| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: monk liu <monk.liu@amd.com> |
| */ |
| |
| #include <drm/drm_auth.h> |
| #include <drm/drm_drv.h> |
| #include "amdgpu.h" |
| #include "amdgpu_sched.h" |
| #include "amdgpu_ras.h" |
| #include <linux/nospec.h> |
| |
| #define to_amdgpu_ctx_entity(e) \ |
| container_of((e), struct amdgpu_ctx_entity, entity) |
| |
| const unsigned int amdgpu_ctx_num_entities[AMDGPU_HW_IP_NUM] = { |
| [AMDGPU_HW_IP_GFX] = 1, |
| [AMDGPU_HW_IP_COMPUTE] = 4, |
| [AMDGPU_HW_IP_DMA] = 2, |
| [AMDGPU_HW_IP_UVD] = 1, |
| [AMDGPU_HW_IP_VCE] = 1, |
| [AMDGPU_HW_IP_UVD_ENC] = 1, |
| [AMDGPU_HW_IP_VCN_DEC] = 1, |
| [AMDGPU_HW_IP_VCN_ENC] = 1, |
| [AMDGPU_HW_IP_VCN_JPEG] = 1, |
| }; |
| |
| bool amdgpu_ctx_priority_is_valid(int32_t ctx_prio) |
| { |
| switch (ctx_prio) { |
| case AMDGPU_CTX_PRIORITY_UNSET: |
| case AMDGPU_CTX_PRIORITY_VERY_LOW: |
| case AMDGPU_CTX_PRIORITY_LOW: |
| case AMDGPU_CTX_PRIORITY_NORMAL: |
| case AMDGPU_CTX_PRIORITY_HIGH: |
| case AMDGPU_CTX_PRIORITY_VERY_HIGH: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static enum drm_sched_priority |
| amdgpu_ctx_to_drm_sched_prio(int32_t ctx_prio) |
| { |
| switch (ctx_prio) { |
| case AMDGPU_CTX_PRIORITY_UNSET: |
| return DRM_SCHED_PRIORITY_UNSET; |
| |
| case AMDGPU_CTX_PRIORITY_VERY_LOW: |
| return DRM_SCHED_PRIORITY_MIN; |
| |
| case AMDGPU_CTX_PRIORITY_LOW: |
| return DRM_SCHED_PRIORITY_MIN; |
| |
| case AMDGPU_CTX_PRIORITY_NORMAL: |
| return DRM_SCHED_PRIORITY_NORMAL; |
| |
| case AMDGPU_CTX_PRIORITY_HIGH: |
| return DRM_SCHED_PRIORITY_HIGH; |
| |
| case AMDGPU_CTX_PRIORITY_VERY_HIGH: |
| return DRM_SCHED_PRIORITY_HIGH; |
| |
| /* This should not happen as we sanitized userspace provided priority |
| * already, WARN if this happens. |
| */ |
| default: |
| WARN(1, "Invalid context priority %d\n", ctx_prio); |
| return DRM_SCHED_PRIORITY_NORMAL; |
| } |
| |
| } |
| |
| static int amdgpu_ctx_priority_permit(struct drm_file *filp, |
| int32_t priority) |
| { |
| if (!amdgpu_ctx_priority_is_valid(priority)) |
| return -EINVAL; |
| |
| /* NORMAL and below are accessible by everyone */ |
| if (priority <= AMDGPU_CTX_PRIORITY_NORMAL) |
| return 0; |
| |
| if (capable(CAP_SYS_NICE)) |
| return 0; |
| |
| if (drm_is_current_master(filp)) |
| return 0; |
| |
| return -EACCES; |
| } |
| |
| static enum amdgpu_gfx_pipe_priority amdgpu_ctx_prio_to_gfx_pipe_prio(int32_t prio) |
| { |
| switch (prio) { |
| case AMDGPU_CTX_PRIORITY_HIGH: |
| case AMDGPU_CTX_PRIORITY_VERY_HIGH: |
| return AMDGPU_GFX_PIPE_PRIO_HIGH; |
| default: |
| return AMDGPU_GFX_PIPE_PRIO_NORMAL; |
| } |
| } |
| |
| static enum amdgpu_ring_priority_level amdgpu_ctx_sched_prio_to_ring_prio(int32_t prio) |
| { |
| switch (prio) { |
| case AMDGPU_CTX_PRIORITY_HIGH: |
| return AMDGPU_RING_PRIO_1; |
| case AMDGPU_CTX_PRIORITY_VERY_HIGH: |
| return AMDGPU_RING_PRIO_2; |
| default: |
| return AMDGPU_RING_PRIO_0; |
| } |
| } |
| |
| static unsigned int amdgpu_ctx_get_hw_prio(struct amdgpu_ctx *ctx, u32 hw_ip) |
| { |
| struct amdgpu_device *adev = ctx->mgr->adev; |
| unsigned int hw_prio; |
| int32_t ctx_prio; |
| |
| ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ? |
