blob: 16db965ac995e9e5aeefdb9bc4b68dc13d570e81 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2015-2018 Linaro Limited.
*
* Author: Tor Jeremiassen <tor@ti.com>
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
*/
#include <linux/bitops.h>
#include <linux/coresight-pmu.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>
#include <linux/zalloc.h>
#include <opencsd/ocsd_if_types.h>
#include <stdlib.h>
#include "auxtrace.h"
#include "color.h"
#include "cs-etm.h"
#include "cs-etm-decoder/cs-etm-decoder.h"
#include "debug.h"
#include "dso.h"
#include "evlist.h"
#include "intlist.h"
#include "machine.h"
#include "map.h"
#include "perf.h"
#include "session.h"
#include "map_symbol.h"
#include "branch.h"
#include "symbol.h"
#include "tool.h"
#include "thread.h"
#include "thread-stack.h"
#include <tools/libc_compat.h>
#include "util/synthetic-events.h"
struct cs_etm_auxtrace {
struct auxtrace auxtrace;
struct auxtrace_queues queues;
struct auxtrace_heap heap;
struct itrace_synth_opts synth_opts;
struct perf_session *session;
struct machine *machine;
struct thread *unknown_thread;
u8 timeless_decoding;
u8 snapshot_mode;
u8 data_queued;
int num_cpu;
u64 latest_kernel_timestamp;
u32 auxtrace_type;
u64 branches_sample_type;
u64 branches_id;
u64 instructions_sample_type;
u64 instructions_sample_period;
u64 instructions_id;
u64 **metadata;
unsigned int pmu_type;
};
struct cs_etm_traceid_queue {
u8 trace_chan_id;
pid_t pid, tid;
u64 period_instructions;
size_t last_branch_pos;
union perf_event *event_buf;
struct thread *thread;
struct branch_stack *last_branch;
struct branch_stack *last_branch_rb;
struct cs_etm_packet *prev_packet;
struct cs_etm_packet *packet;
struct cs_etm_packet_queue packet_queue;
};
struct cs_etm_queue {
struct cs_etm_auxtrace *etm;
struct cs_etm_decoder *decoder;
struct auxtrace_buffer *buffer;
unsigned int queue_nr;
u8 pending_timestamp_chan_id;
u64 offset;
const unsigned char *buf;
size_t buf_len, buf_used;
/* Conversion between traceID and index in traceid_queues array */
struct intlist *traceid_queues_list;
struct cs_etm_traceid_queue **traceid_queues;
};
/* RB tree for quick conversion between traceID and metadata pointers */
static struct intlist *traceid_list;
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
pid_t tid);
static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
/* PTMs ETMIDR [11:8] set to b0011 */
#define ETMIDR_PTM_VERSION 0x00000300
/*
* A struct auxtrace_heap_item only has a queue_nr and a timestamp to
* work with. One option is to modify to auxtrace_heap_XYZ() API or simply
* encode the etm queue number as the upper 16 bit and the channel as
* the lower 16 bit.
*/
#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
(queue_nr << 16 | trace_chan_id)
#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
{
etmidr &= ETMIDR_PTM_VERSION;
if (etmidr == ETMIDR_PTM_VERSION)
return CS_ETM_PROTO_PTM;
return CS_ETM_PROTO_ETMV3;
}
static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
{
struct int_node *inode;
u64 *metadata;
inode = intlist__find(traceid_list, trace_chan_id);
if (!inode)
return -EINVAL;
metadata = inode->priv;
*magic = metadata[CS_ETM_MAGIC];
return 0;
}
int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
{
struct int_node *inode;
u64 *metadata;
inode = intlist__find(traceid_list, trace_chan_id);
if (!inode)
return -EINVAL;
metadata = inode->priv;
*cpu = (int)metadata[CS_ETM_CPU];
return 0;
}
/*
* The returned PID format is presented by two bits:
*
* Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
* Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
*
* It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
* are enabled at the same time when the session runs on an EL2 kernel.
