out; |
| } |
| |
| /* Clear sk_user_data if parent had the pointer tagged |
| * as not suitable for copying when cloning. |
| */ |
| if (sk_user_data_is_nocopy(newsk)) |
| newsk->sk_user_data = NULL; |
| |
| newsk->sk_err = 0; |
| newsk->sk_err_soft = 0; |
| newsk->sk_priority = 0; |
| newsk->sk_incoming_cpu = raw_smp_processor_id(); |
| |
| /* Before updating sk_refcnt, we must commit prior changes to memory |
| * (Documentation/RCU/rculist_nulls.rst for details) |
| */ |
| smp_wmb(); |
| refcount_set(&newsk->sk_refcnt, 2); |
| |
| sk_set_socket(newsk, NULL); |
| sk_tx_queue_clear(newsk); |
| RCU_INIT_POINTER(newsk->sk_wq, NULL); |
| |
| if (newsk->sk_prot->sockets_allocated) |
| sk_sockets_allocated_inc(newsk); |
| |
| if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) |
| net_enable_timestamp(); |
| out: |
| return newsk; |
| } |
| EXPORT_SYMBOL_GPL(sk_clone_lock); |
| |
| void sk_free_unlock_clone(struct sock *sk) |
| { |
| /* It is still raw copy of parent, so invalidate |
| * destructor and make plain sk_free() */ |
| sk->sk_destruct = NULL; |
| bh_unlock_sock(sk); |
| sk_free(sk); |
| } |
| EXPORT_SYMBOL_GPL(sk_free_unlock_clone); |
| |
| static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) |
| { |
| bool is_ipv6 = false; |
| u32 max_size; |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| is_ipv6 = (sk->sk_family == AF_INET6 && |
| !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); |
| #endif |
| /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ |
| max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : |
| READ_ONCE(dst->dev->gso_ipv4_max_size); |
| if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) |
| max_size = GSO_LEGACY_MAX_SIZE; |
| |
| return max_size - (MAX_TCP_HEADER + 1); |
| } |
| |
| void sk_setup_caps(struct sock *sk, struct dst_entry *dst) |
| { |
| u32 max_segs = 1; |
| |
| sk->sk_route_caps = dst->dev->features; |
| if (sk_is_tcp(sk)) |
| sk->sk_route_caps |= NETIF_F_GSO; |
| if (sk->sk_route_caps & NETIF_F_GSO) |
| sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; |
| if (unlikely(sk->sk_gso_disabled)) |
| sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| if (sk_can_gso(sk)) { |
| if (dst->header_len && !xfrm_dst_offload_ok(dst)) { |
| sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| } else { |
| sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; |
| sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); |
| /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ |
| max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); |
| } |
| } |
| sk->sk_gso_max_segs = max_segs; |
| sk_dst_set(sk, dst); |
| } |
| EXPORT_SYMBOL_GPL(sk_setup_caps); |
| |
| /* |
| * Simple resource managers for sockets. |
| */ |
| |
| |
| /* |
| * Write buffer destructor automatically called from kfree_skb. |
| */ |
| void sock_wfree(struct sk_buff *skb) |
| { |
| struct sock *sk = skb->sk; |
| unsigned int len = skb->truesize; |
| bool free; |
| |
| if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { |
| if (sock_flag(sk, SOCK_RCU_FREE) && |
| sk->sk_write_space == sock_def_write_space) { |
| rcu_read_lock(); |
| free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); |
| sock_def_write_space_wfree(sk); |
| rcu_read_unlock(); |
| if (unlikely(free)) |
| __sk_free(sk); |
| return; |
| } |
| |
| /* |
| * Keep a reference on sk_wmem_alloc, this will be released |
| * after sk_write_space() call |
| */ |
| WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); |
| sk->sk_write_space(sk); |
| len = 1; |
| } |
| /* |
| * if sk_wmem_alloc reaches 0, we must finish what sk_free() |
| * could not do because of in-flight packets |
| */ |
| if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) |
| __sk_free(sk); |
| } |
| EXPORT_SYMBOL(sock_wfree); |
| |
| /* This variant of sock_wfree() is used by TCP, |
| * since it sets SOCK_USE_WRITE_QUEUE. |
| */ |
| void __sock_wfree(struct sk_buff *skb) |
| { |
| struct sock *sk = skb->sk; |
| |
| if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) |
| __sk_free(sk); |
| } |
| |
| void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) |
| { |
| skb_orphan(skb); |
| skb->sk = sk; |
| #ifdef CONFIG_INET |
| if (unlikely(!sk_fullsock(sk))) { |
| skb->destructor = sock_edemux; |
| sock_hold(sk); |
| return; |
| } |
| #endif |
| skb->destructor = sock_wfree; |
| skb_set_hash_from_sk(skb, sk); |
| /* |
| * We used to take a refcount on sk, but following operation |
| * is enough to guarantee sk_free() won't free this sock until |
| * all in-flight packets are completed |
| */ |
| refcount_add(skb->truesize, &sk->sk_wmem_alloc); |
| } |
| EXPORT_SYMBOL(skb_set_owner_w); |
| |
| static bool can_skb_orphan_partial(const struct sk_buff *skb) |
| { |
| /* Drivers depend on in-order delivery for crypto offload, |
| * partial orphan breaks out-of-order-OK logic. |
| */ |
| if (skb_is_decrypted(skb)) |
| return false; |
| |
| return (skb->destructor == sock_wfree || |
| (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); |
| } |
| |
| /* This helper is used by netem, as it can hold packets in its |
| * delay queue. We want to allow the owner socket to send more |
| * packets, as if they were already TX completed by a typical driver. |
| * But we also want to keep skb->sk set because some packet schedulers |
| * rely on it (sch_fq for example). |
| */ |
| void skb_orphan_partial(struct sk_buff *skb) |
| { |
| if (skb_is_tcp_pure_ack(skb)) |
| return; |
| |
| if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) |
| return; |
| |
| skb_orphan(skb); |
| } |
| EXPORT_SYMBOL(skb_orphan_partial); |
| |
| /* |
| * Read buffer destructor automatically called from kfree_skb. |
| */ |
| void sock_rfree(struct sk_buff *skb) |
| { |
| struct sock *sk = skb->sk; |
| unsigned int len = skb->truesize; |
| |
| atomic_sub(len, &sk->sk_rmem_alloc); |
| sk_mem_uncharge(sk, len); |
| } |
| EXPORT_SYMBOL(sock_rfree); |
| |
| /* |
| * Buffer destructor for skbs that are not used directly in read or write |
| * path, e.g. for error handler skbs. Automatically called from kfree_skb. |
| */ |
| void sock_efree(struct sk_buff *skb) |
| { |
| sock_put(skb->sk); |
| } |
| EXPORT_SYMBOL(sock_efree); |
| |
| /* Buffer destructor for prefetch/receive path where reference count may |
| * not be held, e.g. for listen sockets. |
| */ |
| #ifdef CONFIG_INET |