| ctx->init_priority : ctx->override_priority; |
| |
| switch (hw_ip) { |
| case AMDGPU_HW_IP_GFX: |
| case AMDGPU_HW_IP_COMPUTE: |
| hw_prio = amdgpu_ctx_prio_to_gfx_pipe_prio(ctx_prio); |
| break; |
| case AMDGPU_HW_IP_VCE: |
| case AMDGPU_HW_IP_VCN_ENC: |
| hw_prio = amdgpu_ctx_sched_prio_to_ring_prio(ctx_prio); |
| break; |
| default: |
| hw_prio = AMDGPU_RING_PRIO_DEFAULT; |
| break; |
| } |
| |
| hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM); |
| if (adev->gpu_sched[hw_ip][hw_prio].num_scheds == 0) |
| hw_prio = AMDGPU_RING_PRIO_DEFAULT; |
| |
| return hw_prio; |
| } |
| |
| /* Calculate the time spend on the hw */ |
| static ktime_t amdgpu_ctx_fence_time(struct dma_fence *fence) |
| { |
| struct drm_sched_fence *s_fence; |
| |
| if (!fence) |
| return ns_to_ktime(0); |
| |
| /* When the fence is not even scheduled it can't have spend time */ |
| s_fence = to_drm_sched_fence(fence); |
| if (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &s_fence->scheduled.flags)) |
| return ns_to_ktime(0); |
| |
| /* When it is still running account how much already spend */ |
| if (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &s_fence->finished.flags)) |
| return ktime_sub(ktime_get(), s_fence->scheduled.timestamp); |
| |
| return ktime_sub(s_fence->finished.timestamp, |
| s_fence->scheduled.timestamp); |
| } |
| |
| static ktime_t amdgpu_ctx_entity_time(struct amdgpu_ctx *ctx, |
| struct amdgpu_ctx_entity *centity) |
| { |
| ktime_t res = ns_to_ktime(0); |
| uint32_t i; |
| |
| spin_lock(&ctx->ring_lock); |
| for (i = 0; i < amdgpu_sched_jobs; i++) { |
| res = ktime_add(res, amdgpu_ctx_fence_time(centity->fences[i])); |
| } |
| spin_unlock(&ctx->ring_lock); |
| return res; |
| } |
| |
| static int amdgpu_ctx_init_entity(struct amdgpu_ctx *ctx, u32 hw_ip, |
| const u32 ring) |
| { |
| struct drm_gpu_scheduler **scheds = NULL, *sched = NULL; |
| struct amdgpu_device *adev = ctx->mgr->adev; |
| struct amdgpu_ctx_entity *entity; |
| enum drm_sched_priority drm_prio; |
| unsigned int hw_prio, num_scheds; |
| int32_t ctx_prio; |
| int r; |
| |
| entity = kzalloc(struct_size(entity, fences, amdgpu_sched_jobs), |
| GFP_KERNEL); |
| if (!entity) |
| return -ENOMEM; |
| |
| ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ? |
| ctx->init_priority : ctx->override_priority; |
| entity->hw_ip = hw_ip; |
| entity->sequence = 1; |
| hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip); |
| drm_prio = amdgpu_ctx_to_drm_sched_prio(ctx_prio); |
| |
| hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM); |
| scheds = adev->gpu_sched[hw_ip][hw_prio].sched; |
| num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds; |
| |
| /* disable load balance if the hw engine retains context among dependent jobs */ |
| if (hw_ip == AMDGPU_HW_IP_VCN_ENC || |
| hw_ip == AMDGPU_HW_IP_VCN_DEC || |
| hw_ip == AMDGPU_HW_IP_UVD_ENC || |
| hw_ip == AMDGPU_HW_IP_UVD) { |
| sched = drm_sched_pick_best(scheds, num_scheds); |
| scheds = &sched; |
| num_scheds = 1; |
| } |
| |
| r = drm_sched_entity_init(&entity->entity, drm_prio, scheds, num_scheds, |
| &ctx->guilty); |
| if (r) |
| goto error_free_entity; |
| |
| /* It's not an error if we fail to install the new entity */ |