* This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
* recorded in the trace data, the tool will selectively use
* CONTEXTIDR_EL2 as PID.
*/
int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
{
struct int_node *inode;
u64 *metadata, val;
inode = intlist__find(traceid_list, trace_chan_id);
if (!inode)
return -EINVAL;
metadata = inode->priv;
if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
val = metadata[CS_ETM_ETMCR];
/* CONTEXTIDR is traced */
if (val & BIT(ETM_OPT_CTXTID))
*pid_fmt = BIT(ETM_OPT_CTXTID);
} else {
val = metadata[CS_ETMV4_TRCCONFIGR];
/* CONTEXTIDR_EL2 is traced */
if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
*pid_fmt = BIT(ETM_OPT_CTXTID2);
/* CONTEXTIDR_EL1 is traced */
else if (val & BIT(ETM4_CFG_BIT_CTXTID))
*pid_fmt = BIT(ETM_OPT_CTXTID);
}
return 0;
}
void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
u8 trace_chan_id)
{
/*
* When a timestamp packet is encountered the backend code
* is stopped so that the front end has time to process packets
* that were accumulated in the traceID queue. Since there can
* be more than one channel per cs_etm_queue, we need to specify
* what traceID queue needs servicing.
*/
etmq->pending_timestamp_chan_id = trace_chan_id;
}
static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
u8 *trace_chan_id)
{
struct cs_etm_packet_queue *packet_queue;
if (!etmq->pending_timestamp_chan_id)
return 0;
if (trace_chan_id)
*trace_chan_id = etmq->pending_timestamp_chan_id;
packet_queue = cs_etm__etmq_get_packet_queue(etmq,
etmq->pending_timestamp_chan_id);
if (!packet_queue)
return 0;
/* Acknowledge pending status */
etmq->pending_timestamp_chan_id = 0;
/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
return packet_queue->cs_timestamp;
}
static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
{
int i;
queue->head = 0;
queue->tail = 0;
queue->packet_count = 0;
for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
queue->packet_buffer[i].instr_count = 0;
queue->packet_buffer[i].last_instr_taken_branch = false;
queue->packet_buffer[i].last_instr_size = 0;
queue->packet_buffer[i].last_instr_type = 0;
queue->packet_buffer[i].last_instr_subtype = 0;
queue->packet_buffer[i].last_instr_cond = 0;
queue->packet_buffer[i].flags = 0;
queue->packet_buffer[i].exception_number = UINT32_MAX;
queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
queue->packet_buffer[i].cpu = INT_MIN;
}
}
static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
{
int idx;
struct int_node *inode;
struct cs_etm_traceid_queue *tidq;
struct intlist *traceid_queues_list = etmq->traceid_queues_list;
intlist__for_each_entry(inode, traceid_queues_list) {
idx = (int)(intptr_t)inode->priv;
tidq = etmq->traceid_queues[idx];
cs_etm__clear_packet_queue(&tidq->packet_queue);
}
}
static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq,
u8 trace_chan_id)
{
int rc = -ENOMEM;
struct auxtrace_queue *queue;
struct cs_etm_auxtrace *etm = etmq->etm;
cs_etm__clear_packet_queue(&tidq->packet_queue);
queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
tidq->tid = queue->tid;
tidq->pid = -1;
tidq->trace_chan_id = trace_chan_id;
tidq->packet = zalloc(sizeof(struct cs_etm_packet));
if (!tidq->packet)
goto out;
tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
if (!tidq->prev_packet)
goto out_free;
if (etm->synth_opts.last_branch) {
size_t sz = sizeof(struct branch_stack);
sz += etm->synth_opts.last_branch_sz *
sizeof(struct branch_entry);
tidq->last_branch = zalloc(sz);
if (!tidq->last_branch)
goto out_free;
tidq->last_branch_rb = zalloc(sz);
if (!tidq->last_branch_rb)
goto out_free;
}
tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
if (!tidq->event_buf)
goto out_free;
return 0;
out_free:
zfree(&tidq->last_branch_rb);
zfree(&tidq->last_branch);
zfree(&tidq->prev_packet);
zfree(&tidq->packet);
out:
return rc;
}
static struct cs_etm_traceid_queue
*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
{
int idx;
struct int_node *inode;
struct intlist *traceid_queues_list;
struct cs_etm_traceid_queue *tidq, **traceid_queues;
struct cs_etm_auxtrace *etm = etmq->etm;
if (etm->timeless_decoding)
trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
traceid_queues_list = etmq->traceid_queues_list;
/*
* Check if the traceid_queue exist for this traceID by looking
* in the queue list.
