| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright IBM Corp. 2012 |
| * |
| * Author(s): |
| * Jan Glauber <jang@linux.vnet.ibm.com> |
| * |
| * The System z PCI code is a rewrite from a prototype by |
| * the following people (Kudoz!): |
| * Alexander Schmidt |
| * Christoph Raisch |
| * Hannes Hering |
| * Hoang-Nam Nguyen |
| * Jan-Bernd Themann |
| * Stefan Roscher |
| * Thomas Klein |
| */ |
| |
| #define KMSG_COMPONENT "zpci" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| #include <linux/delay.h> |
| #include <linux/seq_file.h> |
| #include <linux/jump_label.h> |
| #include <linux/pci.h> |
| #include <linux/printk.h> |
| |
| #include <asm/isc.h> |
| #include <asm/airq.h> |
| #include <asm/facility.h> |
| #include <asm/pci_insn.h> |
| #include <asm/pci_clp.h> |
| #include <asm/pci_dma.h> |
| |
| #include "pci_bus.h" |
| #include "pci_iov.h" |
| |
| /* list of all detected zpci devices */ |
| static LIST_HEAD(zpci_list); |
| static DEFINE_SPINLOCK(zpci_list_lock); |
| |
| static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); |
| static DEFINE_SPINLOCK(zpci_domain_lock); |
| |
| #define ZPCI_IOMAP_ENTRIES \ |
| min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ |
| ZPCI_IOMAP_MAX_ENTRIES) |
| |
| unsigned int s390_pci_no_rid; |
| |
| static DEFINE_SPINLOCK(zpci_iomap_lock); |
| static unsigned long *zpci_iomap_bitmap; |
| struct zpci_iomap_entry *zpci_iomap_start; |
| EXPORT_SYMBOL_GPL(zpci_iomap_start); |
| |
| DEFINE_STATIC_KEY_FALSE(have_mio); |
| |
| static struct kmem_cache *zdev_fmb_cache; |
| |
| /* AEN structures that must be preserved over KVM module re-insertion */ |
| union zpci_sic_iib *zpci_aipb; |
| EXPORT_SYMBOL_GPL(zpci_aipb); |
| struct airq_iv *zpci_aif_sbv; |
| EXPORT_SYMBOL_GPL(zpci_aif_sbv); |
| |
| struct zpci_dev *get_zdev_by_fid(u32 fid) |
| { |
| struct zpci_dev *tmp, *zdev = NULL; |
| |
| spin_lock(&zpci_list_lock); |
| list_for_each_entry(tmp, &zpci_list, entry) { |
| if (tmp->fid == fid) { |
| zdev = tmp; |
| zpci_zdev_get(zdev); |
| break; |
| } |
| } |
| spin_unlock(&zpci_list_lock); |
| return zdev; |
| } |
| |
| void zpci_remove_reserved_devices(void) |
| { |
| struct zpci_dev *tmp, *zdev; |
| enum zpci_state state; |
| LIST_HEAD(remove); |
| |
| spin_lock(&zpci_list_lock); |
| list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { |
| if (zdev->state == ZPCI_FN_STATE_STANDBY && |
| !clp_get_state(zdev->fid, &state) && |
| state == ZPCI_FN_STATE_RESERVED) |
| list_move_tail(&zdev->entry, &remove); |
| } |
| spin_unlock(&zpci_list_lock); |
| |
| list_for_each_entry_safe(zdev, tmp, &remove, entry) |
| zpci_device_reserved(zdev); |
| } |
| |
| int pci_domain_nr(struct pci_bus *bus) |
| { |
| return ((struct zpci_bus *) bus->sysdata)->domain_nr; |
| } |
| EXPORT_SYMBOL_GPL(pci_domain_nr); |
| |
| int pci_proc_domain(struct pci_bus *bus) |
| { |
| return pci_domain_nr(bus); |
| } |
| EXPORT_SYMBOL_GPL(pci_proc_domain); |
| |
| /* Modify PCI: Register I/O address translation parameters */ |
| int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, |
| u64 base, u64 limit, u64 iota) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); |
| struct zpci_fib fib = {0}; |
| u8 cc, status; |
| |
| WARN_ON_ONCE(iota & 0x3fff); |
| fib.pba = base; |
| fib.pal = limit; |
| fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; |
| fib.gd = zdev->gisa; |
| cc = zpci_mod_fc(req, &fib, &status); |
| if (cc) |
| zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); |
| return cc; |
| } |
| EXPORT_SYMBOL_GPL(zpci_register_ioat); |
| |
| /* Modify PCI: Unregister I/O address translation parameters */ |
| int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); |
| struct zpci_fib fib = {0}; |
| u8 cc, status; |
| |
| fib.gd = zdev->gisa; |
| |
| cc = zpci_mod_fc(req, &fib, &status); |
| if (cc) |
| zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); |
