| /* |
| * linux/kernel/power/swsusp.c |
| * |
| * This file is to realize architecture-independent |
| * machine suspend feature using pretty near only high-level routines |
| * |
| * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu> |
| * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz> |
| * |
| * This file is released under the GPLv2. |
| * |
| * I'd like to thank the following people for their work: |
| * |
| * Pavel Machek <pavel@ucw.cz>: |
| * Modifications, defectiveness pointing, being with me at the very beginning, |
| * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. |
| * |
| * Steve Doddi <dirk@loth.demon.co.uk>: |
| * Support the possibility of hardware state restoring. |
| * |
| * Raph <grey.havens@earthling.net>: |
| * Support for preserving states of network devices and virtual console |
| * (including X and svgatextmode) |
| * |
| * Kurt Garloff <garloff@suse.de>: |
| * Straightened the critical function in order to prevent compilers from |
| * playing tricks with local variables. |
| * |
| * Andreas Mohr <a.mohr@mailto.de> |
| * |
| * Alex Badea <vampire@go.ro>: |
| * Fixed runaway init |
| * |
| * Andreas Steinmetz <ast@domdv.de>: |
| * Added encrypted suspend option |
| * |
| * More state savers are welcome. Especially for the scsi layer... |
| * |
| * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/suspend.h> |
| #include <linux/smp_lock.h> |
| #include <linux/file.h> |
| #include <linux/utsname.h> |
| #include <linux/version.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/bitops.h> |
| #include <linux/vt_kern.h> |
| #include <linux/kbd_kern.h> |
| #include <linux/keyboard.h> |
| #include <linux/spinlock.h> |
| #include <linux/genhd.h> |
| #include <linux/kernel.h> |
| #include <linux/major.h> |
| #include <linux/swap.h> |
| #include <linux/pm.h> |
| #include <linux/device.h> |
| #include <linux/buffer_head.h> |
| #include <linux/swapops.h> |
| #include <linux/bootmem.h> |
| #include <linux/syscalls.h> |
| #include <linux/console.h> |
| #include <linux/highmem.h> |
| #include <linux/bio.h> |
| #include <linux/mount.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/io.h> |
| |
| #include <linux/random.h> |
| #include <linux/crypto.h> |
| #include <asm/scatterlist.h> |
| |
| #include "power.h" |
| |
| #define CIPHER "aes" |
| #define MAXKEY 32 |
| #define MAXIV 32 |
| |
| /* References to section boundaries */ |
| extern const void __nosave_begin, __nosave_end; |
| |
| /* Variables to be preserved over suspend */ |
| static int nr_copy_pages_check; |
| |
| extern char resume_file[]; |
| |
| /* Local variables that should not be affected by save */ |
| static unsigned int nr_copy_pages __nosavedata = 0; |
| |
| /* Suspend pagedir is allocated before final copy, therefore it |
| must be freed after resume |
| |
| Warning: this is evil. There are actually two pagedirs at time of |
| resume. One is "pagedir_save", which is empty frame allocated at |
| time of suspend, that must be freed. Second is "pagedir_nosave", |
| allocated at time of resume, that travels through memory not to |
| collide with anything. |
| |
| Warning: this is even more evil than it seems. Pagedirs this file |
| talks about are completely different from page directories used by |
| MMU hardware. |
| */ |
| suspend_pagedir_t *pagedir_nosave __nosavedata = NULL; |
| static suspend_pagedir_t *pagedir_save; |
| |
| #define SWSUSP_SIG "S1SUSPEND" |
| |
| static struct swsusp_header { |
| char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)]; |
| u8 key_iv[MAXKEY+MAXIV]; |
| swp_entry_t swsusp_info; |
| char orig_sig[10]; |
| char sig[10]; |
| } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header; |
| |
| static struct swsusp_info swsusp_info; |
| |
| /* |
| * XXX: We try to keep some more pages free so that I/O operations succeed |
| * without paging. Might this be more? |
| */ |
| #define PAGES_FOR_IO 512 |
| |
| /* |
| * Saving part... |
| */ |
| |
| /* We memorize in swapfile_used what swap devices are used for suspension */ |
| #define SWAPFILE_UNUSED 0 |
| #define SWAPFILE_SUSPEND 1 /* This is the suspending device */ |
| #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */ |
| |
| static unsigned short swapfile_used[MAX_SWAPFILES]; |
| static unsigned short root_swap; |
| |
| static int write_page(unsigned long addr, swp_entry_t * loc); |
| static int bio_read_page(pgoff_t page_off, void * page); |
| |
| static u8 key_iv[MAXKEY+MAXIV]; |
| |
| #ifdef CONFIG_SWSUSP_ENCRYPT |
| |
| static int crypto_init(int mode, void **mem) |
| { |
| int error = 0; |
| int len; |
| char *modemsg; |
| struct crypto_tfm *tfm; |
| |
| modemsg = mode ? "suspend not possible" : "resume not possible"; |
| |
| tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC); |
| if(!tfm) { |
| printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg); |
| error = -EINVAL; |
| goto out; |
| } |
| |
| if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) { |
| printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg); |
| error = -ENOKEY; |
| goto fail; |
| } |
| |
| if (mode) |
| get_random_bytes(key_iv, MAXKEY+MAXIV); |
| |
| len = crypto_tfm_alg_max_keysize(tfm); |
| if (len > MAXKEY) |
| len = MAXKEY; |
| |
| if (crypto_cipher_setkey(tfm, key_iv, len)) { |
| printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg); |
| error = -EKEYREJECTED; |
| goto fail; |
| } |
| |
| len = crypto_tfm_alg_ivsize(tfm); |
| |
| if (MAXIV < len) { |
| printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg); |
| error = -EOVERFLOW; |
| goto fail; |
| } |
| |
| crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len); |
| |
| *mem=(void *)tfm; |
| |
| goto out; |
| |
| fail: crypto_free_tfm(tfm); |
| out: return error; |
| } |
| |
| static __inline__ void crypto_exit(void *mem) |
| { |
| crypto_free_tfm((struct crypto_tfm *)mem); |
| } |
| |
| static __inline__ int crypto_write(struct pbe *p, void *mem) |
| { |
| int error = 0; |
| struct scatterlist src, dst; |
| |
| src.page = virt_to_page(p->address); |
| src.offset = 0; |
| src.length = PAGE_SIZE; |
| dst.page = virt_to_page((void *)&swsusp_header); |
| dst.offset = 0; |
| dst.length = PAGE_SIZE; |
| |
| error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src, |
| PAGE_SIZE); |
| |
| if (!error) |
| error = write_page((unsigned long)&swsusp_header, |
| &(p->swap_address)); |
| return error; |
| } |
| |
| static __inline__ int crypto_read(struct pbe *p, void *mem) |
| { |
| int error = 0; |
| struct scatterlist src, dst; |
| |
| error = bio_read_page(swp_offset(p->swap_address), (void *)p->address); |
| if (!error) { |
| src.offset = 0; |
| src.length = PAGE_SIZE; |
| dst.offset = 0; |
| dst.length = PAGE_SIZE; |
| src.page = dst.page = virt_to_page((void *)p->address); |
| |
| error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst, |
| &src, PAGE_SIZE); |
| } |
| return error; |
| } |
| #else |
| static __inline__ int crypto_init(int mode, void *mem) |
| { |
| return 0; |
| } |
| |
| static __inline__ void crypto_exit(void *mem) |
| { |
| } |
| |
| static __inline__ int crypto_write(struct pbe *p, void *mem) |
| { |
| return write_page(p->address, &(p->swap_address)); |
| } |
| |
| static __inline__ int crypto_read(struct pbe *p, void *mem) |
| { |
| return bio_read_page(swp_offset(p->swap_address), (void *)p->address); |
| } |
| #endif |
| |
| static int mark_swapfiles(swp_entry_t prev) |
| { |
| int error; |
| |
| rw_swap_page_sync(READ, |
| swp_entry(root_swap, 0), |
| virt_to_page((unsigned long)&swsusp_header)); |
| if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || |
| !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) { |
| memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); |
| memcpy(swsusp_header.sig,SWSUSP_SIG, 10); |
| memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV); |
| swsusp_header.swsusp_info = prev; |
| error = rw_swap_page_sync(WRITE, |
| swp_entry(root_swap, 0), |
| virt_to_page((unsigned long) |
| &swsusp_header)); |
| } else { |
| pr_debug("swsusp: Partition is not swap space.\n"); |
| error = -ENODEV; |
| } |
| return error; |
| } |
| |
| /* |
| * Check whether the swap device is the specified resume |
| * device, irrespective of whether they are specified by |
| * identical names. |
| * |
| * (Thus, device inode aliasing is allowed. You can say /dev/hda4 |
| * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs] |
| * and they'll be considered the same device. This is *necessary* for |
| * devfs, since the resume code can only recognize the form /dev/hda4, |
| * but the suspend code would see the long name.) |
| */ |
| static int is_resume_device(const struct swap_info_struct *swap_info) |
| { |
| struct file *file = swap_info->swap_file; |
| struct inode *inode = file->f_dentry->d_inode; |
| |
| return S_ISBLK(inode->i_mode) && |
| swsusp_resume_device == MKDEV(imajor(inode), iminor(inode)); |
| } |
| |
| static int swsusp_swap_check(void) /* This is called before saving image */ |
| { |
| int i, len; |
| |
| len=strlen(resume_file); |
| root_swap = 0xFFFF; |
| |
| spin_lock(&swap_lock); |
| for (i=0; i<MAX_SWAPFILES; i++) { |
| if (!(swap_info[i].flags & SWP_WRITEOK)) { |
| swapfile_used[i]=SWAPFILE_UNUSED; |
| } else { |
| if (!len) { |
| printk(KERN_WARNING "resume= option should be used to set suspend device" ); |
| if (root_swap == 0xFFFF) { |
| swapfile_used[i] = SWAPFILE_SUSPEND; |
| root_swap = i; |
| } else |
| swapfile_used[i] = SWAPFILE_IGNORED; |
| } else { |
| /* we ignore all swap devices that are not the resume_file */ |
| if (is_resume_device(&swap_info[i])) { |
| swapfile_used[i] = SWAPFILE_SUSPEND; |
| root_swap = i; |
| } else { |
| swapfile_used[i] = SWAPFILE_IGNORED; |
| } |
| } |
| } |
| } |
| spin_unlock(&swap_lock); |
| return (root_swap != 0xffff) ? 0 : -ENODEV; |
| } |
| |
| /** |
| * This is called after saving image so modification |
| * will be lost after resume... and that's what we want. |