*/
inode = intlist__find(traceid_queues_list, trace_chan_id);
if (inode) {
idx = (int)(intptr_t)inode->priv;
return etmq->traceid_queues[idx];
}
/* We couldn't find a traceid_queue for this traceID, allocate one */
tidq = malloc(sizeof(*tidq));
if (!tidq)
return NULL;
memset(tidq, 0, sizeof(*tidq));
/* Get a valid index for the new traceid_queue */
idx = intlist__nr_entries(traceid_queues_list);
/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
inode = intlist__findnew(traceid_queues_list, trace_chan_id);
if (!inode)
goto out_free;
/* Associate this traceID with this index */
inode->priv = (void *)(intptr_t)idx;
if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
goto out_free;
/* Grow the traceid_queues array by one unit */
traceid_queues = etmq->traceid_queues;
traceid_queues = reallocarray(traceid_queues,
idx + 1,
sizeof(*traceid_queues));
/*
* On failure reallocarray() returns NULL and the original block of
* memory is left untouched.
*/
if (!traceid_queues)
goto out_free;
traceid_queues[idx] = tidq;
etmq->traceid_queues = traceid_queues;
return etmq->traceid_queues[idx];
out_free:
/*
* Function intlist__remove() removes the inode from the list
* and delete the memory associated to it.
*/
intlist__remove(traceid_queues_list, inode);
free(tidq);
return NULL;
}
struct cs_etm_packet_queue
*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
{
struct cs_etm_traceid_queue *tidq;
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
if (tidq)
return &tidq->packet_queue;
return NULL;
}
static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
struct cs_etm_traceid_queue *tidq)
{
struct cs_etm_packet *tmp;
if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
etm->synth_opts.instructions) {
/*
* Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
* the next incoming packet.
*/
tmp = tidq->packet;
tidq->packet = tidq->prev_packet;
tidq->prev_packet = tmp;
}
}
static void cs_etm__packet_dump(const char *pkt_string)
{
const char *color = PERF_COLOR_BLUE;
int len = strlen(pkt_string);
if (len && (pkt_string[len-1] == '\n'))
color_fprintf(stdout, color, " %s", pkt_string);
else
color_fprintf(stdout, color, " %s\n", pkt_string);
fflush(stdout);
}
static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
struct cs_etm_auxtrace *etm, int idx,
u32 etmidr)
{
u64 **metadata = etm->metadata;
t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
}
static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
struct cs_etm_auxtrace *etm, int idx)
{
u64 **metadata = etm->metadata;
t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
}
static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
struct cs_etm_auxtrace *etm, int idx)
{
u64 **metadata = etm->metadata;
t_params[idx].protocol = CS_ETM_PROTO_ETE;
t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
}
static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
struct cs_etm_auxtrace *etm,
int decoders)
{
int i;
u32 etmidr;
u64 architecture;
for (i = 0; i < decoders; i++) {
architecture = etm->metadata[i][CS_ETM_MAGIC];
switch (architecture) {
case __perf_cs_etmv3_magic:
etmidr = etm->metadata[i][CS_ETM_ETMIDR];
cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
break;
case __perf_cs_etmv4_magic:
cs_etm__set_trace_param_etmv4(t_params, etm, i);
break;
case __perf_cs_ete_magic:
cs_etm__set_trace_param_ete(t_params, etm, i);
break;
default:
return -EINVAL;
}
}
return 0;
}
static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
struct cs_etm_queue *etmq,
enum cs_etm_decoder_operation mode,
bool formatted)
{
int ret = -EINVAL;
if (!(mode < CS_ETM_OPERATION_MAX))
goto out;
d_params->packet_printer = cs_etm__packet_dump;
d_params->operation = mode;