| return cc; |
| } |
| |
| /* Modify PCI: Set PCI function measurement parameters */ |
| int zpci_fmb_enable_device(struct zpci_dev *zdev) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); |
| struct zpci_fib fib = {0}; |
| u8 cc, status; |
| |
| if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) |
| return -EINVAL; |
| |
| zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); |
| if (!zdev->fmb) |
| return -ENOMEM; |
| WARN_ON((u64) zdev->fmb & 0xf); |
| |
| /* reset software counters */ |
| atomic64_set(&zdev->allocated_pages, 0); |
| atomic64_set(&zdev->mapped_pages, 0); |
| atomic64_set(&zdev->unmapped_pages, 0); |
| |
| fib.fmb_addr = virt_to_phys(zdev->fmb); |
| fib.gd = zdev->gisa; |
| cc = zpci_mod_fc(req, &fib, &status); |
| if (cc) { |
| kmem_cache_free(zdev_fmb_cache, zdev->fmb); |
| zdev->fmb = NULL; |
| } |
| return cc ? -EIO : 0; |
| } |
| |
| /* Modify PCI: Disable PCI function measurement */ |
| int zpci_fmb_disable_device(struct zpci_dev *zdev) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); |
| struct zpci_fib fib = {0}; |
| u8 cc, status; |
| |
| if (!zdev->fmb) |
| return -EINVAL; |
| |
| fib.gd = zdev->gisa; |
| |
| /* Function measurement is disabled if fmb address is zero */ |
| cc = zpci_mod_fc(req, &fib, &status); |
| if (cc == 3) /* Function already gone. */ |
| cc = 0; |
| |
| if (!cc) { |
| kmem_cache_free(zdev_fmb_cache, zdev->fmb); |
| zdev->fmb = NULL; |
| } |
| return cc ? -EIO : 0; |
| } |
| |
| static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); |
| u64 data; |
| int rc; |
| |
| rc = __zpci_load(&data, req, offset); |
| if (!rc) { |
| data = le64_to_cpu((__force __le64) data); |
| data >>= (8 - len) * 8; |
| *val = (u32) data; |
| } else |
| *val = 0xffffffff; |
| return rc; |
| } |
| |
| static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); |
| u64 data = val; |
| int rc; |
| |
| data <<= (8 - len) * 8; |
| data = (__force u64) cpu_to_le64(data); |
| rc = __zpci_store(data, req, offset); |
| return rc; |
| } |
| |
| resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| resource_size_t size, |
| resource_size_t align) |
| { |
| return 0; |
| } |
| |
| /* combine single writes by using store-block insn */ |
| void __iowrite64_copy(void __iomem *to, const void *from, size_t count) |
| { |
| zpci_memcpy_toio(to, from, count); |
| } |
| |
| static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot) |
| { |
| unsigned long offset, vaddr; |
| struct vm_struct *area; |
| phys_addr_t last_addr; |
| |
| last_addr = addr + size - 1; |
| if (!size || last_addr < addr) |
| return NULL; |
| |
| if (!static_branch_unlikely(&have_mio)) |
| return (void __iomem *) addr; |
| |
| offset = addr & ~PAGE_MASK; |
| addr &= PAGE_MASK; |
| size = PAGE_ALIGN(size + offset); |
| area = get_vm_area(size, VM_IOREMAP); |
| if (!area) |
| return NULL; |
| |
| vaddr = (unsigned long) area->addr; |
| if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) { |
| free_vm_area(area); |
| return NULL; |
| } |
| return (void __iomem *) ((unsigned long) area->addr + offset); |
| } |
| |
| void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot) |
| { |
| return __ioremap(addr, size, __pgprot(prot)); |
| } |
| EXPORT_SYMBOL(ioremap_prot); |
| |
| void __iomem *ioremap(phys_addr_t addr, size_t size) |
| { |
| return __ioremap(addr, size, PAGE_KERNEL); |
| } |
| EXPORT_SYMBOL(ioremap); |
| |
| void __iomem *ioremap_wc(phys_addr_t addr, size_t size) |
| { |
| return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL)); |
| } |
| EXPORT_SYMBOL(ioremap_wc); |
| |
| void __iomem *ioremap_wt(phys_addr_t addr, size_t size) |
| { |
| return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL)); |
| } |
| EXPORT_SYMBOL(ioremap_wt); |
| |
| void iounmap(volatile void __iomem *addr) |
| { |
| if (static_branch_likely(&have_mio)) |
| vunmap((__force void *) ((unsigned long) addr & PAGE_MASK)); |