| void sock_pfree(struct sk_buff *skb) |
| { |
| struct sock *sk = skb->sk; |
| |
| if (!sk_is_refcounted(sk)) |
| return; |
| |
| if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) { |
| inet_reqsk(sk)->rsk_listener = NULL; |
| reqsk_free(inet_reqsk(sk)); |
| return; |
| } |
| |
| sock_gen_put(sk); |
| } |
| EXPORT_SYMBOL(sock_pfree); |
| #endif /* CONFIG_INET */ |
| |
| kuid_t sock_i_uid(struct sock *sk) |
| { |
| kuid_t uid; |
| |
| read_lock_bh(&sk->sk_callback_lock); |
| uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; |
| read_unlock_bh(&sk->sk_callback_lock); |
| return uid; |
| } |
| EXPORT_SYMBOL(sock_i_uid); |
| |
| unsigned long __sock_i_ino(struct sock *sk) |
| { |
| unsigned long ino; |
| |
| read_lock(&sk->sk_callback_lock); |
| ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; |
| read_unlock(&sk->sk_callback_lock); |
| return ino; |
| } |
| EXPORT_SYMBOL(__sock_i_ino); |
| |
| unsigned long sock_i_ino(struct sock *sk) |
| { |
| unsigned long ino; |
| |
| local_bh_disable(); |
| ino = __sock_i_ino(sk); |
| local_bh_enable(); |
| return ino; |
| } |
| EXPORT_SYMBOL(sock_i_ino); |
| |
| /* |
| * Allocate a skb from the socket's send buffer. |
| */ |
| struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, |
| gfp_t priority) |
| { |
| if (force || |
| refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { |
| struct sk_buff *skb = alloc_skb(size, priority); |
| |
| if (skb) { |
| skb_set_owner_w(skb, sk); |
| return skb; |
| } |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(sock_wmalloc); |
| |
| static void sock_ofree(struct sk_buff *skb) |
| { |
| struct sock *sk = skb->sk; |
| |
| atomic_sub(skb->truesize, &sk->sk_omem_alloc); |
| } |
| |
| struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, |
| gfp_t priority) |
| { |
| struct sk_buff *skb; |
| |
| /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ |
| if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > |
| READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) |
| return NULL; |
| |
| skb = alloc_skb(size, priority); |
| if (!skb) |
| return NULL; |
| |
| atomic_add(skb->truesize, &sk->sk_omem_alloc); |
| skb->sk = sk; |
| skb->destructor = sock_ofree; |
| return skb; |
| } |
| |
| /* |
| * Allocate a memory block from the socket's option memory buffer. |
| */ |
| void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) |
| { |
| int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); |
| |
| if ((unsigned int)size <= optmem_max && |
| atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { |
| void *mem; |
| /* First do the add, to avoid the race if kmalloc |
| * might sleep. |
| */ |
| atomic_add(size, &sk->sk_omem_alloc); |
| mem = kmalloc(size, priority); |
| if (mem) |
| return mem; |
| atomic_sub(size, &sk->sk_omem_alloc); |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(sock_kmalloc); |
| |
| /* Free an option memory block. Note, we actually want the inline |
| * here as this allows gcc to detect the nullify and fold away the |
| * condition entirely. |
| */ |
| static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, |
| const bool nullify) |
| { |
| if (WARN_ON_ONCE(!mem)) |
| return; |
| if (nullify) |
| kfree_sensitive(mem); |
| else |
| kfree(mem); |
| atomic_sub(size, &sk->sk_omem_alloc); |
| } |
| |
| void sock_kfree_s(struct sock *sk, void *mem, int size) |
| { |
| __sock_kfree_s(sk, mem, size, false); |
| } |
| EXPORT_SYMBOL(sock_kfree_s); |
| |
| void sock_kzfree_s(struct sock *sk, void *mem, int size) |
| { |
| __sock_kfree_s(sk, mem, size, true); |
| } |
| EXPORT_SYMBOL(sock_kzfree_s); |
| |
| /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. |
| I think, these locks should be removed for datagram sockets. |
| */ |
| static long sock_wait_for_wmem(struct sock *sk, long timeo) |
| { |
| DEFINE_WAIT(wait); |
| |
| sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); |
| for (;;) { |
| if (!timeo) |
| break; |
| if (signal_pending(current)) |
| break; |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); |
| if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) |
| break; |
| if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
| break; |
| if (READ_ONCE(sk->sk_err)) |
| break; |
| timeo = schedule_timeout(timeo); |
| } |
| finish_wait(sk_sleep(sk), &wait); |
| return timeo; |
| } |
| |
| |
| /* |
| * Generic send/receive buffer handlers |
| */ |
| |
| struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, |
| unsigned long data_len, int noblock, |
| int *errcode, int max_page_order) |
| { |
| struct sk_buff *skb; |
| long timeo; |
| int err; |
| |
| timeo = sock_sndtimeo(sk, noblock); |
| for (;;) { |
| err = sock_error(sk); |
| if (err != 0) |
| goto failure; |
| |
| err = -EPIPE; |
| if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) |
| goto failure; |
| |
| if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) |
| break; |
| |
| sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| err = -EAGAIN; |
| if (!timeo) |
| goto failure; |
| if (signal_pending(current)) |
| goto interrupted; |
| timeo = sock_wait_for_wmem(sk, timeo); |
| } |
| skb = alloc_skb_with_frags(header_len, data_len, max_page_order, |
| errcode, sk->sk_allocation); |
| if (skb) |
| skb_set_owner_w(skb, sk); |
| return skb; |
| |
| interrupted: |
| err = sock_intr_errno(timeo); |
| failure: |
| *errcode = err; |
| return NULL; |
| } |
| EXPORT_SYMBOL(sock_alloc_send_pskb); |
| |
| int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, |
| struct sockcm_cookie *sockc) |
| { |
| u32 tsflags; |
| |
| switch (cmsg->cmsg_type) { |
| case SO_MARK: |
| if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && |
| !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) |
| return -EPERM; |
| if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
| return -EINVAL; |
| sockc->mark = *(u32 *)CMSG_DATA(cmsg); |
| break; |
| case SO_TIMESTAMPING_OLD: |
| case SO_TIMESTAMPING_NEW: |
| if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) |
| return -EINVAL; |
| |
| tsflags = *(u32 *)CMSG_DATA(cmsg); |
| if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) |
| return -EINVAL; |
| |
| sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; |
| sockc->tsflags |= tsflags; |
| break; |
| case SCM_TXTIME: |
| if (!sock_flag(sk, SOCK_TXTIME)) |
| return -EINVAL; |