d_params->data = etmq;
d_params->formatted = formatted;
d_params->fsyncs = false;
d_params->hsyncs = false;
d_params->frame_aligned = true;
ret = 0;
out:
return ret;
}
static void cs_etm__dump_event(struct cs_etm_queue *etmq,
struct auxtrace_buffer *buffer)
{
int ret;
const char *color = PERF_COLOR_BLUE;
size_t buffer_used = 0;
fprintf(stdout, "\n");
color_fprintf(stdout, color,
". ... CoreSight %s Trace data: size %#zx bytes\n",
cs_etm_decoder__get_name(etmq->decoder), buffer->size);
do {
size_t consumed;
ret = cs_etm_decoder__process_data_block(
etmq->decoder, buffer->offset,
&((u8 *)buffer->data)[buffer_used],
buffer->size - buffer_used, &consumed);
if (ret)
break;
buffer_used += consumed;
} while (buffer_used < buffer->size);
cs_etm_decoder__reset(etmq->decoder);
}
static int cs_etm__flush_events(struct perf_session *session,
struct perf_tool *tool)
{
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
if (dump_trace)
return 0;
if (!tool->ordered_events)
return -EINVAL;
if (etm->timeless_decoding)
return cs_etm__process_timeless_queues(etm, -1);
return cs_etm__process_queues(etm);
}
static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
{
int idx;
uintptr_t priv;
struct int_node *inode, *tmp;
struct cs_etm_traceid_queue *tidq;
struct intlist *traceid_queues_list = etmq->traceid_queues_list;
intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
priv = (uintptr_t)inode->priv;
idx = priv;
/* Free this traceid_queue from the array */
tidq = etmq->traceid_queues[idx];
thread__zput(tidq->thread);
zfree(&tidq->event_buf);
zfree(&tidq->last_branch);
zfree(&tidq->last_branch_rb);
zfree(&tidq->prev_packet);
zfree(&tidq->packet);
zfree(&tidq);
/*
* Function intlist__remove() removes the inode from the list
* and delete the memory associated to it.
*/
intlist__remove(traceid_queues_list, inode);
}
/* Then the RB tree itself */
intlist__delete(traceid_queues_list);
etmq->traceid_queues_list = NULL;
/* finally free the traceid_queues array */
zfree(&etmq->traceid_queues);
}
static void cs_etm__free_queue(void *priv)
{
struct cs_etm_queue *etmq = priv;
if (!etmq)
return;
cs_etm_decoder__free(etmq->decoder);
cs_etm__free_traceid_queues(etmq);
free(etmq);
}
static void cs_etm__free_events(struct perf_session *session)
{
unsigned int i;
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
struct auxtrace_queues *queues = &aux->queues;
for (i = 0; i < queues->nr_queues; i++) {
cs_etm__free_queue(queues->queue_array[i].priv);
queues->queue_array[i].priv = NULL;
}
auxtrace_queues__free(queues);
}
static void cs_etm__free(struct perf_session *session)
{
int i;
struct int_node *inode, *tmp;
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
cs_etm__free_events(session);
session->auxtrace = NULL;
/* First remove all traceID/metadata nodes for the RB tree */
intlist__for_each_entry_safe(inode, tmp, traceid_list)
intlist__remove(traceid_list, inode);
/* Then the RB tree itself */
intlist__delete(traceid_list);
for (i = 0; i < aux->num_cpu; i++)
zfree(&aux->metadata[i]);
thread__zput(aux->unknown_thread);
zfree(&aux->metadata);
zfree(&aux);
}
static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
struct evsel *evsel)
{
struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
return evsel->core.attr.type == aux->pmu_type;
}
static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
{
struct machine *machine;
machine = etmq->etm->machine;
if (address >= machine__kernel_start(machine)) {
if (machine__is_host(machine))
return PERF_RECORD_MISC_KERNEL;
else
return PERF_RECORD_MISC_GUEST_KERNEL;
} else {
if (machine__is_host(machine))
return PERF_RECORD_MISC_USER;
else if (perf_guest)