| if (cmpxchg(&ctx->entities[hw_ip][ring], NULL, entity)) |
| goto cleanup_entity; |
| |
| return 0; |
| |
| cleanup_entity: |
| drm_sched_entity_fini(&entity->entity); |
| |
| error_free_entity: |
| kfree(entity); |
| |
| return r; |
| } |
| |
| static ktime_t amdgpu_ctx_fini_entity(struct amdgpu_ctx_entity *entity) |
| { |
| ktime_t res = ns_to_ktime(0); |
| int i; |
| |
| if (!entity) |
| return res; |
| |
| for (i = 0; i < amdgpu_sched_jobs; ++i) { |
| res = ktime_add(res, amdgpu_ctx_fence_time(entity->fences[i])); |
| dma_fence_put(entity->fences[i]); |
| } |
| |
| kfree(entity); |
| return res; |
| } |
| |
| static int amdgpu_ctx_get_stable_pstate(struct amdgpu_ctx *ctx, |
| u32 *stable_pstate) |
| { |
| struct amdgpu_device *adev = ctx->mgr->adev; |
| enum amd_dpm_forced_level current_level; |
| |
| current_level = amdgpu_dpm_get_performance_level(adev); |
| |
| switch (current_level) { |
| case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: |
| *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_STANDARD; |
| break; |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: |
| *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_MIN_SCLK; |
| break; |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: |
| *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_MIN_MCLK; |
| break; |
| case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: |
| *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_PEAK; |
| break; |
| default: |
| *stable_pstate = AMDGPU_CTX_STABLE_PSTATE_NONE; |
| break; |
| } |
| return 0; |
| } |
| |
| static int amdgpu_ctx_init(struct amdgpu_ctx_mgr *mgr, int32_t priority, |
| struct drm_file *filp, struct amdgpu_ctx *ctx) |
| { |
| u32 current_stable_pstate; |
| int r; |
| |
| r = amdgpu_ctx_priority_permit(filp, priority); |
| if (r) |
| return r; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| |
| kref_init(&ctx->refcount); |
| ctx->mgr = mgr; |
| spin_lock_init(&ctx->ring_lock); |
| |
| ctx->reset_counter = atomic_read(&mgr->adev->gpu_reset_counter); |
| ctx->reset_counter_query = ctx->reset_counter; |
| ctx->vram_lost_counter = atomic_read(&mgr->adev->vram_lost_counter); |
| ctx->init_priority = priority; |
| ctx->override_priority = AMDGPU_CTX_PRIORITY_UNSET; |
| |
| r = amdgpu_ctx_get_stable_pstate(ctx, ¤t_stable_pstate); |
| if (r) |
| return r; |
| |
| ctx->stable_pstate = current_stable_pstate; |
| |
| return 0; |
| } |
| |
| static int amdgpu_ctx_set_stable_pstate(struct amdgpu_ctx *ctx, |
| u32 stable_pstate) |
| { |
| struct amdgpu_device *adev = ctx->mgr->adev; |
| enum amd_dpm_forced_level level; |
| u32 current_stable_pstate; |
| int r; |
| |
| mutex_lock(&adev->pm.stable_pstate_ctx_lock); |
| if (adev->pm.stable_pstate_ctx && adev->pm.stable_pstate_ctx != ctx) { |
| r = -EBUSY; |
| goto done; |
| } |
| |
| r = amdgpu_ctx_get_stable_pstate(ctx, ¤t_stable_pstate); |
| if (r || (stable_pstate == current_stable_pstate)) |
| goto done; |
| |
| switch (stable_pstate) { |
| case AMDGPU_CTX_STABLE_PSTATE_NONE: |
| level = AMD_DPM_FORCED_LEVEL_AUTO; |
| break; |
| case AMDGPU_CTX_STABLE_PSTATE_STANDARD: |
| level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; |
| break; |