| * we make the device unusable. A new call to |
| * lock_swapdevices can unlock the devices. |
| */ |
| static void lock_swapdevices(void) |
| { |
| int i; |
| |
| spin_lock(&swap_lock); |
| for (i = 0; i< MAX_SWAPFILES; i++) |
| if (swapfile_used[i] == SWAPFILE_IGNORED) { |
| swap_info[i].flags ^= SWP_WRITEOK; |
| } |
| spin_unlock(&swap_lock); |
| } |
| |
| /** |
| * write_swap_page - Write one page to a fresh swap location. |
| * @addr: Address we're writing. |
| * @loc: Place to store the entry we used. |
| * |
| * Allocate a new swap entry and 'sync' it. Note we discard -EIO |
| * errors. That is an artifact left over from swsusp. It did not |
| * check the return of rw_swap_page_sync() at all, since most pages |
| * written back to swap would return -EIO. |
| * This is a partial improvement, since we will at least return other |
| * errors, though we need to eventually fix the damn code. |
| */ |
| static int write_page(unsigned long addr, swp_entry_t * loc) |
| { |
| swp_entry_t entry; |
| int error = 0; |
| |
| entry = get_swap_page(); |
| if (swp_offset(entry) && |
| swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) { |
| error = rw_swap_page_sync(WRITE, entry, |
| virt_to_page(addr)); |
| if (error == -EIO) |
| error = 0; |
| if (!error) |
| *loc = entry; |
| } else |
| error = -ENOSPC; |
| return error; |
| } |
| |
| /** |
| * data_free - Free the swap entries used by the saved image. |
| * |
| * Walk the list of used swap entries and free each one. |
| * This is only used for cleanup when suspend fails. |
| */ |
| static void data_free(void) |
| { |
| swp_entry_t entry; |
| int i; |
| |
| for (i = 0; i < nr_copy_pages; i++) { |
| entry = (pagedir_nosave + i)->swap_address; |
| if (entry.val) |
| swap_free(entry); |
| else |
| break; |
| (pagedir_nosave + i)->swap_address = (swp_entry_t){0}; |
| } |
| } |
| |
| /** |
| * data_write - Write saved image to swap. |
| * |
| * Walk the list of pages in the image and sync each one to swap. |
| */ |
| static int data_write(void) |
| { |
| int error = 0, i = 0; |
| unsigned int mod = nr_copy_pages / 100; |
| struct pbe *p; |
| void *tfm; |
| |
| if ((error = crypto_init(1, &tfm))) |
| return error; |
| |
| if (!mod) |
| mod = 1; |
| |
| printk( "Writing data to swap (%d pages)... ", nr_copy_pages ); |
| for_each_pbe (p, pagedir_nosave) { |
| if (!(i%mod)) |
| printk( "\b\b\b\b%3d%%", i / mod ); |
| if ((error = crypto_write(p, tfm))) { |
| crypto_exit(tfm); |
| return error; |
| } |
| i++; |
| } |
| printk("\b\b\b\bdone\n"); |
| crypto_exit(tfm); |
| return error; |
| } |
| |
| static void dump_info(void) |
| { |
| pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code); |
| pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages); |
| pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname); |
| pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename); |
| pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release); |
| pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version); |
| pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine); |
| pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname); |
| pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus); |
| pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages); |
| pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages); |
| } |
| |
| static void init_header(void) |
| { |
| memset(&swsusp_info, 0, sizeof(swsusp_info)); |
| swsusp_info.version_code = LINUX_VERSION_CODE; |
| swsusp_info.num_physpages = num_physpages; |
| memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname)); |
| |
| swsusp_info.suspend_pagedir = pagedir_nosave; |
| swsusp_info.cpus = num_online_cpus(); |
| swsusp_info.image_pages = nr_copy_pages; |
| } |
| |
| static int close_swap(void) |
| { |
| swp_entry_t entry; |
| int error; |
| |
| dump_info(); |
| error = write_page((unsigned long)&swsusp_info, &entry); |
| if (!error) { |
| printk( "S" ); |
| error = mark_swapfiles(entry); |
| printk( "|\n" ); |
| } |
| return error; |
| } |
| |
| /** |
| * free_pagedir_entries - Free pages used by the page directory. |
| * |
| * This is used during suspend for error recovery. |
| */ |
| |
| static void free_pagedir_entries(void) |
| { |
| int i; |
| |
| for (i = 0; i < swsusp_info.pagedir_pages; i++) |
| swap_free(swsusp_info.pagedir[i]); |
| } |
| |
| |
| /** |
| * write_pagedir - Write the array of pages holding the page directory. |
| * @last: Last swap entry we write (needed for header). |
| */ |
| |
| static int write_pagedir(void) |
| { |
| int error = 0; |
| unsigned n = 0; |
| struct pbe * pbe; |
| |
| printk( "Writing pagedir..."); |
| for_each_pb_page (pbe, pagedir_nosave) { |
| if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++]))) |
| return error; |
| } |
| |
| swsusp_info.pagedir_pages = n; |
| printk("done (%u pages)\n", n); |
| return error; |
| } |
| |
| /** |
| * write_suspend_image - Write entire image and metadata. |
| * |
| */ |