return PERF_RECORD_MISC_GUEST_USER;
else
return PERF_RECORD_MISC_HYPERVISOR;
}
}
static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
u64 address, size_t size, u8 *buffer)
{
u8 cpumode;
u64 offset;
int len;
struct thread *thread;
struct machine *machine;
struct addr_location al;
struct cs_etm_traceid_queue *tidq;
if (!etmq)
return 0;
machine = etmq->etm->machine;
cpumode = cs_etm__cpu_mode(etmq, address);
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
if (!tidq)
return 0;
thread = tidq->thread;
if (!thread) {
if (cpumode != PERF_RECORD_MISC_KERNEL)
return 0;
thread = etmq->etm->unknown_thread;
}
if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
return 0;
if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
return 0;
offset = al.map->map_ip(al.map, address);
map__load(al.map);
len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
if (len <= 0) {
ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
" Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
if (!al.map->dso->auxtrace_warned) {
pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
address,
al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
al.map->dso->auxtrace_warned = true;
}
return 0;
}
return len;
}
static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
bool formatted)
{
struct cs_etm_decoder_params d_params;
struct cs_etm_trace_params *t_params = NULL;
struct cs_etm_queue *etmq;
/*
* Each queue can only contain data from one CPU when unformatted, so only one decoder is
* needed.
*/
int decoders = formatted ? etm->num_cpu : 1;
etmq = zalloc(sizeof(*etmq));
if (!etmq)
return NULL;
etmq->traceid_queues_list = intlist__new(NULL);
if (!etmq->traceid_queues_list)
goto out_free;
/* Use metadata to fill in trace parameters for trace decoder */
t_params = zalloc(sizeof(*t_params) * decoders);
if (!t_params)
goto out_free;
if (cs_etm__init_trace_params(t_params, etm, decoders))
goto out_free;
/* Set decoder parameters to decode trace packets */
if (cs_etm__init_decoder_params(&d_params, etmq,
dump_trace ? CS_ETM_OPERATION_PRINT :
CS_ETM_OPERATION_DECODE,
formatted))
goto out_free;
etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
t_params);
if (!etmq->decoder)
goto out_free;
/*
* Register a function to handle all memory accesses required by
* the trace decoder library.
*/
if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
0x0L, ((u64) -1L),
cs_etm__mem_access))
goto out_free_decoder;
zfree(&t_params);
return etmq;
out_free_decoder:
cs_etm_decoder__free(etmq->decoder);
out_free:
intlist__delete(etmq->traceid_queues_list);
free(etmq);
return NULL;
}
static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
struct auxtrace_queue *queue,
unsigned int queue_nr,
bool formatted)
{
struct cs_etm_queue *etmq = queue->priv;
if (list_empty(&queue->head) || etmq)
return 0;
etmq = cs_etm__alloc_queue(etm, formatted);
if (!etmq)
return -ENOMEM;
queue->priv = etmq;
etmq->etm = etm;
etmq->queue_nr = queue_nr;
etmq->offset = 0;
return 0;
}
static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
struct cs_etm_queue *etmq,
unsigned int queue_nr)
{
int ret = 0;
unsigned int cs_queue_nr;
u8 trace_chan_id;
u64 cs_timestamp;
/*
* We are under a CPU-wide trace scenario. As such we need to know
* when the code that generated the traces started to execute so that
* it can be correlated with execution on other CPUs. So we get a
* handle on the beginning of traces and decode until we find a
* timestamp. The timestamp is then added to the auxtrace min heap
* in order to know what nibble (of all the etmqs) to decode first.
*/
while (1) {
/*
* Fetch an aux_buffer from this etmq. Bail if no more
* blocks or an error has been encountered.