| case AMDGPU_CTX_STABLE_PSTATE_MIN_SCLK: |
| level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; |
| break; |
| case AMDGPU_CTX_STABLE_PSTATE_MIN_MCLK: |
| level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; |
| break; |
| case AMDGPU_CTX_STABLE_PSTATE_PEAK: |
| level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; |
| break; |
| default: |
| r = -EINVAL; |
| goto done; |
| } |
| |
| r = amdgpu_dpm_force_performance_level(adev, level); |
| |
| if (level == AMD_DPM_FORCED_LEVEL_AUTO) |
| adev->pm.stable_pstate_ctx = NULL; |
| else |
| adev->pm.stable_pstate_ctx = ctx; |
| done: |
| mutex_unlock(&adev->pm.stable_pstate_ctx_lock); |
| |
| return r; |
| } |
| |
| static void amdgpu_ctx_fini(struct kref *ref) |
| { |
| struct amdgpu_ctx *ctx = container_of(ref, struct amdgpu_ctx, refcount); |
| struct amdgpu_ctx_mgr *mgr = ctx->mgr; |
| struct amdgpu_device *adev = mgr->adev; |
| unsigned i, j, idx; |
| |
| if (!adev) |
| return; |
| |
| for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { |
| for (j = 0; j < AMDGPU_MAX_ENTITY_NUM; ++j) { |
| ktime_t spend; |
| |
| spend = amdgpu_ctx_fini_entity(ctx->entities[i][j]); |
| atomic64_add(ktime_to_ns(spend), &mgr->time_spend[i]); |
| } |
| } |
| |
| if (drm_dev_enter(adev_to_drm(adev), &idx)) { |
| amdgpu_ctx_set_stable_pstate(ctx, ctx->stable_pstate); |
| drm_dev_exit(idx); |
| } |
| |
| kfree(ctx); |
| } |
| |
| int amdgpu_ctx_get_entity(struct amdgpu_ctx *ctx, u32 hw_ip, u32 instance, |
| u32 ring, struct drm_sched_entity **entity) |
| { |
| int r; |
| |
| if (hw_ip >= AMDGPU_HW_IP_NUM) { |
| DRM_ERROR("unknown HW IP type: %d\n", hw_ip); |
| return -EINVAL; |
| } |
| |
| /* Right now all IPs have only one instance - multiple rings. */ |
| if (instance != 0) { |
| DRM_DEBUG("invalid ip instance: %d\n", instance); |
| return -EINVAL; |
| } |
| |
| if (ring >= amdgpu_ctx_num_entities[hw_ip]) { |
| DRM_DEBUG("invalid ring: %d %d\n", hw_ip, ring); |
| return -EINVAL; |
| } |
| |
| if (ctx->entities[hw_ip][ring] == NULL) { |
| r = amdgpu_ctx_init_entity(ctx, hw_ip, ring); |
| if (r) |
| return r; |
| } |
| |
| *entity = &ctx->entities[hw_ip][ring]->entity; |
| return 0; |
| } |
| |
| static int amdgpu_ctx_alloc(struct amdgpu_device *adev, |
| struct amdgpu_fpriv *fpriv, |
| struct drm_file *filp, |
| int32_t priority, |
| uint32_t *id) |
| { |
| struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; |
| struct amdgpu_ctx *ctx; |
| int r; |
| |
| ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| |
| mutex_lock(&mgr->lock); |
| r = idr_alloc(&mgr->ctx_handles, ctx, 1, AMDGPU_VM_MAX_NUM_CTX, GFP_KERNEL); |
| if (r < 0) { |
| mutex_unlock(&mgr->lock); |
| kfree(ctx); |
| return r; |
| } |
| |
| *id = (uint32_t)r; |
| r = amdgpu_ctx_init(mgr, priority, filp, ctx); |
| if (r) { |
| idr_remove(&mgr->ctx_handles, *id); |
| *id = 0; |
| kfree(ctx); |
| } |
| mutex_unlock(&mgr->lock); |
| return r; |
| } |
| |
| static void amdgpu_ctx_do_release(struct kref *ref) |
| { |
| struct amdgpu_ctx *ctx; |
| u32 i, j; |
| |
| ctx = container_of(ref, struct amdgpu_ctx, refcount); |
| for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { |
| for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { |
| if (!ctx->entities[i][j]) |
| continue; |
| |
| drm_sched_entity_destroy(&ctx->entities[i][j]->entity); |
| } |
| } |
| |
| amdgpu_ctx_fini(ref); |
| } |
| |
| static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id) |
| { |
| struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; |
| struct amdgpu_ctx *ctx; |
| |
| mutex_lock(&mgr->lock); |
| ctx = idr_remove(&mgr->ctx_handles, id); |
| if (ctx) |
| kref_put(&ctx->refcount, amdgpu_ctx_do_release); |
| mutex_unlock(&mgr->lock); |
| return ctx ? 0 : -EINVAL; |
| } |
| |
| static int amdgpu_ctx_query(struct amdgpu_device *adev, |
| struct amdgpu_fpriv *fpriv, uint32_t id, |
| union drm_amdgpu_ctx_out *out) |
| { |
| struct amdgpu_ctx *ctx; |
| struct amdgpu_ctx_mgr *mgr; |
| unsigned reset_counter; |
| |
| if (!fpriv) |
| return -EINVAL; |
| |
| mgr = &fpriv->ctx_mgr; |
| mutex_lock(&mgr->lock); |
| ctx = idr_find(&mgr->ctx_handles, id); |
| if (!ctx) { |
| mutex_unlock(&mgr->lock); |
| return -EINVAL; |
| } |
| |
| /* TODO: these two are always zero */ |
| out->state.flags = 0x0; |
| out->state.hangs = 0x0; |
| |
| /* determine if a GPU reset has occured since the last call */ |
| reset_counter = atomic_read(&adev->gpu_reset_counter); |
| /* TODO: this should ideally return NO, GUILTY, or INNOCENT. */ |
| if (ctx->reset_counter_query == reset_counter) |
| out->state.reset_status = AMDGPU_CTX_NO_RESET; |
| else |
| out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET; |
| ctx->reset_counter_query = reset_counter; |
| |
| mutex_unlock(&mgr->lock); |
| return 0; |
| } |
| |
| #define AMDGPU_RAS_COUNTE_DELAY_MS 3000 |
| |
| static int amdgpu_ctx_query2(struct amdgpu_device *adev, |
| struct amdgpu_fpriv *fpriv, uint32_t id, |
| union drm_amdgpu_ctx_out *out) |
| { |
| struct amdgpu_ras *con = amdgpu_ras_get_context(adev); |
| struct amdgpu_ctx *ctx; |
| struct amdgpu_ctx_mgr *mgr; |
| |
| if (!fpriv) |
| return -EINVAL; |
| |
| mgr = &fpriv->ctx_mgr; |
| mutex_lock(&mgr->lock); |
| ctx = idr_find(&mgr->ctx_handles, id); |
| if (!ctx) { |
| mutex_unlock(&mgr->lock); |
| return -EINVAL; |
| } |
| |
| out->state.flags = 0x0; |
| out->state.hangs = 0x0; |
| |
| if (ctx->reset_counter != atomic_read(&adev->gpu_reset_counter)) |
| out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RESET; |
| |
| if (ctx->vram_lost_counter != atomic_read(&adev->vram_lost_counter)) |
| out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_VRAMLOST; |
| |
| if (atomic_read(&ctx->guilty)) |
| out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_GUILTY; |
| |
| if (adev->ras_enabled && con) { |
| /* Return the cached values in O(1), |
| * and schedule delayed work to cache |
| * new vaues. |
| */ |
| int ce_count, ue_count; |
| |
| ce_count = atomic_read(&con->ras_ce_count); |
| ue_count = atomic_read(&con->ras_ue_count); |
| |
| if (ce_count != ctx->ras_counter_ce) { |
| ctx->ras_counter_ce = ce_count; |
| out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_CE; |
| } |
| |
| if (ue_count != ctx->ras_counter_ue) { |
| ctx->ras_counter_ue = ue_count; |
| out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_UE; |
| } |
| |
| schedule_delayed_work(&con->ras_counte_delay_work, |