| } |
| EXPORT_SYMBOL(iounmap); |
| |
| /* Create a virtual mapping cookie for a PCI BAR */ |
| static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, |
| unsigned long offset, unsigned long max) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| int idx; |
| |
| idx = zdev->bars[bar].map_idx; |
| spin_lock(&zpci_iomap_lock); |
| /* Detect overrun */ |
| WARN_ON(!++zpci_iomap_start[idx].count); |
| zpci_iomap_start[idx].fh = zdev->fh; |
| zpci_iomap_start[idx].bar = bar; |
| spin_unlock(&zpci_iomap_lock); |
| |
| return (void __iomem *) ZPCI_ADDR(idx) + offset; |
| } |
| |
| static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, |
| unsigned long offset, |
| unsigned long max) |
| { |
| unsigned long barsize = pci_resource_len(pdev, bar); |
| struct zpci_dev *zdev = to_zpci(pdev); |
| void __iomem *iova; |
| |
| iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); |
| return iova ? iova + offset : iova; |
| } |
| |
| void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, |
| unsigned long offset, unsigned long max) |
| { |
| if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) |
| return NULL; |
| |
| if (static_branch_likely(&have_mio)) |
| return pci_iomap_range_mio(pdev, bar, offset, max); |
| else |
| return pci_iomap_range_fh(pdev, bar, offset, max); |
| } |
| EXPORT_SYMBOL(pci_iomap_range); |
| |
| void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) |
| { |
| return pci_iomap_range(dev, bar, 0, maxlen); |
| } |
| EXPORT_SYMBOL(pci_iomap); |
| |
| static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, |
| unsigned long offset, unsigned long max) |
| { |
| unsigned long barsize = pci_resource_len(pdev, bar); |
| struct zpci_dev *zdev = to_zpci(pdev); |
| void __iomem *iova; |
| |
| iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); |
| return iova ? iova + offset : iova; |
| } |
| |
| void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, |
| unsigned long offset, unsigned long max) |
| { |
| if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) |
| return NULL; |
| |
| if (static_branch_likely(&have_mio)) |
| return pci_iomap_wc_range_mio(pdev, bar, offset, max); |
| else |
| return pci_iomap_range_fh(pdev, bar, offset, max); |
| } |
| EXPORT_SYMBOL(pci_iomap_wc_range); |
| |
| void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) |
| { |
| return pci_iomap_wc_range(dev, bar, 0, maxlen); |
| } |
| EXPORT_SYMBOL(pci_iomap_wc); |
| |
| static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) |
| { |
| unsigned int idx = ZPCI_IDX(addr); |
| |
| spin_lock(&zpci_iomap_lock); |
| /* Detect underrun */ |
| WARN_ON(!zpci_iomap_start[idx].count); |
| if (!--zpci_iomap_start[idx].count) { |
| zpci_iomap_start[idx].fh = 0; |
| zpci_iomap_start[idx].bar = 0; |
| } |
| spin_unlock(&zpci_iomap_lock); |
| } |
| |
| static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) |
| { |
| iounmap(addr); |
| } |
| |
| void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) |
| { |
| if (static_branch_likely(&have_mio)) |
| pci_iounmap_mio(pdev, addr); |
| else |
| pci_iounmap_fh(pdev, addr); |
| } |
| EXPORT_SYMBOL(pci_iounmap); |
| |
| static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 *val) |
| { |
| struct zpci_dev *zdev = zdev_from_bus(bus, devfn); |
| |
| return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; |
| } |
| |
| static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 val) |
| { |
| struct zpci_dev *zdev = zdev_from_bus(bus, devfn); |
| |
| return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; |
| } |
| |
| static struct pci_ops pci_root_ops = { |
| .read = pci_read, |
| .write = pci_write, |
| }; |
| |
| static void zpci_map_resources(struct pci_dev *pdev) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| resource_size_t len; |
| int i; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| len = pci_resource_len(pdev, i); |