*/
ret = cs_etm__get_data_block(etmq);
if (ret <= 0)
goto out;
/*
* Run decoder on the trace block. The decoder will stop when
* encountering a CS timestamp, a full packet queue or the end of
* trace for that block.
*/
ret = cs_etm__decode_data_block(etmq);
if (ret)
goto out;
/*
* Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
* the timestamp calculation for us.
*/
cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
/* We found a timestamp, no need to continue. */
if (cs_timestamp)
break;
/*
* We didn't find a timestamp so empty all the traceid packet
* queues before looking for another timestamp packet, either
* in the current data block or a new one. Packets that were
* just decoded are useless since no timestamp has been
* associated with them. As such simply discard them.
*/
cs_etm__clear_all_packet_queues(etmq);
}
/*
* We have a timestamp. Add it to the min heap to reflect when
* instructions conveyed by the range packets of this traceID queue
* started to execute. Once the same has been done for all the traceID
* queues of each etmq, redenring and decoding can start in
* chronological order.
*
* Note that packets decoded above are still in the traceID's packet
* queue and will be processed in cs_etm__process_queues().
*/
cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
out:
return ret;
}
static inline
void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
struct branch_stack *bs_src = tidq->last_branch_rb;
struct branch_stack *bs_dst = tidq->last_branch;
size_t nr = 0;
/*
* Set the number of records before early exit: ->nr is used to
* determine how many branches to copy from ->entries.
*/
bs_dst->nr = bs_src->nr;
/*
* Early exit when there is nothing to copy.
*/
if (!bs_src->nr)
return;
/*
* As bs_src->entries is a circular buffer, we need to copy from it in
* two steps. First, copy the branches from the most recently inserted
* branch ->last_branch_pos until the end of bs_src->entries buffer.
*/
nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
memcpy(&bs_dst->entries[0],
&bs_src->entries[tidq->last_branch_pos],
sizeof(struct branch_entry) * nr);
/*
* If we wrapped around at least once, the branches from the beginning
* of the bs_src->entries buffer and until the ->last_branch_pos element
* are older valid branches: copy them over. The total number of
* branches copied over will be equal to the number of branches asked by
* the user in last_branch_sz.
*/
if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
memcpy(&bs_dst->entries[nr],
&bs_src->entries[0],
sizeof(struct branch_entry) * tidq->last_branch_pos);
}
}
static inline
void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
{
tidq->last_branch_pos = 0;
tidq->last_branch_rb->nr = 0;
}
static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
u8 trace_chan_id, u64 addr)
{
u8 instrBytes[2];
cs_etm__mem_access(etmq, trace_chan_id, addr,
ARRAY_SIZE(instrBytes), instrBytes);
/*
* T32 instruction size is indicated by bits[15:11] of the first
* 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
* denote a 32-bit instruction.
*/
return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
}
static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
{
/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
if (packet->sample_type == CS_ETM_DISCONTINUITY)
return 0;
return packet->start_addr;
}
static inline
u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
{
/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
if (packet->sample_type == CS_ETM_DISCONTINUITY)
return 0;
return packet->end_addr - packet->last_instr_size;
}
static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
u64 trace_chan_id,
const struct cs_etm_packet *packet,
u64 offset)
{
if (packet->isa == CS_ETM_ISA_T32) {
u64 addr = packet->start_addr;
while (offset) {
addr += cs_etm__t32_instr_size(etmq,
trace_chan_id, addr);
offset--;
}
return addr;
}
/* Assume a 4 byte instruction size (A32/A64) */
return packet->start_addr + offset * 4;
}
static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
struct branch_stack *bs = tidq->last_branch_rb;
struct branch_entry *be;
/*
* The branches are recorded in a circular buffer in reverse
* chronological order: we start recording from the last element of the
* buffer down. After writing the first element of the stack, move the
* insert position back to the end of the buffer.