| msecs_to_jiffies(AMDGPU_RAS_COUNTE_DELAY_MS)); |
| } |
| |
| mutex_unlock(&mgr->lock); |
| return 0; |
| } |
| |
| |
| |
| static int amdgpu_ctx_stable_pstate(struct amdgpu_device *adev, |
| struct amdgpu_fpriv *fpriv, uint32_t id, |
| bool set, u32 *stable_pstate) |
| { |
| struct amdgpu_ctx *ctx; |
| struct amdgpu_ctx_mgr *mgr; |
| int r; |
| |
| if (!fpriv) |
| return -EINVAL; |
| |
| mgr = &fpriv->ctx_mgr; |
| mutex_lock(&mgr->lock); |
| ctx = idr_find(&mgr->ctx_handles, id); |
| if (!ctx) { |
| mutex_unlock(&mgr->lock); |
| return -EINVAL; |
| } |
| |
| if (set) |
| r = amdgpu_ctx_set_stable_pstate(ctx, *stable_pstate); |
| else |
| r = amdgpu_ctx_get_stable_pstate(ctx, stable_pstate); |
| |
| mutex_unlock(&mgr->lock); |
| return r; |
| } |
| |
| int amdgpu_ctx_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *filp) |
| { |
| int r; |
| uint32_t id, stable_pstate; |
| int32_t priority; |
| |
| union drm_amdgpu_ctx *args = data; |
| struct amdgpu_device *adev = drm_to_adev(dev); |
| struct amdgpu_fpriv *fpriv = filp->driver_priv; |
| |
| id = args->in.ctx_id; |
| priority = args->in.priority; |
| |
| /* For backwards compatibility reasons, we need to accept |
| * ioctls with garbage in the priority field */ |
| if (!amdgpu_ctx_priority_is_valid(priority)) |
| priority = AMDGPU_CTX_PRIORITY_NORMAL; |
| |
| switch (args->in.op) { |
| case AMDGPU_CTX_OP_ALLOC_CTX: |
| r = amdgpu_ctx_alloc(adev, fpriv, filp, priority, &id); |
| args->out.alloc.ctx_id = id; |
| break; |
| case AMDGPU_CTX_OP_FREE_CTX: |
| r = amdgpu_ctx_free(fpriv, id); |
| break; |
| case AMDGPU_CTX_OP_QUERY_STATE: |
| r = amdgpu_ctx_query(adev, fpriv, id, &args->out); |
| break; |
| case AMDGPU_CTX_OP_QUERY_STATE2: |
| r = amdgpu_ctx_query2(adev, fpriv, id, &args->out); |
| break; |
| case AMDGPU_CTX_OP_GET_STABLE_PSTATE: |
| if (args->in.flags) |
| return -EINVAL; |
| r = amdgpu_ctx_stable_pstate(adev, fpriv, id, false, &stable_pstate); |
| if (!r) |
| args->out.pstate.flags = stable_pstate; |
| break; |
| case AMDGPU_CTX_OP_SET_STABLE_PSTATE: |
| if (args->in.flags & ~AMDGPU_CTX_STABLE_PSTATE_FLAGS_MASK) |
| return -EINVAL; |
| stable_pstate = args->in.flags & AMDGPU_CTX_STABLE_PSTATE_FLAGS_MASK; |
| if (stable_pstate > AMDGPU_CTX_STABLE_PSTATE_PEAK) |
| return -EINVAL; |
| r = amdgpu_ctx_stable_pstate(adev, fpriv, id, true, &stable_pstate); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return r; |
| } |
| |
| struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id) |
| { |
| struct amdgpu_ctx *ctx; |
| struct amdgpu_ctx_mgr *mgr; |
| |
| if (!fpriv) |
| return NULL; |
| |
| mgr = &fpriv->ctx_mgr; |
| |
| mutex_lock(&mgr->lock); |
| ctx = idr_find(&mgr->ctx_handles, id); |
| if (ctx) |
| kref_get(&ctx->refcount); |
| mutex_unlock(&mgr->lock); |
| return ctx; |
| } |
| |
| int amdgpu_ctx_put(struct amdgpu_ctx *ctx) |
| { |
| if (ctx == NULL) |
| return -EINVAL; |
| |
| kref_put(&ctx->refcount, amdgpu_ctx_do_release); |
| return 0; |
| } |
| |
| uint64_t amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx, |
| struct drm_sched_entity *entity, |
| struct dma_fence *fence) |
| { |
| struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); |
| uint64_t seq = centity->sequence; |