| static int write_suspend_image(void) |
| { |
| int error; |
| |
| init_header(); |
| if ((error = data_write())) |
| goto FreeData; |
| |
| if ((error = write_pagedir())) |
| goto FreePagedir; |
| |
| if ((error = close_swap())) |
| goto FreePagedir; |
| Done: |
| memset(key_iv, 0, MAXKEY+MAXIV); |
| return error; |
| FreePagedir: |
| free_pagedir_entries(); |
| FreeData: |
| data_free(); |
| goto Done; |
| } |
| |
| |
| #ifdef CONFIG_HIGHMEM |
| struct highmem_page { |
| char *data; |
| struct page *page; |
| struct highmem_page *next; |
| }; |
| |
| static struct highmem_page *highmem_copy; |
| |
| static int save_highmem_zone(struct zone *zone) |
| { |
| unsigned long zone_pfn; |
| mark_free_pages(zone); |
| for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) { |
| struct page *page; |
| struct highmem_page *save; |
| void *kaddr; |
| unsigned long pfn = zone_pfn + zone->zone_start_pfn; |
| |
| if (!(pfn%1000)) |
| printk("."); |
| if (!pfn_valid(pfn)) |
| continue; |
| page = pfn_to_page(pfn); |
| /* |
| * This condition results from rvmalloc() sans vmalloc_32() |
| * and architectural memory reservations. This should be |
| * corrected eventually when the cases giving rise to this |
| * are better understood. |
| */ |
| if (PageReserved(page)) { |
| printk("highmem reserved page?!\n"); |
| continue; |
| } |
| BUG_ON(PageNosave(page)); |
| if (PageNosaveFree(page)) |
| continue; |
| save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC); |
| if (!save) |
| return -ENOMEM; |
| save->next = highmem_copy; |
| save->page = page; |
| save->data = (void *) get_zeroed_page(GFP_ATOMIC); |
| if (!save->data) { |
| kfree(save); |
| return -ENOMEM; |
| } |
| kaddr = kmap_atomic(page, KM_USER0); |
| memcpy(save->data, kaddr, PAGE_SIZE); |
| kunmap_atomic(kaddr, KM_USER0); |
| highmem_copy = save; |
| } |
| return 0; |
| } |
| #endif /* CONFIG_HIGHMEM */ |
| |
| |
| static int save_highmem(void) |
| { |
| #ifdef CONFIG_HIGHMEM |
| struct zone *zone; |
| int res = 0; |
| |
| pr_debug("swsusp: Saving Highmem\n"); |
| for_each_zone (zone) { |
| if (is_highmem(zone)) |
| res = save_highmem_zone(zone); |
| if (res) |
| return res; |
| } |
| #endif |
| return 0; |
| } |
| |
| static int restore_highmem(void) |
| { |
| #ifdef CONFIG_HIGHMEM |
| printk("swsusp: Restoring Highmem\n"); |
| while (highmem_copy) { |
| struct highmem_page *save = highmem_copy; |
| void *kaddr; |
| highmem_copy = save->next; |
| |
| kaddr = kmap_atomic(save->page, KM_USER0); |
| memcpy(kaddr, save->data, PAGE_SIZE); |
| kunmap_atomic(kaddr, KM_USER0); |
| free_page((long) save->data); |
| kfree(save); |
| } |
| #endif |
| return 0; |
| } |
| |
| |
| static int pfn_is_nosave(unsigned long pfn) |
| { |
| unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT; |
| unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT; |
| return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn); |
| } |
| |
| /** |
| * saveable - Determine whether a page should be cloned or not. |
| * @pfn: The page |
| * |
| * We save a page if it's Reserved, and not in the range of pages |
| * statically defined as 'unsaveable', or if it isn't reserved, and |
| * isn't part of a free chunk of pages. |
| */ |
| |
| static int saveable(struct zone * zone, unsigned long * zone_pfn) |
| { |
| unsigned long pfn = *zone_pfn + zone->zone_start_pfn; |
| struct page * page; |
| |
| if (!pfn_valid(pfn)) |
| return 0; |
| |
| page = pfn_to_page(pfn); |
| BUG_ON(PageReserved(page) && PageNosave(page)); |
| if (PageNosave(page)) |
| return 0; |
| if (PageReserved(page) && pfn_is_nosave(pfn)) { |
| pr_debug("[nosave pfn 0x%lx]", pfn); |
| return 0; |
| } |
| if (PageNosaveFree(page)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static void count_data_pages(void) |
| { |
| struct zone *zone; |
| unsigned long zone_pfn; |
| |
| nr_copy_pages = 0; |
| |
| for_each_zone (zone) { |
| if (is_highmem(zone)) |
| continue; |
| mark_free_pages(zone); |
| for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) |
| nr_copy_pages += saveable(zone, &zone_pfn); |
| } |
| } |
| |
| |
| static void copy_data_pages(void) |
| { |
| struct zone *zone; |
| unsigned long zone_pfn; |
| struct pbe * pbe = pagedir_nosave; |
| |
| pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages); |
| for_each_zone (zone) { |
| if (is_highmem(zone)) |
| continue; |
| mark_free_pages(zone); |
| for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) { |
| if (saveable(zone, &zone_pfn)) { |
| struct page * page; |
| page = pfn_to_page(zone_pfn + zone->zone_start_pfn); |
| BUG_ON(!pbe); |
| pbe->orig_address = (long) page_address(page); |
| /* copy_page is not usable for copying task structs. */ |
| memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE); |
| pbe = pbe->next; |
| } |
| } |
| } |
| BUG_ON(pbe); |
| } |
| |
| |
| /** |
| * calc_nr - Determine the number of pages needed for a pbe list. |
| */ |
| |
| static int calc_nr(int nr_copy) |
| { |
| return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1); |