| if (!len) |
| continue; |
| |
| if (zpci_use_mio(zdev)) |
| pdev->resource[i].start = |
| (resource_size_t __force) zdev->bars[i].mio_wt; |
| else |
| pdev->resource[i].start = (resource_size_t __force) |
| pci_iomap_range_fh(pdev, i, 0, 0); |
| pdev->resource[i].end = pdev->resource[i].start + len - 1; |
| } |
| |
| zpci_iov_map_resources(pdev); |
| } |
| |
| static void zpci_unmap_resources(struct pci_dev *pdev) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| resource_size_t len; |
| int i; |
| |
| if (zpci_use_mio(zdev)) |
| return; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| len = pci_resource_len(pdev, i); |
| if (!len) |
| continue; |
| pci_iounmap_fh(pdev, (void __iomem __force *) |
| pdev->resource[i].start); |
| } |
| } |
| |
| static int zpci_alloc_iomap(struct zpci_dev *zdev) |
| { |
| unsigned long entry; |
| |
| spin_lock(&zpci_iomap_lock); |
| entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); |
| if (entry == ZPCI_IOMAP_ENTRIES) { |
| spin_unlock(&zpci_iomap_lock); |
| return -ENOSPC; |
| } |
| set_bit(entry, zpci_iomap_bitmap); |
| spin_unlock(&zpci_iomap_lock); |
| return entry; |
| } |
| |
| static void zpci_free_iomap(struct zpci_dev *zdev, int entry) |
| { |
| spin_lock(&zpci_iomap_lock); |
| memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); |
| clear_bit(entry, zpci_iomap_bitmap); |
| spin_unlock(&zpci_iomap_lock); |
| } |
| |
| static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) |
| { |
| int bar, idx; |
| |
| spin_lock(&zpci_iomap_lock); |
| for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { |
| if (!zdev->bars[bar].size) |
| continue; |
| idx = zdev->bars[bar].map_idx; |
| if (!zpci_iomap_start[idx].count) |
| continue; |
| WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); |
| } |
| spin_unlock(&zpci_iomap_lock); |
| } |
| |
| void zpci_update_fh(struct zpci_dev *zdev, u32 fh) |
| { |
| if (!fh || zdev->fh == fh) |
| return; |
| |
| zdev->fh = fh; |
| if (zpci_use_mio(zdev)) |
| return; |
| if (zdev->has_resources && zdev_enabled(zdev)) |
| zpci_do_update_iomap_fh(zdev, fh); |
| } |
| |
| static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, |
| unsigned long size, unsigned long flags) |
| { |
| struct resource *r; |
| |
| r = kzalloc(sizeof(*r), GFP_KERNEL); |
| if (!r) |
| return NULL; |
| |
| r->start = start; |
| r->end = r->start + size - 1; |
| r->flags = flags; |
| r->name = zdev->res_name; |
| |
| if (request_resource(&iomem_resource, r)) { |
| kfree(r); |
| return NULL; |
| } |
| return r; |
| } |
| |
| int zpci_setup_bus_resources(struct zpci_dev *zdev, |
| struct list_head *resources) |
| { |
| unsigned long addr, size, flags; |
| struct resource *res; |
| int i, entry; |
| |
| snprintf(zdev->res_name, sizeof(zdev->res_name), |
| "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| if (!zdev->bars[i].size) |
| continue; |
| entry = zpci_alloc_iomap(zdev); |
| if (entry < 0) |
| return entry; |
| zdev->bars[i].map_idx = entry; |
| |
| /* only MMIO is supported */ |
| flags = IORESOURCE_MEM; |
| if (zdev->bars[i].val & 8) |
| flags |= IORESOURCE_PREFETCH; |
| if (zdev->bars[i].val & 4) |
| flags |= IORESOURCE_MEM_64; |
| |
| if (zpci_use_mio(zdev)) |
| addr = (unsigned long) zdev->bars[i].mio_wt; |
| else |
| addr = ZPCI_ADDR(entry); |
| size = 1UL << zdev->bars[i].size; |
| |
| res = __alloc_res(zdev, addr, size, flags); |
| if (!res) { |
| zpci_free_iomap(zdev, entry); |
| return -ENOMEM; |
| } |
| zdev->bars[i].res = res; |
| pci_add_resource(resources, res); |
| } |
| zdev->has_resources = 1; |
| |
| return 0; |
| } |
| |
| static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| if (!zdev->bars[i].size || !zdev->bars[i].res) |
| continue; |
| |
| zpci_free_iomap(zdev, zdev->bars[i].map_idx); |
| release_resource(zdev->bars[i].res); |
| kfree(zdev->bars[i].res); |
| } |
| zdev->has_resources = 0; |