| if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) |
| return -EINVAL; |
| sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); |
| break; |
| /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ |
| case SCM_RIGHTS: |
| case SCM_CREDENTIALS: |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(__sock_cmsg_send); |
| |
| int sock_cmsg_send(struct sock *sk, struct msghdr *msg, |
| struct sockcm_cookie *sockc) |
| { |
| struct cmsghdr *cmsg; |
| int ret; |
| |
| for_each_cmsghdr(cmsg, msg) { |
| if (!CMSG_OK(msg, cmsg)) |
| return -EINVAL; |
| if (cmsg->cmsg_level != SOL_SOCKET) |
| continue; |
| ret = __sock_cmsg_send(sk, cmsg, sockc); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(sock_cmsg_send); |
| |
| static void sk_enter_memory_pressure(struct sock *sk) |
| { |
| if (!sk->sk_prot->enter_memory_pressure) |
| return; |
| |
| sk->sk_prot->enter_memory_pressure(sk); |
| } |
| |
| static void sk_leave_memory_pressure(struct sock *sk) |
| { |
| if (sk->sk_prot->leave_memory_pressure) { |
| INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, |
| tcp_leave_memory_pressure, sk); |
| } else { |
| unsigned long *memory_pressure = sk->sk_prot->memory_pressure; |
| |
| if (memory_pressure && READ_ONCE(*memory_pressure)) |
| WRITE_ONCE(*memory_pressure, 0); |
| } |
| } |
| |
| DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); |
| |
| /** |
| * skb_page_frag_refill - check that a page_frag contains enough room |
| * @sz: minimum size of the fragment we want to get |
| * @pfrag: pointer to page_frag |
| * @gfp: priority for memory allocation |
| * |
| * Note: While this allocator tries to use high order pages, there is |
| * no guarantee that allocations succeed. Therefore, @sz MUST be |
| * less or equal than PAGE_SIZE. |
| */ |
| bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) |
| { |
| if (pfrag->page) { |
| if (page_ref_count(pfrag->page) == 1) { |
| pfrag->offset = 0; |
| return true; |
| } |
| if (pfrag->offset + sz <= pfrag->size) |
| return true; |
| put_page(pfrag->page); |
| } |
| |
| pfrag->offset = 0; |
| if (SKB_FRAG_PAGE_ORDER && |
| !static_branch_unlikely(&net_high_order_alloc_disable_key)) { |
| /* Avoid direct reclaim but allow kswapd to wake */ |
| pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | |
| __GFP_COMP | __GFP_NOWARN | |
| __GFP_NORETRY, |
| SKB_FRAG_PAGE_ORDER); |
| if (likely(pfrag->page)) { |
| pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; |
| return true; |
| } |
| } |
| pfrag->page = alloc_page(gfp); |
| if (likely(pfrag->page)) { |
| pfrag->size = PAGE_SIZE; |
| return true; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL(skb_page_frag_refill); |
| |
| bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) |
| { |
| if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) |
| return true; |
| |
| sk_enter_memory_pressure(sk); |
| sk_stream_moderate_sndbuf(sk); |
| return false; |
| } |
| EXPORT_SYMBOL(sk_page_frag_refill); |
| |
| void __lock_sock(struct sock *sk) |
| __releases(&sk->sk_lock.slock) |
| __acquires(&sk->sk_lock.slock) |
| { |
| DEFINE_WAIT(wait); |
| |
| for (;;) { |
| prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, |
| TASK_UNINTERRUPTIBLE); |
| spin_unlock_bh(&sk->sk_lock.slock); |
| schedule(); |
| spin_lock_bh(&sk->sk_lock.slock); |
| if (!sock_owned_by_user(sk)) |
| break; |
| } |
| finish_wait(&sk->sk_lock.wq, &wait); |
| } |
| |
| void __release_sock(struct sock *sk) |
| __releases(&sk->sk_lock.slock) |
| __acquires(&sk->sk_lock.slock) |
| { |
| struct sk_buff *skb, *next; |
| |
| while ((skb = sk->sk_backlog.head) != NULL) { |
| sk->sk_backlog.head = sk->sk_backlog.tail = NULL; |
| |
| spin_unlock_bh(&sk->sk_lock.slock); |
| |
| do { |
| next = skb->next; |
| prefetch(next); |
| DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); |
| skb_mark_not_on_list(skb); |
| sk_backlog_rcv(sk, skb); |
| |
| cond_resched(); |
| |
| skb = next; |
| } while (skb != NULL); |
| |
| spin_lock_bh(&sk->sk_lock.slock); |
| } |
| |
| /* |
| * Doing the zeroing here guarantee we can not loop forever |
| * while a wild producer attempts to flood us. |
| */ |
| sk->sk_backlog.len = 0; |
| } |
| |
| void __sk_flush_backlog(struct sock *sk) |
| { |
| spin_lock_bh(&sk->sk_lock.slock); |
| __release_sock(sk); |
| |
| if (sk->sk_prot->release_cb) |
| INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
| tcp_release_cb, sk); |
| |
| spin_unlock_bh(&sk->sk_lock.slock); |
| } |
| EXPORT_SYMBOL_GPL(__sk_flush_backlog); |
| |
| /** |
| * sk_wait_data - wait for data to arrive at sk_receive_queue |
| * @sk: sock to wait on |
| * @timeo: for how long |
| * @skb: last skb seen on sk_receive_queue |
| * |
| * Now socket state including sk->sk_err is changed only under lock, |
| * hence we may omit checks after joining wait queue. |
| * We check receive queue before schedule() only as optimization; |
| * it is very likely that release_sock() added new data. |
| */ |
| int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) |
| { |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| int rc; |
| |
| add_wait_queue(sk_sleep(sk), &wait); |
| sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); |
| sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| remove_wait_queue(sk_sleep(sk), &wait); |
| return rc; |
| } |
| EXPORT_SYMBOL(sk_wait_data); |
| |
| /** |
| * __sk_mem_raise_allocated - increase memory_allocated |
| * @sk: socket |
| * @size: memory size to allocate |
| * @amt: pages to allocate |
| * @kind: allocation type |
| * |
| * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. |
| * |
| * Unlike the globally shared limits among the sockets under same protocol, |
| * consuming the budget of a memcg won't have direct effect on other ones. |
| * So be optimistic about memcg's tolerance, and leave the callers to decide |
| * whether or not to raise allocated through sk_under_memory_pressure() or |
| * its variants. |
| */ |
| int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; |
| struct proto *prot = sk->sk_prot; |
| bool charged = false; |
| long allocated; |
| |
| sk_memory_allocated_add(sk, amt); |
| allocated = sk_memory_allocated(sk); |
| |
| if (memcg) { |
| if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) |
| goto suppress_allocation; |
| charged = true; |
| } |
| |
| /* Under limit. */ |