| } |
| |
| /** |
| * free_pagedir - free pages allocated with alloc_pagedir() |
| */ |
| |
| static inline void free_pagedir(struct pbe *pblist) |
| { |
| struct pbe *pbe; |
| |
| while (pblist) { |
| pbe = (pblist + PB_PAGE_SKIP)->next; |
| free_page((unsigned long)pblist); |
| pblist = pbe; |
| } |
| } |
| |
| /** |
| * fill_pb_page - Create a list of PBEs on a given memory page |
| */ |
| |
| static inline void fill_pb_page(struct pbe *pbpage) |
| { |
| struct pbe *p; |
| |
| p = pbpage; |
| pbpage += PB_PAGE_SKIP; |
| do |
| p->next = p + 1; |
| while (++p < pbpage); |
| } |
| |
| /** |
| * create_pbe_list - Create a list of PBEs on top of a given chain |
| * of memory pages allocated with alloc_pagedir() |
| */ |
| |
| static void create_pbe_list(struct pbe *pblist, unsigned nr_pages) |
| { |
| struct pbe *pbpage, *p; |
| unsigned num = PBES_PER_PAGE; |
| |
| for_each_pb_page (pbpage, pblist) { |
| if (num >= nr_pages) |
| break; |
| |
| fill_pb_page(pbpage); |
| num += PBES_PER_PAGE; |
| } |
| if (pbpage) { |
| for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++) |
| p->next = p + 1; |
| p->next = NULL; |
| } |
| pr_debug("create_pbe_list(): initialized %d PBEs\n", num); |
| } |
| |
| /** |
| * alloc_pagedir - Allocate the page directory. |
| * |
| * First, determine exactly how many pages we need and |
| * allocate them. |
| * |
| * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE |
| * struct pbe elements (pbes) and the last element in the page points |
| * to the next page. |
| * |
| * On each page we set up a list of struct_pbe elements. |
| */ |
| |
| static struct pbe * alloc_pagedir(unsigned nr_pages) |
| { |
| unsigned num; |
| struct pbe *pblist, *pbe; |
| |
| if (!nr_pages) |
| return NULL; |
| |
| pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages); |
| pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD); |
| for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages; |
| pbe = pbe->next, num += PBES_PER_PAGE) { |
| pbe += PB_PAGE_SKIP; |
| pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD); |
| } |
| if (!pbe) { /* get_zeroed_page() failed */ |
| free_pagedir(pblist); |
| pblist = NULL; |
| } |
| return pblist; |
| } |
| |
| /** |
| * free_image_pages - Free pages allocated for snapshot |
| */ |
| |
| static void free_image_pages(void) |
| { |
| struct pbe * p; |
| |
| for_each_pbe (p, pagedir_save) { |
| if (p->address) { |
| ClearPageNosave(virt_to_page(p->address)); |
| free_page(p->address); |
| p->address = 0; |
| } |
| } |
| } |
| |
| /** |
| * alloc_image_pages - Allocate pages for the snapshot. |
| */ |
| |
| static int alloc_image_pages(void) |
| { |
| struct pbe * p; |
| |
| for_each_pbe (p, pagedir_save) { |
| p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD); |
| if (!p->address) |
| return -ENOMEM; |
| SetPageNosave(virt_to_page(p->address)); |
| } |
| return 0; |
| } |
| |
| void swsusp_free(void) |
| { |
| BUG_ON(PageNosave(virt_to_page(pagedir_save))); |
| BUG_ON(PageNosaveFree(virt_to_page(pagedir_save))); |
| free_image_pages(); |
| free_pagedir(pagedir_save); |
| } |
| |
| |
| /** |
| * enough_free_mem - Make sure we enough free memory to snapshot. |
| * |
| * Returns TRUE or FALSE after checking the number of available |
| * free pages. |
| */ |
| |
| static int enough_free_mem(void) |
| { |
| if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) { |
| pr_debug("swsusp: Not enough free pages: Have %d\n", |
| nr_free_pages()); |
| return 0; |
| } |
| return 1; |
| } |
| |
| |
| /** |
| * enough_swap - Make sure we have enough swap to save the image. |
| * |
| * Returns TRUE or FALSE after checking the total amount of swap |
| * space avaiable. |
| * |
| * FIXME: si_swapinfo(&i) returns all swap devices information. |
| * We should only consider resume_device. |
| */ |
| |
| static int enough_swap(void) |
| { |
| struct sysinfo i; |
| |
| si_swapinfo(&i); |
| if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) { |
| pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int swsusp_alloc(void) |
| { |
| int error; |
| |
| pagedir_nosave = NULL; |
| nr_copy_pages = calc_nr(nr_copy_pages); |
| |
| pr_debug("suspend: (pages needed: %d + %d free: %d)\n", |
| nr_copy_pages, PAGES_FOR_IO, nr_free_pages()); |
| |
| if (!enough_free_mem()) |
| return -ENOMEM; |
| |
| if (!enough_swap()) |
| return -ENOSPC; |
| |
| if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) { |
| printk(KERN_ERR "suspend: Allocating pagedir failed.\n"); |
| return -ENOMEM; |
| } |
| create_pbe_list(pagedir_save, nr_copy_pages); |
| pagedir_nosave = pagedir_save; |
| if ((error = alloc_image_pages())) { |
| printk(KERN_ERR "suspend: Allocating image pages failed.\n"); |
| swsusp_free(); |
| return error; |
| } |
| |
| nr_copy_pages_check = nr_copy_pages; |
| return 0; |
| } |
| |
| static int suspend_prepare_image(void) |
| { |
| int error; |
| |
| pr_debug("swsusp: critical section: \n"); |