| } |
| |
| int pcibios_device_add(struct pci_dev *pdev) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| struct resource *res; |
| int i; |
| |
| /* The pdev has a reference to the zdev via its bus */ |
| zpci_zdev_get(zdev); |
| if (pdev->is_physfn) |
| pdev->no_vf_scan = 1; |
| |
| pdev->dev.groups = zpci_attr_groups; |
| pdev->dev.dma_ops = &s390_pci_dma_ops; |
| zpci_map_resources(pdev); |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| res = &pdev->resource[i]; |
| if (res->parent || !res->flags) |
| continue; |
| pci_claim_resource(pdev, i); |
| } |
| |
| return 0; |
| } |
| |
| void pcibios_release_device(struct pci_dev *pdev) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| |
| zpci_unmap_resources(pdev); |
| zpci_zdev_put(zdev); |
| } |
| |
| int pcibios_enable_device(struct pci_dev *pdev, int mask) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| |
| zpci_debug_init_device(zdev, dev_name(&pdev->dev)); |
| zpci_fmb_enable_device(zdev); |
| |
| return pci_enable_resources(pdev, mask); |
| } |
| |
| void pcibios_disable_device(struct pci_dev *pdev) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| |
| zpci_fmb_disable_device(zdev); |
| zpci_debug_exit_device(zdev); |
| } |
| |
| static int __zpci_register_domain(int domain) |
| { |
| spin_lock(&zpci_domain_lock); |
| if (test_bit(domain, zpci_domain)) { |
| spin_unlock(&zpci_domain_lock); |
| pr_err("Domain %04x is already assigned\n", domain); |
| return -EEXIST; |
| } |
| set_bit(domain, zpci_domain); |
| spin_unlock(&zpci_domain_lock); |
| return domain; |
| } |
| |
| static int __zpci_alloc_domain(void) |
| { |
| int domain; |
| |
| spin_lock(&zpci_domain_lock); |
| /* |
| * We can always auto allocate domains below ZPCI_NR_DEVICES. |
| * There is either a free domain or we have reached the maximum in |
| * which case we would have bailed earlier. |
| */ |
| domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); |
| set_bit(domain, zpci_domain); |
| spin_unlock(&zpci_domain_lock); |
| return domain; |
| } |
| |
| int zpci_alloc_domain(int domain) |
| { |
| if (zpci_unique_uid) { |
| if (domain) |
| return __zpci_register_domain(domain); |
| pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); |
| update_uid_checking(false); |
| } |
| return __zpci_alloc_domain(); |
| } |
| |
| void zpci_free_domain(int domain) |
| { |
| spin_lock(&zpci_domain_lock); |
| clear_bit(domain, zpci_domain); |
| spin_unlock(&zpci_domain_lock); |
| } |
| |
| |
| int zpci_enable_device(struct zpci_dev *zdev) |
| { |
| u32 fh = zdev->fh; |
| int rc = 0; |
| |
| if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) |
| rc = -EIO; |
| else |
| zpci_update_fh(zdev, fh); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(zpci_enable_device); |
| |
| int zpci_disable_device(struct zpci_dev *zdev) |
| { |
| u32 fh = zdev->fh; |
| int cc, rc = 0; |
| |
| cc = clp_disable_fh(zdev, &fh); |
| if (!cc) { |
| zpci_update_fh(zdev, fh); |
| } else if (cc == CLP_RC_SETPCIFN_ALRDY) { |
| pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", |
| zdev->fid); |
| /* Function is already disabled - update handle */ |
| rc = clp_refresh_fh(zdev->fid, &fh); |
| if (!rc) { |
| zpci_update_fh(zdev, fh); |
| rc = -EINVAL; |
| } |
| } else { |
| rc = -EIO; |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(zpci_disable_device); |
| |
| /** |
| * zpci_hot_reset_device - perform a reset of the given zPCI function |
| * @zdev: the slot which should be reset |
| * |
| * Performs a low level reset of the zPCI function. The reset is low level in |
| * the sense that the zPCI function can be reset without detaching it from the |
| * common PCI subsystem. The reset may be performed while under control of |
| * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation |
| * table is reinstated at the end of the reset. |
| * |
| * After the reset the functions internal state is reset to an initial state |