| struct dma_fence *other = NULL; |
| unsigned idx = 0; |
| |
| idx = seq & (amdgpu_sched_jobs - 1); |
| other = centity->fences[idx]; |
| WARN_ON(other && !dma_fence_is_signaled(other)); |
| |
| dma_fence_get(fence); |
| |
| spin_lock(&ctx->ring_lock); |
| centity->fences[idx] = fence; |
| centity->sequence++; |
| spin_unlock(&ctx->ring_lock); |
| |
| atomic64_add(ktime_to_ns(amdgpu_ctx_fence_time(other)), |
| &ctx->mgr->time_spend[centity->hw_ip]); |
| |
| dma_fence_put(other); |
| return seq; |
| } |
| |
| struct dma_fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx, |
| struct drm_sched_entity *entity, |
| uint64_t seq) |
| { |
| struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); |
| struct dma_fence *fence; |
| |
| spin_lock(&ctx->ring_lock); |
| |
| if (seq == ~0ull) |
| seq = centity->sequence - 1; |
| |
| if (seq >= centity->sequence) { |
| spin_unlock(&ctx->ring_lock); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| |
| if (seq + amdgpu_sched_jobs < centity->sequence) { |
| spin_unlock(&ctx->ring_lock); |
| return NULL; |
| } |
| |
| fence = dma_fence_get(centity->fences[seq & (amdgpu_sched_jobs - 1)]); |
| spin_unlock(&ctx->ring_lock); |
| |
| return fence; |
| } |
| |
| static void amdgpu_ctx_set_entity_priority(struct amdgpu_ctx *ctx, |
| struct amdgpu_ctx_entity *aentity, |
| int hw_ip, |
| int32_t priority) |
| { |
| struct amdgpu_device *adev = ctx->mgr->adev; |
| unsigned int hw_prio; |
| struct drm_gpu_scheduler **scheds = NULL; |
| unsigned num_scheds; |
| |
| /* set sw priority */ |
| drm_sched_entity_set_priority(&aentity->entity, |
| amdgpu_ctx_to_drm_sched_prio(priority)); |
| |
| /* set hw priority */ |
| if (hw_ip == AMDGPU_HW_IP_COMPUTE || hw_ip == AMDGPU_HW_IP_GFX) { |
| hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip); |
| hw_prio = array_index_nospec(hw_prio, AMDGPU_RING_PRIO_MAX); |
| scheds = adev->gpu_sched[hw_ip][hw_prio].sched; |
| num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds; |
| drm_sched_entity_modify_sched(&aentity->entity, scheds, |
| num_scheds); |
| } |
| } |
| |
| void amdgpu_ctx_priority_override(struct amdgpu_ctx *ctx, |
| int32_t priority) |
| { |
| int32_t ctx_prio; |
| unsigned i, j; |
| |
| ctx->override_priority = priority; |
| |
| ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ? |
| ctx->init_priority : ctx->override_priority; |
| for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { |
| for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { |
| if (!ctx->entities[i][j]) |
| continue; |
| |
| amdgpu_ctx_set_entity_priority(ctx, ctx->entities[i][j], |
| i, ctx_prio); |
| } |
| } |
| } |
| |
| int amdgpu_ctx_wait_prev_fence(struct amdgpu_ctx *ctx, |
| struct drm_sched_entity *entity) |
| { |
| struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); |
| struct dma_fence *other; |
| unsigned idx; |
| long r; |
| |
| spin_lock(&ctx->ring_lock); |
| idx = centity->sequence & (amdgpu_sched_jobs - 1); |
| other = dma_fence_get(centity->fences[idx]); |
| spin_unlock(&ctx->ring_lock); |
| |
| if (!other) |
| return 0; |
| |
| r = dma_fence_wait(other, true); |
| if (r < 0 && r != -ERESTARTSYS) |
| DRM_ERROR("Error (%ld) waiting for fence!\n", r); |