*/
if (!tidq->last_branch_pos)
tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
tidq->last_branch_pos -= 1;
be = &bs->entries[tidq->last_branch_pos];
be->from = cs_etm__last_executed_instr(tidq->prev_packet);
be->to = cs_etm__first_executed_instr(tidq->packet);
/* No support for mispredict */
be->flags.mispred = 0;
be->flags.predicted = 1;
/*
* Increment bs->nr until reaching the number of last branches asked by
* the user on the command line.
*/
if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
bs->nr += 1;
}
static int cs_etm__inject_event(union perf_event *event,
struct perf_sample *sample, u64 type)
{
event->header.size = perf_event__sample_event_size(sample, type, 0);
return perf_event__synthesize_sample(event, type, 0, sample);
}
static int
cs_etm__get_trace(struct cs_etm_queue *etmq)
{
struct auxtrace_buffer *aux_buffer = etmq->buffer;
struct auxtrace_buffer *old_buffer = aux_buffer;
struct auxtrace_queue *queue;
queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
/* If no more data, drop the previous auxtrace_buffer and return */
if (!aux_buffer) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
etmq->buf_len = 0;
return 0;
}
etmq->buffer = aux_buffer;
/* If the aux_buffer doesn't have data associated, try to load it */
if (!aux_buffer->data) {
/* get the file desc associated with the perf data file */
int fd = perf_data__fd(etmq->etm->session->data);
aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
if (!aux_buffer->data)
return -ENOMEM;
}
/* If valid, drop the previous buffer */
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
etmq->buf_used = 0;
etmq->buf_len = aux_buffer->size;
etmq->buf = aux_buffer->data;
return etmq->buf_len;
}
static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
struct cs_etm_traceid_queue *tidq)
{
if ((!tidq->thread) && (tidq->tid != -1))
tidq->thread = machine__find_thread(etm->machine, -1,
tidq->tid);
if (tidq->thread)
tidq->pid = tidq->thread->pid_;
}
int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
pid_t tid, u8 trace_chan_id)
{
int cpu, err = -EINVAL;
struct cs_etm_auxtrace *etm = etmq->etm;
struct cs_etm_traceid_queue *tidq;
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
if (!tidq)
return err;
if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
return err;
err = machine__set_current_tid(etm->machine, cpu, tid, tid);
if (err)
return err;
tidq->tid = tid;
thread__zput(tidq->thread);
cs_etm__set_pid_tid_cpu(etm, tidq);
return 0;
}
bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
{
return !!etmq->etm->timeless_decoding;
}
static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
u64 trace_chan_id,
const struct cs_etm_packet *packet,
struct perf_sample *sample)
{
/*
* It's pointless to read instructions for the CS_ETM_DISCONTINUITY
* packet, so directly bail out with 'insn_len' = 0.
*/
if (packet->sample_type == CS_ETM_DISCONTINUITY) {
sample->insn_len = 0;
return;
}
/*
* T32 instruction size might be 32-bit or 16-bit, decide by calling
* cs_etm__t32_instr_size().
*/
if (packet->isa == CS_ETM_ISA_T32)
sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
sample->ip);
/* Otherwise, A64 and A32 instruction size are always 32-bit. */
else
sample->insn_len = 4;
cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
sample->insn_len, (void *)sample->insn);
}
static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq,
u64 addr, u64 period)
{
int ret = 0;
struct cs_etm_auxtrace *etm = etmq->etm;
union perf_event *event = tidq->event_buf;
struct perf_sample sample = {.ip = 0,};
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
event->sample.header.size = sizeof(struct perf_event_header);
if (!etm->timeless_decoding)
sample.time = etm->latest_kernel_timestamp;
sample.ip = addr;
sample.pid = tidq->pid;
sample.tid = tidq->tid;
sample.id = etmq->etm->instructions_id;
sample.stream_id = etmq->etm->instructions_id;
sample.period = period;
sample.cpu = tidq->packet->cpu;
sample.flags = tidq->prev_packet->flags;
sample.cpumode = event->sample.header.misc;
cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
if (etm->synth_opts.last_branch)
sample.branch_stack = tidq->last_branch;
if (etm->synth_opts.inject) {
ret = cs_etm__inject_event(event, &sample,
etm->instructions_sample_type);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(etm->session, event, &sample);
if (ret)
pr_err(
"CS ETM Trace: failed to deliver instruction event, error %d\n",
ret);
return ret;
}
/*
* The cs etm packet encodes an instruction range between a branch target
* and the next taken branch. Generate sample accordingly.