| * equivalent to its state during boot when first probing a driver. |
| * Consequently after reset the PCI function requires re-initialization via the |
| * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() |
| * and enabling the function via e.g.pci_enablde_device_flags().The caller |
| * must guard against concurrent reset attempts. |
| * |
| * In most cases this function should not be called directly but through |
| * pci_reset_function() or pci_reset_bus() which handle the save/restore and |
| * locking. |
| * |
| * Return: 0 on success and an error value otherwise |
| */ |
| int zpci_hot_reset_device(struct zpci_dev *zdev) |
| { |
| int rc; |
| |
| zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); |
| if (zdev_enabled(zdev)) { |
| /* Disables device access, DMAs and IRQs (reset state) */ |
| rc = zpci_disable_device(zdev); |
| /* |
| * Due to a z/VM vs LPAR inconsistency in the error state the |
| * FH may indicate an enabled device but disable says the |
| * device is already disabled don't treat it as an error here. |
| */ |
| if (rc == -EINVAL) |
| rc = 0; |
| if (rc) |
| return rc; |
| } |
| |
| rc = zpci_enable_device(zdev); |
| if (rc) |
| return rc; |
| |
| if (zdev->dma_table) |
| rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, |
| virt_to_phys(zdev->dma_table)); |
| else |
| rc = zpci_dma_init_device(zdev); |
| if (rc) { |
| zpci_disable_device(zdev); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * zpci_create_device() - Create a new zpci_dev and add it to the zbus |
| * @fid: Function ID of the device to be created |
| * @fh: Current Function Handle of the device to be created |
| * @state: Initial state after creation either Standby or Configured |
| * |
| * Creates a new zpci device and adds it to its, possibly newly created, zbus |
| * as well as zpci_list. |
| * |
| * Returns: the zdev on success or an error pointer otherwise |
| */ |
| struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) |
| { |
| struct zpci_dev *zdev; |
| int rc; |
| |
| zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); |
| zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); |
| if (!zdev) |
| return ERR_PTR(-ENOMEM); |
| |
| /* FID and Function Handle are the static/dynamic identifiers */ |
| zdev->fid = fid; |
| zdev->fh = fh; |
| |
| /* Query function properties and update zdev */ |
| rc = clp_query_pci_fn(zdev); |
| if (rc) |
| goto error; |
| zdev->state = state; |
| |
| kref_init(&zdev->kref); |
| mutex_init(&zdev->lock); |
| mutex_init(&zdev->kzdev_lock); |
| |
| rc = zpci_init_iommu(zdev); |
| if (rc) |
| goto error; |
| |
| rc = zpci_bus_device_register(zdev, &pci_root_ops); |
| if (rc) |
| goto error_destroy_iommu; |
| |
| spin_lock(&zpci_list_lock); |
| list_add_tail(&zdev->entry, &zpci_list); |
| spin_unlock(&zpci_list_lock); |
| |
| return zdev; |
| |
| error_destroy_iommu: |
| zpci_destroy_iommu(zdev); |
| error: |
| zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); |
| kfree(zdev); |
| return ERR_PTR(rc); |
| } |
| |
| bool zpci_is_device_configured(struct zpci_dev *zdev) |
| { |
| enum zpci_state state = zdev->state; |
| |
| return state != ZPCI_FN_STATE_RESERVED && |
| state != ZPCI_FN_STATE_STANDBY; |
| } |
| |
| /** |
| * zpci_scan_configured_device() - Scan a freshly configured zpci_dev |
| * @zdev: The zpci_dev to be configured |
| * @fh: The general function handle supplied by the platform |
| * |
| * Given a device in the configuration state Configured, enables, scans and |
| * adds it to the common code PCI subsystem if possible. If the PCI device is |
| * parked because we can not yet create a PCI bus because we have not seen |
| * function 0, it is ignored but will be scanned once function 0 appears. |
| * If any failure occurs, the zpci_dev is left disabled. |
| * |
| * Return: 0 on success, or an error code otherwise |