| |
| dma_fence_put(other); |
| return r; |
| } |
| |
| void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr, |
| struct amdgpu_device *adev) |
| { |
| unsigned int i; |
| |
| mgr->adev = adev; |
| mutex_init(&mgr->lock); |
| idr_init_base(&mgr->ctx_handles, 1); |
| |
| for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) |
| atomic64_set(&mgr->time_spend[i], 0); |
| } |
| |
| long amdgpu_ctx_mgr_entity_flush(struct amdgpu_ctx_mgr *mgr, long timeout) |
| { |
| struct amdgpu_ctx *ctx; |
| struct idr *idp; |
| uint32_t id, i, j; |
| |
| idp = &mgr->ctx_handles; |
| |
| mutex_lock(&mgr->lock); |
| idr_for_each_entry(idp, ctx, id) { |
| for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { |
| for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { |
| struct drm_sched_entity *entity; |
| |
| if (!ctx->entities[i][j]) |
| continue; |
| |
| entity = &ctx->entities[i][j]->entity; |
| timeout = drm_sched_entity_flush(entity, timeout); |
| } |
| } |
| } |
| mutex_unlock(&mgr->lock); |
| return timeout; |
| } |
| |
| void amdgpu_ctx_mgr_entity_fini(struct amdgpu_ctx_mgr *mgr) |
| { |
| struct amdgpu_ctx *ctx; |
| struct idr *idp; |
| uint32_t id, i, j; |
| |
| idp = &mgr->ctx_handles; |
| |
| idr_for_each_entry(idp, ctx, id) { |
| if (kref_read(&ctx->refcount) != 1) { |
| DRM_ERROR("ctx %p is still alive\n", ctx); |
| continue; |
| } |
| |
| for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { |
| for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { |
| struct drm_sched_entity *entity; |
| |
| if (!ctx->entities[i][j]) |
| continue; |
| |
| entity = &ctx->entities[i][j]->entity; |
| drm_sched_entity_fini(entity); |
| } |
| } |
| } |
| } |
| |
| void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr) |
| { |
| struct amdgpu_ctx *ctx; |
| struct idr *idp; |
| uint32_t id; |
| |
| amdgpu_ctx_mgr_entity_fini(mgr); |
| |
| idp = &mgr->ctx_handles; |
| |
| idr_for_each_entry(idp, ctx, id) { |
| if (kref_put(&ctx->refcount, amdgpu_ctx_fini) != 1) |
| DRM_ERROR("ctx %p is still alive\n", ctx); |
| } |
| |
| idr_destroy(&mgr->ctx_handles); |
| mutex_destroy(&mgr->lock); |
| } |
| |
| void amdgpu_ctx_mgr_usage(struct amdgpu_ctx_mgr *mgr, |
| ktime_t usage[AMDGPU_HW_IP_NUM]) |
| { |
| struct amdgpu_ctx *ctx; |
| unsigned int hw_ip, i; |
| uint32_t id; |
| |
| /* |
| * This is a little bit racy because it can be that a ctx or a fence are |
| * destroyed just in the moment we try to account them. But that is ok |
| * since exactly that case is explicitely allowed by the interface. |
| */ |
| mutex_lock(&mgr->lock); |
| for (hw_ip = 0; hw_ip < AMDGPU_HW_IP_NUM; ++hw_ip) { |
| uint64_t ns = atomic64_read(&mgr->time_spend[hw_ip]); |
| |
| usage[hw_ip] = ns_to_ktime(ns); |
| } |
| |
| idr_for_each_entry(&mgr->ctx_handles, ctx, id) { |
| for (hw_ip = 0; hw_ip < AMDGPU_HW_IP_NUM; ++hw_ip) { |
| for (i = 0; i < amdgpu_ctx_num_entities[hw_ip]; ++i) { |
| struct amdgpu_ctx_entity *centity; |
| ktime_t spend; |
| |
| centity = ctx->entities[hw_ip][i]; |
| if (!centity) |
| continue; |
| spend = amdgpu_ctx_entity_time(ctx, centity); |
| usage[hw_ip] = ktime_add(usage[hw_ip], spend); |
| } |
| } |
| } |
| mutex_unlock(&mgr->lock); |
| } |