| if (allocated <= sk_prot_mem_limits(sk, 0)) { |
| sk_leave_memory_pressure(sk); |
| return 1; |
| } |
| |
| /* Under pressure. */ |
| if (allocated > sk_prot_mem_limits(sk, 1)) |
| sk_enter_memory_pressure(sk); |
| |
| /* Over hard limit. */ |
| if (allocated > sk_prot_mem_limits(sk, 2)) |
| goto suppress_allocation; |
| |
| /* Guarantee minimum buffer size under pressure (either global |
| * or memcg) to make sure features described in RFC 7323 (TCP |
| * Extensions for High Performance) work properly. |
| * |
| * This rule does NOT stand when exceeds global or memcg's hard |
| * limit, or else a DoS attack can be taken place by spawning |
| * lots of sockets whose usage are under minimum buffer size. |
| */ |
| if (kind == SK_MEM_RECV) { |
| if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) |
| return 1; |
| |
| } else { /* SK_MEM_SEND */ |
| int wmem0 = sk_get_wmem0(sk, prot); |
| |
| if (sk->sk_type == SOCK_STREAM) { |
| if (sk->sk_wmem_queued < wmem0) |
| return 1; |
| } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { |
| return 1; |
| } |
| } |
| |
| if (sk_has_memory_pressure(sk)) { |
| u64 alloc; |
| |
| /* The following 'average' heuristic is within the |
| * scope of global accounting, so it only makes |
| * sense for global memory pressure. |
| */ |
| if (!sk_under_global_memory_pressure(sk)) |
| return 1; |
| |
| /* Try to be fair among all the sockets under global |
| * pressure by allowing the ones that below average |
| * usage to raise. |
| */ |
| alloc = sk_sockets_allocated_read_positive(sk); |
| if (sk_prot_mem_limits(sk, 2) > alloc * |
| sk_mem_pages(sk->sk_wmem_queued + |
| atomic_read(&sk->sk_rmem_alloc) + |
| sk->sk_forward_alloc)) |
| return 1; |
| } |
| |
| suppress_allocation: |
| |
| if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { |
| sk_stream_moderate_sndbuf(sk); |
| |
| /* Fail only if socket is _under_ its sndbuf. |
| * In this case we cannot block, so that we have to fail. |
| */ |
| if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { |
| /* Force charge with __GFP_NOFAIL */ |
| if (memcg && !charged) { |
| mem_cgroup_charge_skmem(memcg, amt, |
| gfp_memcg_charge() | __GFP_NOFAIL); |
| } |
| return 1; |
| } |
| } |
| |
| if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) |
| trace_sock_exceed_buf_limit(sk, prot, allocated, kind); |
| |
| sk_memory_allocated_sub(sk, amt); |
| |
| if (charged) |
| mem_cgroup_uncharge_skmem(memcg, amt); |
| |
| return 0; |
| } |
| |
| /** |
| * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated |
| * @sk: socket |
| * @size: memory size to allocate |
| * @kind: allocation type |
| * |
| * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means |
| * rmem allocation. This function assumes that protocols which have |
| * memory_pressure use sk_wmem_queued as write buffer accounting. |
| */ |
| int __sk_mem_schedule(struct sock *sk, int size, int kind) |
| { |
| int ret, amt = sk_mem_pages(size); |
| |
| sk_forward_alloc_add(sk, amt << PAGE_SHIFT); |
| ret = __sk_mem_raise_allocated(sk, size, amt, kind); |
| if (!ret) |
| sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); |
| return ret; |
| } |
| EXPORT_SYMBOL(__sk_mem_schedule); |
| |
| /** |
| * __sk_mem_reduce_allocated - reclaim memory_allocated |
| * @sk: socket |
| * @amount: number of quanta |
| * |
| * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc |
| */ |
| void __sk_mem_reduce_allocated(struct sock *sk, int amount) |
| { |
| sk_memory_allocated_sub(sk, amount); |
| |
| if (mem_cgroup_sockets_enabled && sk->sk_memcg) |
| mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); |
| |
| if (sk_under_global_memory_pressure(sk) && |
| (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) |
| sk_leave_memory_pressure(sk); |
| } |
| |
| /** |
| * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated |
| * @sk: socket |
| * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) |
| */ |
| void __sk_mem_reclaim(struct sock *sk, int amount) |
| { |
| amount >>= PAGE_SHIFT; |
| sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); |
| __sk_mem_reduce_allocated(sk, amount); |
| } |
| EXPORT_SYMBOL(__sk_mem_reclaim); |
| |
| int sk_set_peek_off(struct sock *sk, int val) |
| { |
| WRITE_ONCE(sk->sk_peek_off, val); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sk_set_peek_off); |
| |
| /* |
| * Set of default routines for initialising struct proto_ops when |
| * the protocol does not support a particular function. In certain |
| * cases where it makes no sense for a protocol to have a "do nothing" |
| * function, some default processing is provided. |
| */ |
| |
| int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_bind); |
| |
| int sock_no_connect(struct socket *sock, struct sockaddr *saddr, |
| int len, int flags) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_connect); |
| |
| int sock_no_socketpair(struct socket *sock1, struct socket *sock2) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_socketpair); |
| |
| int sock_no_accept(struct socket *sock, struct socket *newsock, |
| struct proto_accept_arg *arg) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_accept); |
| |
| int sock_no_getname(struct socket *sock, struct sockaddr *saddr, |
| int peer) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_getname); |
| |
| int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_ioctl); |
| |
| int sock_no_listen(struct socket *sock, int backlog) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_listen); |
| |
| int sock_no_shutdown(struct socket *sock, int how) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_shutdown); |
| |
| int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_sendmsg); |
| |
| int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_sendmsg_locked); |
| |
| int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, |
| int flags) |
| { |
| return -EOPNOTSUPP; |
| } |
| EXPORT_SYMBOL(sock_no_recvmsg); |
| |
| int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) |
| { |
| /* Mirror missing mmap method error code */ |
| return -ENODEV; |
| } |
| EXPORT_SYMBOL(sock_no_mmap); |
| |
| /* |
| * When a file is received (via SCM_RIGHTS, etc), we must bump the |
| * various sock-based usage counts. |
| */ |
| void __receive_sock(struct file *file) |
| { |
| struct socket *sock; |
| |
| sock = sock_from_file(file); |