| if (save_highmem()) { |
| printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n"); |
| restore_highmem(); |
| return -ENOMEM; |
| } |
| |
| drain_local_pages(); |
| count_data_pages(); |
| printk("swsusp: Need to copy %u pages\n", nr_copy_pages); |
| |
| error = swsusp_alloc(); |
| if (error) |
| return error; |
| |
| /* During allocating of suspend pagedir, new cold pages may appear. |
| * Kill them. |
| */ |
| drain_local_pages(); |
| copy_data_pages(); |
| |
| /* |
| * End of critical section. From now on, we can write to memory, |
| * but we should not touch disk. This specially means we must _not_ |
| * touch swap space! Except we must write out our image of course. |
| */ |
| |
| printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages ); |
| return 0; |
| } |
| |
| |
| /* It is important _NOT_ to umount filesystems at this point. We want |
| * them synced (in case something goes wrong) but we DO not want to mark |
| * filesystem clean: it is not. (And it does not matter, if we resume |
| * correctly, we'll mark system clean, anyway.) |
| */ |
| int swsusp_write(void) |
| { |
| int error; |
| device_resume(); |
| lock_swapdevices(); |
| error = write_suspend_image(); |
| /* This will unlock ignored swap devices since writing is finished */ |
| lock_swapdevices(); |
| return error; |
| |
| } |
| |
| |
| extern asmlinkage int swsusp_arch_suspend(void); |
| extern asmlinkage int swsusp_arch_resume(void); |
| |
| |
| asmlinkage int swsusp_save(void) |
| { |
| return suspend_prepare_image(); |
| } |
| |
| int swsusp_suspend(void) |
| { |
| int error; |
| if ((error = arch_prepare_suspend())) |
| return error; |
| local_irq_disable(); |
| /* At this point, device_suspend() has been called, but *not* |
| * device_power_down(). We *must* device_power_down() now. |
| * Otherwise, drivers for some devices (e.g. interrupt controllers) |
| * become desynchronized with the actual state of the hardware |
| * at resume time, and evil weirdness ensues. |
| */ |
| if ((error = device_power_down(PMSG_FREEZE))) { |
| printk(KERN_ERR "Some devices failed to power down, aborting suspend\n"); |
| local_irq_enable(); |
| return error; |
| } |
| |
| if ((error = swsusp_swap_check())) { |
| printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n"); |
| device_power_up(); |
| local_irq_enable(); |
| return error; |
| } |
| |
| save_processor_state(); |
| if ((error = swsusp_arch_suspend())) |
| printk(KERN_ERR "Error %d suspending\n", error); |
| /* Restore control flow magically appears here */ |
| restore_processor_state(); |
| BUG_ON (nr_copy_pages_check != nr_copy_pages); |
| restore_highmem(); |
| device_power_up(); |
| local_irq_enable(); |
| return error; |
| } |
| |
| int swsusp_resume(void) |
| { |
| int error; |
| local_irq_disable(); |
| if (device_power_down(PMSG_FREEZE)) |
| printk(KERN_ERR "Some devices failed to power down, very bad\n"); |
| /* We'll ignore saved state, but this gets preempt count (etc) right */ |
| save_processor_state(); |
| error = swsusp_arch_resume(); |
| /* Code below is only ever reached in case of failure. Otherwise |
| * execution continues at place where swsusp_arch_suspend was called |
| */ |
| BUG_ON(!error); |
| restore_processor_state(); |
| restore_highmem(); |
| touch_softlockup_watchdog(); |
| device_power_up(); |
| local_irq_enable(); |
| return error; |
| } |
| |
| /** |
| * On resume, for storing the PBE list and the image, |
| * we can only use memory pages that do not conflict with the pages |
| * which had been used before suspend. |
| * |
| * We don't know which pages are usable until we allocate them. |
| * |
| * Allocated but unusable (ie eaten) memory pages are linked together |
| * to create a list, so that we can free them easily |
| * |
| * We could have used a type other than (void *) |
| * for this purpose, but ... |
| */ |
| static void **eaten_memory = NULL; |
| |
| static inline void eat_page(void *page) |
| { |
| void **c; |
| |
| c = eaten_memory; |
| eaten_memory = page; |
| *eaten_memory = c; |
| } |
| |
| static unsigned long get_usable_page(unsigned gfp_mask) |
| { |
| unsigned long m; |
| |
| m = get_zeroed_page(gfp_mask); |
| while (!PageNosaveFree(virt_to_page(m))) { |
| eat_page((void *)m); |
| m = get_zeroed_page(gfp_mask); |
| if (!m) |
| break; |
| } |
| return m; |
| } |
| |
| static void free_eaten_memory(void) |
| { |
| unsigned long m; |
| void **c; |
| int i = 0; |
| |
| c = eaten_memory; |
| while (c) { |
| m = (unsigned long)c; |
| c = *c; |
| free_page(m); |
| i++; |
| } |
| eaten_memory = NULL; |
| pr_debug("swsusp: %d unused pages freed\n", i); |
| } |
| |
| /** |
| * check_pagedir - We ensure here that pages that the PBEs point to |
| * won't collide with pages where we're going to restore from the loaded |
| * pages later |
| */ |
| |
| static int check_pagedir(struct pbe *pblist) |
| { |
| struct pbe *p; |
| |
| /* This is necessary, so that we can free allocated pages |
| * in case of failure |
| */ |