| */ |
| int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) |
| { |
| int rc; |
| |
| zpci_update_fh(zdev, fh); |
| /* the PCI function will be scanned once function 0 appears */ |
| if (!zdev->zbus->bus) |
| return 0; |
| |
| /* For function 0 on a multi-function bus scan whole bus as we might |
| * have to pick up existing functions waiting for it to allow creating |
| * the PCI bus |
| */ |
| if (zdev->devfn == 0 && zdev->zbus->multifunction) |
| rc = zpci_bus_scan_bus(zdev->zbus); |
| else |
| rc = zpci_bus_scan_device(zdev); |
| |
| return rc; |
| } |
| |
| /** |
| * zpci_deconfigure_device() - Deconfigure a zpci_dev |
| * @zdev: The zpci_dev to configure |
| * |
| * Deconfigure a zPCI function that is currently configured and possibly known |
| * to the common code PCI subsystem. |
| * If any failure occurs the device is left as is. |
| * |
| * Return: 0 on success, or an error code otherwise |
| */ |
| int zpci_deconfigure_device(struct zpci_dev *zdev) |
| { |
| int rc; |
| |
| if (zdev->zbus->bus) |
| zpci_bus_remove_device(zdev, false); |
| |
| if (zdev->dma_table) { |
| rc = zpci_dma_exit_device(zdev); |
| if (rc) |
| return rc; |
| } |
| if (zdev_enabled(zdev)) { |
| rc = zpci_disable_device(zdev); |
| if (rc) |
| return rc; |
| } |
| |
| rc = sclp_pci_deconfigure(zdev->fid); |
| zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); |
| if (rc) |
| return rc; |
| zdev->state = ZPCI_FN_STATE_STANDBY; |
| |
| return 0; |
| } |
| |
| /** |
| * zpci_device_reserved() - Mark device as resverved |
| * @zdev: the zpci_dev that was reserved |
| * |
| * Handle the case that a given zPCI function was reserved by another system. |
| * After a call to this function the zpci_dev can not be found via |
| * get_zdev_by_fid() anymore but may still be accessible via existing |
| * references though it will not be functional anymore. |
| */ |
| void zpci_device_reserved(struct zpci_dev *zdev) |
| { |
| if (zdev->has_hp_slot) |
| zpci_exit_slot(zdev); |
| /* |
| * Remove device from zpci_list as it is going away. This also |
| * makes sure we ignore subsequent zPCI events for this device. |
| */ |
| spin_lock(&zpci_list_lock); |
| list_del(&zdev->entry); |
| spin_unlock(&zpci_list_lock); |
| zdev->state = ZPCI_FN_STATE_RESERVED; |
| zpci_dbg(3, "rsv fid:%x\n", zdev->fid); |
| zpci_zdev_put(zdev); |
| } |
| |
| void zpci_release_device(struct kref *kref) |
| { |
| struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); |
| int ret; |
| |
| if (zdev->zbus->bus) |
| zpci_bus_remove_device(zdev, false); |
| |
| if (zdev->dma_table) |
| zpci_dma_exit_device(zdev); |
| if (zdev_enabled(zdev)) |
| zpci_disable_device(zdev); |
| |
| switch (zdev->state) { |
| case ZPCI_FN_STATE_CONFIGURED: |
| ret = sclp_pci_deconfigure(zdev->fid); |
| zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); |
| fallthrough; |
| case ZPCI_FN_STATE_STANDBY: |
| if (zdev->has_hp_slot) |
| zpci_exit_slot(zdev); |
| spin_lock(&zpci_list_lock); |
| list_del(&zdev->entry); |
| spin_unlock(&zpci_list_lock); |
| zpci_dbg(3, "rsv fid:%x\n", zdev->fid); |
| fallthrough; |
| case ZPCI_FN_STATE_RESERVED: |
| if (zdev->has_resources) |
| zpci_cleanup_bus_resources(zdev); |
| zpci_bus_device_unregister(zdev); |
| zpci_destroy_iommu(zdev); |
| fallthrough; |
| default: |
| break; |
| } |
| zpci_dbg(3, "rem fid:%x\n", zdev->fid); |
| kfree(zdev); |
| } |
| |
| int zpci_report_error(struct pci_dev *pdev, |
| struct zpci_report_error_header *report) |
| { |
| struct zpci_dev *zdev = to_zpci(pdev); |
| |
| return sclp_pci_report(report, zdev->fh, zdev->fid); |
| } |
| EXPORT_SYMBOL(zpci_report_error); |
| |
| /** |
| * zpci_clear_error_state() - Clears the zPCI error state of the device |
| * @zdev: The zdev for which the zPCI error state should be reset |
| * |
| * Clear the zPCI error state of the device. If clearing the zPCI error state |