| if (sock) { |
| sock_update_netprioidx(&sock->sk->sk_cgrp_data); |
| sock_update_classid(&sock->sk->sk_cgrp_data); |
| } |
| } |
| |
| /* |
| * Default Socket Callbacks |
| */ |
| |
| static void sock_def_wakeup(struct sock *sk) |
| { |
| struct socket_wq *wq; |
| |
| rcu_read_lock(); |
| wq = rcu_dereference(sk->sk_wq); |
| if (skwq_has_sleeper(wq)) |
| wake_up_interruptible_all(&wq->wait); |
| rcu_read_unlock(); |
| } |
| |
| static void sock_def_error_report(struct sock *sk) |
| { |
| struct socket_wq *wq; |
| |
| rcu_read_lock(); |
| wq = rcu_dereference(sk->sk_wq); |
| if (skwq_has_sleeper(wq)) |
| wake_up_interruptible_poll(&wq->wait, EPOLLERR); |
| sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR); |
| rcu_read_unlock(); |
| } |
| |
| void sock_def_readable(struct sock *sk) |
| { |
| struct socket_wq *wq; |
| |
| trace_sk_data_ready(sk); |
| |
| rcu_read_lock(); |
| wq = rcu_dereference(sk->sk_wq); |
| if (skwq_has_sleeper(wq)) |
| wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | |
| EPOLLRDNORM | EPOLLRDBAND); |
| sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); |
| rcu_read_unlock(); |
| } |
| |
| static void sock_def_write_space(struct sock *sk) |
| { |
| struct socket_wq *wq; |
| |
| rcu_read_lock(); |
| |
| /* Do not wake up a writer until he can make "significant" |
| * progress. --DaveM |
| */ |
| if (sock_writeable(sk)) { |
| wq = rcu_dereference(sk->sk_wq); |
| if (skwq_has_sleeper(wq)) |
| wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
| EPOLLWRNORM | EPOLLWRBAND); |
| |
| /* Should agree with poll, otherwise some programs break */ |
| sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| /* An optimised version of sock_def_write_space(), should only be called |
| * for SOCK_RCU_FREE sockets under RCU read section and after putting |
| * ->sk_wmem_alloc. |
| */ |
| static void sock_def_write_space_wfree(struct sock *sk) |
| { |
| /* Do not wake up a writer until he can make "significant" |
| * progress. --DaveM |
| */ |
| if (sock_writeable(sk)) { |
| struct socket_wq *wq = rcu_dereference(sk->sk_wq); |
| |
| /* rely on refcount_sub from sock_wfree() */ |
| smp_mb__after_atomic(); |
| if (wq && waitqueue_active(&wq->wait)) |
| wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | |
| EPOLLWRNORM | EPOLLWRBAND); |
| |
| /* Should agree with poll, otherwise some programs break */ |
| sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); |
| } |
| } |
| |
| static void sock_def_destruct(struct sock *sk) |
| { |
| } |
| |
| void sk_send_sigurg(struct sock *sk) |
| { |
| if (sk->sk_socket && sk->sk_socket->file) |
| if (send_sigurg(sk->sk_socket->file)) |
| sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); |
| } |
| EXPORT_SYMBOL(sk_send_sigurg); |
| |
| void sk_reset_timer(struct sock *sk, struct timer_list* timer, |
| unsigned long expires) |
| { |
| if (!mod_timer(timer, expires)) |
| sock_hold(sk); |
| } |
| EXPORT_SYMBOL(sk_reset_timer); |
| |
| void sk_stop_timer(struct sock *sk, struct timer_list* timer) |
| { |
| if (del_timer(timer)) |
| __sock_put(sk); |
| } |
| EXPORT_SYMBOL(sk_stop_timer); |
| |
| void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) |
| { |
| if (del_timer_sync(timer)) |
| __sock_put(sk); |
| } |
| EXPORT_SYMBOL(sk_stop_timer_sync); |
| |
| void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) |
| { |
| sk_init_common(sk); |
| sk->sk_send_head = NULL; |
| |
| timer_setup(&sk->sk_timer, NULL, 0); |
| |
| sk->sk_allocation = GFP_KERNEL; |
| sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); |
| sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); |
| sk->sk_state = TCP_CLOSE; |
| sk->sk_use_task_frag = true; |
| sk_set_socket(sk, sock); |
| |
| sock_set_flag(sk, SOCK_ZAPPED); |
| |
| if (sock) { |
| sk->sk_type = sock->type; |
| RCU_INIT_POINTER(sk->sk_wq, &sock->wq); |
| sock->sk = sk; |
| } else { |
| RCU_INIT_POINTER(sk->sk_wq, NULL); |
| } |
| sk->sk_uid = uid; |
| |
| sk->sk_state_change = sock_def_wakeup; |
| sk->sk_data_ready = sock_def_readable; |
| sk->sk_write_space = sock_def_write_space; |
| sk->sk_error_report = sock_def_error_report; |
| sk->sk_destruct = sock_def_destruct; |
| |
| sk->sk_frag.page = NULL; |
| sk->sk_frag.offset = 0; |
| sk->sk_peek_off = -1; |
| |
| sk->sk_peer_pid = NULL; |
| sk->sk_peer_cred = NULL; |
| spin_lock_init(&sk->sk_peer_lock); |
| |
| sk->sk_write_pending = 0; |
| sk->sk_rcvlowat = 1; |
| sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; |
| sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
| |
| sk->sk_stamp = SK_DEFAULT_STAMP; |
| #if BITS_PER_LONG==32 |
| seqlock_init(&sk->sk_stamp_seq); |
| #endif |
| atomic_set(&sk->sk_zckey, 0); |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| sk->sk_napi_id = 0; |
| sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); |
| #endif |
| |
| sk->sk_max_pacing_rate = ~0UL; |
| sk->sk_pacing_rate = ~0UL; |
| WRITE_ONCE(sk->sk_pacing_shift, 10); |
| sk->sk_incoming_cpu = -1; |
| |
| sk_rx_queue_clear(sk); |
| /* |
| * Before updating sk_refcnt, we must commit prior changes to memory |
| * (Documentation/RCU/rculist_nulls.rst for details) |
| */ |
| smp_wmb(); |
| refcount_set(&sk->sk_refcnt, 1); |
| atomic_set(&sk->sk_drops, 0); |
| } |
| EXPORT_SYMBOL(sock_init_data_uid); |
| |
| void sock_init_data(struct socket *sock, struct sock *sk) |
| { |
| kuid_t uid = sock ? |
| SOCK_INODE(sock)->i_uid : |
| make_kuid(sock_net(sk)->user_ns, 0); |
| |
| sock_init_data_uid(sock, sk, uid); |
| } |
| EXPORT_SYMBOL(sock_init_data); |
| |
| void lock_sock_nested(struct sock *sk, int subclass) |
| { |
| /* The sk_lock has mutex_lock() semantics here. */ |
| mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); |
| |
| might_sleep(); |
| spin_lock_bh(&sk->sk_lock.slock); |
| if (sock_owned_by_user_nocheck(sk)) |
| __lock_sock(sk); |
| sk->sk_lock.owned = 1; |
| spin_unlock_bh(&sk->sk_lock.slock); |
| } |
| EXPORT_SYMBOL(lock_sock_nested); |
| |
| void release_sock(struct sock *sk) |
| { |
| spin_lock_bh(&sk->sk_lock.slock); |
| if (sk->sk_backlog.tail) |
| __release_sock(sk); |
| |
| if (sk->sk_prot->release_cb) |
| INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, |
| tcp_release_cb, sk); |
| |
| sock_release_ownership(sk); |
| if (waitqueue_active(&sk->sk_lock.wq)) |
| wake_up(&sk->sk_lock.wq); |
| spin_unlock_bh(&sk->sk_lock.slock); |