| for_each_pbe (p, pblist) |
| p->address = 0UL; |
| |
| for_each_pbe (p, pblist) { |
| p->address = get_usable_page(GFP_ATOMIC); |
| if (!p->address) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| /** |
| * swsusp_pagedir_relocate - It is possible, that some memory pages |
| * occupied by the list of PBEs collide with pages where we're going to |
| * restore from the loaded pages later. We relocate them here. |
| */ |
| |
| static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist) |
| { |
| struct zone *zone; |
| unsigned long zone_pfn; |
| struct pbe *pbpage, *tail, *p; |
| void *m; |
| int rel = 0, error = 0; |
| |
| if (!pblist) /* a sanity check */ |
| return NULL; |
| |
| pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n", |
| swsusp_info.pagedir_pages); |
| |
| /* Set page flags */ |
| |
| for_each_zone (zone) { |
| for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) |
| SetPageNosaveFree(pfn_to_page(zone_pfn + |
| zone->zone_start_pfn)); |
| } |
| |
| /* Clear orig addresses */ |
| |
| for_each_pbe (p, pblist) |
| ClearPageNosaveFree(virt_to_page(p->orig_address)); |
| |
| tail = pblist + PB_PAGE_SKIP; |
| |
| /* Relocate colliding pages */ |
| |
| for_each_pb_page (pbpage, pblist) { |
| if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) { |
| m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD); |
| if (!m) { |
| error = -ENOMEM; |
| break; |
| } |
| memcpy(m, (void *)pbpage, PAGE_SIZE); |
| if (pbpage == pblist) |
| pblist = (struct pbe *)m; |
| else |
| tail->next = (struct pbe *)m; |
| |
| eat_page((void *)pbpage); |
| pbpage = (struct pbe *)m; |
| |
| /* We have to link the PBEs again */ |
| |
| for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++) |
| if (p->next) /* needed to save the end */ |
| p->next = p + 1; |
| |
| rel++; |
| } |
| tail = pbpage + PB_PAGE_SKIP; |
| } |
| |
| if (error) { |
| printk("\nswsusp: Out of memory\n\n"); |
| free_pagedir(pblist); |
| free_eaten_memory(); |
| pblist = NULL; |
| } |
| else |
| printk("swsusp: Relocated %d pages\n", rel); |
| |
| return pblist; |
| } |
| |
| /* |
| * Using bio to read from swap. |
| * This code requires a bit more work than just using buffer heads |
| * but, it is the recommended way for 2.5/2.6. |
| * The following are to signal the beginning and end of I/O. Bios |
| * finish asynchronously, while we want them to happen synchronously. |
| * A simple atomic_t, and a wait loop take care of this problem. |
| */ |
| |
| static atomic_t io_done = ATOMIC_INIT(0); |
| |
| static int end_io(struct bio * bio, unsigned int num, int err) |
| { |
| if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| panic("I/O error reading memory image"); |
| atomic_set(&io_done, 0); |
| return 0; |
| } |
| |
| static struct block_device * resume_bdev; |
| |
| /** |
| * submit - submit BIO request. |
| * @rw: READ or WRITE. |
| * @off physical offset of page. |
| * @page: page we're reading or writing. |
| * |
| * Straight from the textbook - allocate and initialize the bio. |
| * If we're writing, make sure the page is marked as dirty. |
| * Then submit it and wait. |
| */ |
| |
| static int submit(int rw, pgoff_t page_off, void * page) |
| { |
| int error = 0; |
| struct bio * bio; |
| |
| bio = bio_alloc(GFP_ATOMIC, 1); |
| if (!bio) |
| return -ENOMEM; |
| bio->bi_sector = page_off * (PAGE_SIZE >> 9); |
| bio_get(bio); |
| bio->bi_bdev = resume_bdev; |
| bio->bi_end_io = end_io; |
| |
| if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) { |
| printk("swsusp: ERROR: adding page to bio at %ld\n",page_off); |
| error = -EFAULT; |
| goto Done; |
| } |
| |
| if (rw == WRITE) |
| bio_set_pages_dirty(bio); |
| |
| atomic_set(&io_done, 1); |
| submit_bio(rw | (1 << BIO_RW_SYNC), bio); |
| while (atomic_read(&io_done)) |
| yield(); |
| |
| Done: |
| bio_put(bio); |
| return error; |
| } |
| |
| static int bio_read_page(pgoff_t page_off, void * page) |
| { |
| return submit(READ, page_off, page); |
| } |
| |
| static int bio_write_page(pgoff_t page_off, void * page) |
| { |
| return submit(WRITE, page_off, page); |
| } |
| |
| /* |
| * Sanity check if this image makes sense with this kernel/swap context |
| * I really don't think that it's foolproof but more than nothing.. |
| */ |
| |
| static const char * sanity_check(void) |
| { |
| dump_info(); |
| if (swsusp_info.version_code != LINUX_VERSION_CODE) |
| return "kernel version"; |
| if (swsusp_info.num_physpages != num_physpages) |
| return "memory size"; |
| if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname)) |
| return "system type"; |
| if (strcmp(swsusp_info.uts.release,system_utsname.release)) |
| return "kernel release"; |
| if (strcmp(swsusp_info.uts.version,system_utsname.version)) |
| return "version"; |
| if (strcmp(swsusp_info.uts.machine,system_utsname.machine)) |
| return "machine"; |
| #if 0 |
| /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */ |
| if (swsusp_info.cpus != num_possible_cpus()) |
| return "number of cpus"; |