| * fails the device is left in the error state. In this case it may make sense |
| * to call zpci_io_perm_failure() on the associated pdev if it exists. |
| * |
| * Returns: 0 on success, -EIO otherwise |
| */ |
| int zpci_clear_error_state(struct zpci_dev *zdev) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); |
| struct zpci_fib fib = {0}; |
| u8 status; |
| int cc; |
| |
| cc = zpci_mod_fc(req, &fib, &status); |
| if (cc) { |
| zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * zpci_reset_load_store_blocked() - Re-enables L/S from error state |
| * @zdev: The zdev for which to unblock load/store access |
| * |
| * Re-enables load/store access for a PCI function in the error state while |
| * keeping DMA blocked. In this state drivers can poke MMIO space to determine |
| * if error recovery is possible while catching any rogue DMA access from the |
| * device. |
| * |
| * Returns: 0 on success, -EIO otherwise |
| */ |
| int zpci_reset_load_store_blocked(struct zpci_dev *zdev) |
| { |
| u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); |
| struct zpci_fib fib = {0}; |
| u8 status; |
| int cc; |
| |
| cc = zpci_mod_fc(req, &fib, &status); |
| if (cc) { |
| zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int zpci_mem_init(void) |
| { |
| BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || |
| __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); |
| |
| zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), |
| __alignof__(struct zpci_fmb), 0, NULL); |
| if (!zdev_fmb_cache) |
| goto error_fmb; |
| |
| zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, |
| sizeof(*zpci_iomap_start), GFP_KERNEL); |
| if (!zpci_iomap_start) |
| goto error_iomap; |
| |
| zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), |
| sizeof(*zpci_iomap_bitmap), GFP_KERNEL); |
| if (!zpci_iomap_bitmap) |
| goto error_iomap_bitmap; |
| |
| if (static_branch_likely(&have_mio)) |
| clp_setup_writeback_mio(); |
| |
| return 0; |
| error_iomap_bitmap: |
| kfree(zpci_iomap_start); |
| error_iomap: |
| kmem_cache_destroy(zdev_fmb_cache); |
| error_fmb: |
| return -ENOMEM; |
| } |
| |
| static void zpci_mem_exit(void) |
| { |
| kfree(zpci_iomap_bitmap); |
| kfree(zpci_iomap_start); |
| kmem_cache_destroy(zdev_fmb_cache); |
| } |
| |
| static unsigned int s390_pci_probe __initdata = 1; |
| unsigned int s390_pci_force_floating __initdata; |
| static unsigned int s390_pci_initialized; |
| |
| char * __init pcibios_setup(char *str) |
| { |
| if (!strcmp(str, "off")) { |
| s390_pci_probe = 0; |
| return NULL; |
| } |
| if (!strcmp(str, "nomio")) { |
| S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO; |
| return NULL; |
| } |
| if (!strcmp(str, "force_floating")) { |
| s390_pci_force_floating = 1; |
| return NULL; |
| } |
| if (!strcmp(str, "norid")) { |
| s390_pci_no_rid = 1; |
| return NULL; |
| } |
| return str; |
| } |
| |
| bool zpci_is_enabled(void) |
| { |
| return s390_pci_initialized; |
| } |
| |
| static int __init pci_base_init(void) |
| { |
| int rc; |
| |
| if (!s390_pci_probe) |
| return 0; |
| |
| if (!test_facility(69) || !test_facility(71)) { |
| pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); |
| return 0; |
| } |
| |
| if (MACHINE_HAS_PCI_MIO) { |
| static_branch_enable(&have_mio); |
| ctl_set_bit(2, 5); |
| } |
| |
| rc = zpci_debug_init(); |
| if (rc) |
| goto out; |
| |
| rc = zpci_mem_init(); |
| if (rc) |
| goto out_mem; |
| |
| rc = zpci_irq_init(); |
| if (rc) |
| goto out_irq; |
| |
| rc = zpci_dma_init(); |
| if (rc) |
| goto out_dma; |
| |
| rc = clp_scan_pci_devices(); |
| if (rc) |
| goto out_find; |
| zpci_bus_scan_busses(); |
| |
| s390_pci_initialized = 1; |
| return 0; |
| |
| out_find: |
| zpci_dma_exit(); |
| out_dma: |
| zpci_irq_exit(); |
| out_irq: |
| zpci_mem_exit(); |
| out_mem: |
| zpci_debug_exit(); |
| out: |
| return rc; |
| } |
| subsys_initcall_sync(pci_base_init); |