| } |
| EXPORT_SYMBOL(release_sock); |
| |
| bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) |
| { |
| might_sleep(); |
| spin_lock_bh(&sk->sk_lock.slock); |
| |
| if (!sock_owned_by_user_nocheck(sk)) { |
| /* |
| * Fast path return with bottom halves disabled and |
| * sock::sk_lock.slock held. |
| * |
| * The 'mutex' is not contended and holding |
| * sock::sk_lock.slock prevents all other lockers to |
| * proceed so the corresponding unlock_sock_fast() can |
| * avoid the slow path of release_sock() completely and |
| * just release slock. |
| * |
| * From a semantical POV this is equivalent to 'acquiring' |
| * the 'mutex', hence the corresponding lockdep |
| * mutex_release() has to happen in the fast path of |
| * unlock_sock_fast(). |
| */ |
| return false; |
| } |
| |
| __lock_sock(sk); |
| sk->sk_lock.owned = 1; |
| __acquire(&sk->sk_lock.slock); |
| spin_unlock_bh(&sk->sk_lock.slock); |
| return true; |
| } |
| EXPORT_SYMBOL(__lock_sock_fast); |
| |
| int sock_gettstamp(struct socket *sock, void __user *userstamp, |
| bool timeval, bool time32) |
| { |
| struct sock *sk = sock->sk; |
| struct timespec64 ts; |
| |
| sock_enable_timestamp(sk, SOCK_TIMESTAMP); |
| ts = ktime_to_timespec64(sock_read_timestamp(sk)); |
| if (ts.tv_sec == -1) |
| return -ENOENT; |
| if (ts.tv_sec == 0) { |
| ktime_t kt = ktime_get_real(); |
| sock_write_timestamp(sk, kt); |
| ts = ktime_to_timespec64(kt); |
| } |
| |
| if (timeval) |
| ts.tv_nsec /= 1000; |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| if (time32) |
| return put_old_timespec32(&ts, userstamp); |
| #endif |
| #ifdef CONFIG_SPARC64 |
| /* beware of padding in sparc64 timeval */ |
| if (timeval && !in_compat_syscall()) { |
| struct __kernel_old_timeval __user tv = { |
| .tv_sec = ts.tv_sec, |
| .tv_usec = ts.tv_nsec, |
| }; |
| if (copy_to_user(userstamp, &tv, sizeof(tv))) |
| return -EFAULT; |
| return 0; |
| } |
| #endif |
| return put_timespec64(&ts, userstamp); |
| } |
| EXPORT_SYMBOL(sock_gettstamp); |
| |
| void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) |
| { |
| if (!sock_flag(sk, flag)) { |
| unsigned long previous_flags = sk->sk_flags; |
| |
| sock_set_flag(sk, flag); |
| /* |
| * we just set one of the two flags which require net |
| * time stamping, but time stamping might have been on |
| * already because of the other one |
| */ |
| if (sock_needs_netstamp(sk) && |
| !(previous_flags & SK_FLAGS_TIMESTAMP)) |
| net_enable_timestamp(); |
| } |
| } |
| |
| int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, |
| int level, int type) |
| { |
| struct sock_exterr_skb *serr; |
| struct sk_buff *skb; |
| int copied, err; |
| |
| err = -EAGAIN; |
| skb = sock_dequeue_err_skb(sk); |
| if (skb == NULL) |
| goto out; |
| |
| copied = skb->len; |
| if (copied > len) { |
| msg->msg_flags |= MSG_TRUNC; |
| copied = len; |
| } |
| err = skb_copy_datagram_msg(skb, 0, msg, copied); |
| if (err) |
| goto out_free_skb; |
| |
| sock_recv_timestamp(msg, sk, skb); |
| |
| serr = SKB_EXT_ERR(skb); |
| put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); |
| |
| msg->msg_flags |= MSG_ERRQUEUE; |
| err = copied; |
| |
| out_free_skb: |
| kfree_skb(skb); |
| out: |
| return err; |
| } |
| EXPORT_SYMBOL(sock_recv_errqueue); |
| |
| /* |
| * Get a socket option on an socket. |
| * |
| * FIX: POSIX 1003.1g is very ambiguous here. It states that |
| * asynchronous errors should be reported by getsockopt. We assume |
| * this means if you specify SO_ERROR (otherwise what is the point of it). |
| */ |
| int sock_common_getsockopt(struct socket *sock, int level, int optname, |
| char __user *optval, int __user *optlen) |
| { |
| struct sock *sk = sock->sk; |
| |
| /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
| return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); |
| } |
| EXPORT_SYMBOL(sock_common_getsockopt); |
| |
| int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
| int flags) |
| { |
| struct sock *sk = sock->sk; |
| int addr_len = 0; |
| int err; |
| |
| err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); |
| if (err >= 0) |
| msg->msg_namelen = addr_len; |
| return err; |
| } |
| EXPORT_SYMBOL(sock_common_recvmsg); |
| |
| /* |
| * Set socket options on an inet socket. |
| */ |
| int sock_common_setsockopt(struct socket *sock, int level, int optname, |
| sockptr_t optval, unsigned int optlen) |
| { |
| struct sock *sk = sock->sk; |
| |
| /* IPV6_ADDRFORM can change sk->sk_prot under us. */ |
| return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); |
| } |
| EXPORT_SYMBOL(sock_common_setsockopt); |
| |
| void sk_common_release(struct sock *sk) |
| { |
| if (sk->sk_prot->destroy) |
| sk->sk_prot->destroy(sk); |
| |
| /* |
| * Observation: when sk_common_release is called, processes have |
| * no access to socket. But net still has. |
| * Step one, detach it from networking: |
| * |
| * A. Remove from hash tables. |
| */ |
| |
| sk->sk_prot->unhash(sk); |
| |
| if (sk->sk_socket) |
| sk->sk_socket->sk = NULL; |
| |
| /* |
| * In this point socket cannot receive new packets, but it is possible |
| * that some packets are in flight because some CPU runs receiver and |
| * did hash table lookup before we unhashed socket. They will achieve |
| * receive queue and will be purged by socket destructor. |
| * |
| * Also we still have packets pending on receive queue and probably, |
| * our own packets waiting in device queues. sock_destroy will drain |
| * receive queue, but transmitted packets will delay socket destruction |
| * until the last reference will be released. |
| */ |
| |
| sock_orphan(sk); |
| |
| xfrm_sk_free_policy(sk); |
| |
| sock_put(sk); |
| } |
| EXPORT_SYMBOL(sk_common_release); |
| |
| void sk_get_meminfo(const struct sock *sk, u32 *mem) |
| { |
| memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); |
| |
| mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); |
| mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); |
| mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); |
| mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); |
| mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); |
| mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); |
| mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); |
| mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); |
| mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); |
| |
| int sock_prot_inuse_get(struct net *net, struct proto *prot) |
| { |
| int cpu, idx = prot->inuse_idx; |
| int res = 0; |
| |
| for_each_possible_cpu(cpu) |
| res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; |
| |
| return res >= 0 ? res : 0; |
| } |
| EXPORT_SYMBOL_GPL(sock_prot_inuse_get); |
| |
| int sock_inuse_get(struct net *net) |
| { |
| int cpu, res = 0; |
| |
| for_each_possible_cpu(cpu) |
| res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; |
| |
| return res; |
| } |
| |
| EXPORT_SYMBOL_GPL(sock_inuse_get); |
| |
| static int __net_init sock_inuse_init_net(struct net *net) |
| { |
| net->core.prot_inuse = alloc_percpu(struct prot_inuse); |
| if (net->core.prot_inuse == NULL) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void __net_exit sock_inuse_exit_net(struct net *net) |
| { |
| free_percpu(net->core.prot_inuse); |
| } |
| |
| static struct pernet_operations net_inuse_ops = { |
| .init = sock_inuse_init_net, |
| .exit = sock_inuse_exit_net, |
| }; |
| |
| static __init int net_inuse_init(void) |
| { |
| if (register_pernet_subsys(&net_inuse_ops)) |
| panic("Cannot initialize net inuse counters"); |
| |
| return 0; |
| } |
| |
| core_initcall(net_inuse_init); |
| |
| static int assign_proto_idx(struct proto *prot) |
| { |
| prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); |
| |
| if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { |
| pr_err("PROTO_INUSE_NR exhausted\n"); |
| return -ENOSPC; |
| } |
| |
| set_bit(prot->inuse_idx, proto_inuse_idx); |
| return 0; |
| } |
| |
| static void release_proto_idx(struct proto *prot) |
| { |
| if (prot->inuse_idx != PROTO_INUSE_NR - 1) |
| clear_bit(prot->inuse_idx, proto_inuse_idx); |
| } |
| #else |
| static inline int assign_proto_idx(struct proto *prot) |
| { |
| return 0; |
| } |
| |
| static inline void release_proto_idx(struct proto *prot) |
| { |
| } |
| |
| #endif |
| |
| static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) |
| { |
| if (!twsk_prot) |
| return; |
| kfree(twsk_prot->twsk_slab_name); |
| twsk_prot->twsk_slab_name = NULL; |
| kmem_cache_destroy(twsk_prot->twsk_slab); |
| twsk_prot->twsk_slab = NULL; |
| } |
| |
| static int tw_prot_init(const struct proto *prot) |
| { |
| struct timewait_sock_ops *twsk_prot = prot->twsk_prot; |
| |
| if (!twsk_prot) |
| return 0; |
| |
| twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", |
| prot->name); |
| if (!twsk_prot->twsk_slab_name) |
| return -ENOMEM; |
| |
| twsk_prot->twsk_slab = |
| kmem_cache_create(twsk_prot->twsk_slab_name, |
| twsk_prot->twsk_obj_size, 0, |
| SLAB_ACCOUNT | prot->slab_flags, |
| NULL); |
| if (!twsk_prot->twsk_slab) { |
| pr_crit("%s: Can't create timewait sock SLAB cache!\n", |
| prot->name); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void req_prot_cleanup(struct request_sock_ops *rsk_prot) |
| { |
| if (!rsk_prot) |
| return; |
| kfree(rsk_prot->slab_name); |
| rsk_prot->slab_name = NULL; |
| kmem_cache_destroy(rsk_prot->slab); |
| rsk_prot->slab = NULL; |
| } |
| |
| static int req_prot_init(const struct proto *prot) |
| { |
| struct request_sock_ops *rsk_prot = prot->rsk_prot; |
| |
| if (!rsk_prot) |
| return 0; |
| |
| rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", |
| prot->name); |
| if (!rsk_prot->slab_name) |
| return -ENOMEM; |
| |
| rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, |
| rsk_prot->obj_size, 0, |
| SLAB_ACCOUNT | prot->slab_flags, |
| NULL); |
| |
| if (!rsk_prot->slab) { |
| pr_crit("%s: Can't create request sock SLAB cache!\n", |
| prot->name); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| int proto_register(struct proto *prot, int alloc_slab) |
| { |
| int ret = -ENOBUFS; |
| |
| if (prot->memory_allocated && !prot->sysctl_mem) { |
| pr_err("%s: missing sysctl_mem\n", prot->name); |
| return -EINVAL; |
| } |
| if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { |
| pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); |
| return -EINVAL; |
| } |
| if (alloc_slab) { |
| prot->slab = kmem_cache_create_usercopy(prot->name, |
| prot->obj_size, 0, |
| SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | |
| prot->slab_flags, |
| prot->useroffset, prot->usersize, |
| NULL); |
| |
| if (prot->slab == NULL) { |
| pr_crit("%s: Can't create sock SLAB cache!\n", |
| prot->name); |
| goto out; |
| } |
| |
| if (req_prot_init(prot)) |
| goto out_free_request_sock_slab; |
| |
| if (tw_prot_init(prot)) |
| goto out_free_timewait_sock_slab; |
| } |
| |
| mutex_lock(&proto_list_mutex); |
| ret = assign_proto_idx(prot); |
| if (ret) { |
| mutex_unlock(&proto_list_mutex); |
| goto out_free_timewait_sock_slab; |
| } |
| list_add(&prot->node, &proto_list); |
| mutex_unlock(&proto_list_mutex); |
| return ret; |
| |
| out_free_timewait_sock_slab: |
| if (alloc_slab) |
| tw_prot_cleanup(prot->twsk_prot); |
| out_free_request_sock_slab: |
| if (alloc_slab) { |
| req_prot_cleanup(prot->rsk_prot); |
| |
| kmem_cache_destroy(prot->slab); |
| prot->slab = NULL; |
| } |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL(proto_register); |
| |
| void proto_unregister(struct proto *prot) |
| { |
| mutex_lock(&proto_list_mutex); |
| release_proto_idx(prot); |
| list_del(&prot->node); |
| mutex_unlock(&proto_list_mutex); |
| |
| kmem_cache_destroy(prot->slab); |
| prot->slab = NULL; |
| |
| req_prot_cleanup(prot->rsk_prot); |
| tw_prot_cleanup(prot->twsk_prot); |
| } |
| EXPORT_SYMBOL(proto_unregister); |
| |
| int sock_load_diag_module(int family, int protocol) |
| { |
| if (!protocol) { |
| if (!sock_is_registered(family)) |
| return -ENOENT; |
| |
| return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, |
| NETLINK_SOCK_DIAG, family); |
| } |
| |
| #ifdef CONFIG_INET |
| if (family == AF_INET && |
| protocol != IPPROTO_RAW && |
| protocol < MAX_INET_PROTOS && |
| !rcu_access_pointer(inet_protos[protocol])) |
| return -ENOENT; |
| #endif |
| |
| return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, |
| NETLINK_SOCK_DIAG, family, protocol); |
| } |
| EXPORT_SYMBOL(sock_load_diag_module); |
| |
| #ifdef CONFIG_PROC_FS |
| static void *proto_seq_start(struct seq_file *seq, loff_t *pos) |
| __acquires(proto_list_mutex) |
| { |
| mutex_lock(&proto_list_mutex); |
| return seq_list_start_head(&proto_list, *pos); |
| } |
| |