| #endif |
| return NULL; |
| } |
| |
| |
| static int check_header(void) |
| { |
| const char * reason = NULL; |
| int error; |
| |
| if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info))) |
| return error; |
| |
| /* Is this same machine? */ |
| if ((reason = sanity_check())) { |
| printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason); |
| return -EPERM; |
| } |
| nr_copy_pages = swsusp_info.image_pages; |
| return error; |
| } |
| |
| static int check_sig(void) |
| { |
| int error; |
| |
| memset(&swsusp_header, 0, sizeof(swsusp_header)); |
| if ((error = bio_read_page(0, &swsusp_header))) |
| return error; |
| if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) { |
| memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10); |
| memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV); |
| memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV); |
| |
| /* |
| * Reset swap signature now. |
| */ |
| error = bio_write_page(0, &swsusp_header); |
| } else { |
| return -EINVAL; |
| } |
| if (!error) |
| pr_debug("swsusp: Signature found, resuming\n"); |
| return error; |
| } |
| |
| /** |
| * data_read - Read image pages from swap. |
| * |
| * You do not need to check for overlaps, check_pagedir() |
| * already did that. |
| */ |
| |
| static int data_read(struct pbe *pblist) |
| { |
| struct pbe * p; |
| int error = 0; |
| int i = 0; |
| int mod = swsusp_info.image_pages / 100; |
| void *tfm; |
| |
| if ((error = crypto_init(0, &tfm))) |
| return error; |
| |
| if (!mod) |
| mod = 1; |
| |
| printk("swsusp: Reading image data (%lu pages): ", |
| swsusp_info.image_pages); |
| |
| for_each_pbe (p, pblist) { |
| if (!(i % mod)) |
| printk("\b\b\b\b%3d%%", i / mod); |
| |
| if ((error = crypto_read(p, tfm))) { |
| crypto_exit(tfm); |
| return error; |
| } |
| |
| i++; |
| } |
| printk("\b\b\b\bdone\n"); |
| crypto_exit(tfm); |
| return error; |
| } |
| |
| /** |
| * read_pagedir - Read page backup list pages from swap |
| */ |
| |
| static int read_pagedir(struct pbe *pblist) |
| { |
| struct pbe *pbpage, *p; |
| unsigned i = 0; |
| int error; |
| |
| if (!pblist) |
| return -EFAULT; |
| |
| printk("swsusp: Reading pagedir (%lu pages)\n", |
| swsusp_info.pagedir_pages); |
| |
| for_each_pb_page (pbpage, pblist) { |
| unsigned long offset = swp_offset(swsusp_info.pagedir[i++]); |
| |
| error = -EFAULT; |
| if (offset) { |
| p = (pbpage + PB_PAGE_SKIP)->next; |
| error = bio_read_page(offset, (void *)pbpage); |
| (pbpage + PB_PAGE_SKIP)->next = p; |
| } |
| if (error) |
| break; |
| } |
| |
| if (error) |
| free_page((unsigned long)pblist); |
| |
| BUG_ON(i != swsusp_info.pagedir_pages); |
| |
| return error; |
| } |
| |
| |
| static int check_suspend_image(void) |
| { |
| int error = 0; |
| |
| if ((error = check_sig())) |
| return error; |
| |
| if ((error = check_header())) |
| return error; |
| |
| return 0; |
| } |
| |
| static int read_suspend_image(void) |
| { |
| int error = 0; |
| struct pbe *p; |
| |
| if (!(p = alloc_pagedir(nr_copy_pages))) |
| return -ENOMEM; |
| |
| if ((error = read_pagedir(p))) |
| return error; |
| |
| create_pbe_list(p, nr_copy_pages); |
| |
| if (!(pagedir_nosave = swsusp_pagedir_relocate(p))) |
| return -ENOMEM; |
| |
| /* Allocate memory for the image and read the data from swap */ |
| |
| error = check_pagedir(pagedir_nosave); |
| free_eaten_memory(); |
| if (!error) |
| error = data_read(pagedir_nosave); |
| |
| if (error) { /* We fail cleanly */ |
| for_each_pbe (p, pagedir_nosave) |
| if (p->address) { |
| free_page(p->address); |
| p->address = 0UL; |
| } |
| free_pagedir(pagedir_nosave); |
| } |
| return error; |
| } |
| |
| /** |
| * swsusp_check - Check for saved image in swap |
| */ |
| |
| int swsusp_check(void) |
| { |
| int error; |
| |
| resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); |
| if (!IS_ERR(resume_bdev)) { |
| set_blocksize(resume_bdev, PAGE_SIZE); |
| error = check_suspend_image(); |
| if (error) |
| blkdev_put(resume_bdev); |
| } else |
| error = PTR_ERR(resume_bdev); |
| |
| if (!error) |
| pr_debug("swsusp: resume file found\n"); |
| else |
| pr_debug("swsusp: Error %d check for resume file\n", error); |
| return error; |
| } |
| |
| /** |
| * swsusp_read - Read saved image from swap. |
| */ |
| |
| int swsusp_read(void) |
| { |
| int error; |
| |
| if (IS_ERR(resume_bdev)) { |
| pr_debug("swsusp: block device not initialised\n"); |
| return PTR_ERR(resume_bdev); |
| } |
| |
| error = read_suspend_image(); |
| blkdev_put(resume_bdev); |
| memset(key_iv, 0, MAXKEY+MAXIV); |
| |
| if (!error) |
| pr_debug("swsusp: Reading resume file was successful\n"); |
| else |
| pr_debug("swsusp: Error %d resuming\n", error); |
| return error; |
| } |
| |
| /** |
| * swsusp_close - close swap device. |
| */ |
| |
| void swsusp_close(void) |
| { |
| if (IS_ERR(resume_bdev)) { |
| pr_debug("swsusp: block device not initialised\n"); |
| return; |
| } |
| |
| blkdev_put(resume_bdev); |
| } |