| static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| return seq_list_next(v, &proto_list, pos); |
| } |
| |
| static void proto_seq_stop(struct seq_file *seq, void *v) |
| __releases(proto_list_mutex) |
| { |
| mutex_unlock(&proto_list_mutex); |
| } |
| |
| static char proto_method_implemented(const void *method) |
| { |
| return method == NULL ? 'n' : 'y'; |
| } |
| static long sock_prot_memory_allocated(struct proto *proto) |
| { |
| return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; |
| } |
| |
| static const char *sock_prot_memory_pressure(struct proto *proto) |
| { |
| return proto->memory_pressure != NULL ? |
| proto_memory_pressure(proto) ? "yes" : "no" : "NI"; |
| } |
| |
| static void proto_seq_printf(struct seq_file *seq, struct proto *proto) |
| { |
| |
| seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " |
| "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", |
| proto->name, |
| proto->obj_size, |
| sock_prot_inuse_get(seq_file_net(seq), proto), |
| sock_prot_memory_allocated(proto), |
| sock_prot_memory_pressure(proto), |
| proto->max_header, |
| proto->slab == NULL ? "no" : "yes", |
| module_name(proto->owner), |
| proto_method_implemented(proto->close), |
| proto_method_implemented(proto->connect), |
| proto_method_implemented(proto->disconnect), |
| proto_method_implemented(proto->accept), |
| proto_method_implemented(proto->ioctl), |
| proto_method_implemented(proto->init), |
| proto_method_implemented(proto->destroy), |
| proto_method_implemented(proto->shutdown), |
| proto_method_implemented(proto->setsockopt), |
| proto_method_implemented(proto->getsockopt), |
| proto_method_implemented(proto->sendmsg), |
| proto_method_implemented(proto->recvmsg), |
| proto_method_implemented(proto->bind), |
| proto_method_implemented(proto->backlog_rcv), |
| proto_method_implemented(proto->hash), |
| proto_method_implemented(proto->unhash), |
| proto_method_implemented(proto->get_port), |
| proto_method_implemented(proto->enter_memory_pressure)); |
| } |
| |
| static int proto_seq_show(struct seq_file *seq, void *v) |
| { |
| if (v == &proto_list) |
| seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", |
| "protocol", |
| "size", |
| "sockets", |
| "memory", |
| "press", |
| "maxhdr", |
| "slab", |
| "module", |
| "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); |
| else |
| proto_seq_printf(seq, list_entry(v, struct proto, node)); |
| return 0; |
| } |
| |
| static const struct seq_operations proto_seq_ops = { |
| .start = proto_seq_start, |
| .next = proto_seq_next, |
| .stop = proto_seq_stop, |
| .show = proto_seq_show, |
| }; |
| |
| static __net_init int proto_init_net(struct net *net) |
| { |
| if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, |
| sizeof(struct seq_net_private))) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static __net_exit void proto_exit_net(struct net *net) |
| { |
| remove_proc_entry("protocols", net->proc_net); |
| } |
| |
| |
| static __net_initdata struct pernet_operations proto_net_ops = { |
| .init = proto_init_net, |
| .exit = proto_exit_net, |
| }; |
| |
| static int __init proto_init(void) |
| { |
| return register_pernet_subsys(&proto_net_ops); |
| } |
| |
| subsys_initcall(proto_init); |
| |
| #endif /* PROC_FS */ |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| bool sk_busy_loop_end(void *p, unsigned long start_time) |
| { |
| struct sock *sk = p; |
| |
| if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) |
| return true; |
| |
| if (sk_is_udp(sk) && |
| !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) |
| return true; |
| |
| return sk_busy_loop_timeout(sk, start_time); |
| } |
| EXPORT_SYMBOL(sk_busy_loop_end); |
| #endif /* CONFIG_NET_RX_BUSY_POLL */ |
| |
| int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) |
| { |
| if (!sk->sk_prot->bind_add) |
| return -EOPNOTSUPP; |
| return sk->sk_prot->bind_add(sk, addr, addr_len); |
| } |
| EXPORT_SYMBOL(sock_bind_add); |
| |
| /* Copy 'size' bytes from userspace and return `size` back to userspace */ |
| int sock_ioctl_inout(struct sock *sk, unsigned int cmd, |
| void __user *arg, void *karg, size_t size) |
| { |
| int ret; |
| |
| if (copy_from_user(karg, arg, size)) |
| return -EFAULT; |
| |
| ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); |
| if (ret) |
| return ret; |
| |
| if (copy_to_user(arg, karg, size)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sock_ioctl_inout); |
| |
| /* This is the most common ioctl prep function, where the result (4 bytes) is |
| * copied back to userspace if the ioctl() returns successfully. No input is |
| * copied from userspace as input argument. |
| */ |
| static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) |
| { |
| int ret, karg = 0; |
| |
| ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); |
| if (ret) |
| return ret; |
| |
| return put_user(karg, (int __user *)arg); |
| } |
| |
| /* A wrapper around sock ioctls, which copies the data from userspace |
| * (depending on the protocol/ioctl), and copies back the result to userspace. |
| * The main motivation for this function is to pass kernel memory to the |
| * protocol ioctl callbacks, instead of userspace memory. |
| */ |
| int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) |
| { |
| int rc = 1; |
| |
| if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) |
| rc = ipmr_sk_ioctl(sk, cmd, arg); |
| else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) |
| rc = ip6mr_sk_ioctl(sk, cmd, arg); |
| else if (sk_is_phonet(sk)) |
| rc = phonet_sk_ioctl(sk, cmd, arg); |
| |
| /* If ioctl was processed, returns its value */ |
| if (rc <= 0) |
| return rc; |
| |
| /* Otherwise call the default handler */ |
| return sock_ioctl_out(sk, cmd, arg); |
| } |
| EXPORT_SYMBOL(sk_ioctl); |
| |
| static int __init sock_struct_check(void) |
| { |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog); |
| |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat); |
| |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg); |
| |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags); |
| |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey); |
| |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift); |
| CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag); |
| return 0; |
| } |
| |
| core_initcall(sock_struct_check); |