*/
static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
int ret = 0;
struct cs_etm_auxtrace *etm = etmq->etm;
struct perf_sample sample = {.ip = 0,};
union perf_event *event = tidq->event_buf;
struct dummy_branch_stack {
u64 nr;
u64 hw_idx;
struct branch_entry entries;
} dummy_bs;
u64 ip;
ip = cs_etm__last_executed_instr(tidq->prev_packet);
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
event->sample.header.size = sizeof(struct perf_event_header);
if (!etm->timeless_decoding)
sample.time = etm->latest_kernel_timestamp;
sample.ip = ip;
sample.pid = tidq->pid;
sample.tid = tidq->tid;
sample.addr = cs_etm__first_executed_instr(tidq->packet);
sample.id = etmq->etm->branches_id;
sample.stream_id = etmq->etm->branches_id;
sample.period = 1;
sample.cpu = tidq->packet->cpu;
sample.flags = tidq->prev_packet->flags;
sample.cpumode = event->sample.header.misc;
cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
&sample);
/*
* perf report cannot handle events without a branch stack
*/
if (etm->synth_opts.last_branch) {
dummy_bs = (struct dummy_branch_stack){
.nr = 1,
.hw_idx = -1ULL,
.entries = {
.from = sample.ip,
.to = sample.addr,
},
};
sample.branch_stack = (struct branch_stack *)&dummy_bs;
}
if (etm->synth_opts.inject) {
ret = cs_etm__inject_event(event, &sample,
etm->branches_sample_type);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(etm->session, event, &sample);
if (ret)
pr_err(
"CS ETM Trace: failed to deliver instruction event, error %d\n",
ret);
return ret;
}
struct cs_etm_synth {
struct perf_tool dummy_tool;
struct perf_session *session;
};
static int cs_etm__event_synth(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct cs_etm_synth *cs_etm_synth =
container_of(tool, struct cs_etm_synth, dummy_tool);
return perf_session__deliver_synth_event(cs_etm_synth->session,
event, NULL);
}
static int cs_etm__synth_event(struct perf_session *session,
struct perf_event_attr *attr, u64 id)
{
struct cs_etm_synth cs_etm_synth;
memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
cs_etm_synth.session = session;
return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
&id, cs_etm__event_synth);
}
static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
struct perf_session *session)
{
struct evlist *evlist = session->evlist;
struct evsel *evsel;
struct perf_event_attr attr;
bool found = false;
u64 id;
int err;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type == etm->pmu_type) {
found = true;
break;
}
}
if (!found) {
pr_debug("No selected events with CoreSight Trace data\n");
return 0;
}
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.size = sizeof(struct perf_event_attr);
attr.type = PERF_TYPE_HARDWARE;
attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
PERF_SAMPLE_PERIOD;
if (etm->timeless_decoding)
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
else
attr.sample_type |= PERF_SAMPLE_TIME;
attr.exclude_user = evsel->core.attr.exclude_user;
attr.exclude_kernel = evsel->core.attr.exclude_kernel;
attr.exclude_hv = evsel->core.attr.exclude_hv;
attr.exclude_host = evsel->core.attr.exclude_host;
attr.exclude_guest = evsel->core.attr.exclude_guest;
attr.sample_id_all = evsel->core.attr.sample_id_all;
attr.read_format = evsel->core.attr.read_format;
/* create new id val to be a fixed offset from evsel id */
id = evsel->core.id[0] + 1000000000;
if (!id)
id = 1;
if (etm->synth_opts.branches) {
attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
attr.sample_period = 1;
attr.sample_type |= PERF_SAMPLE_ADDR;
err = cs_etm__synth_event(session, &attr, id);
if (err)
return err;
etm->branches_sample_type = attr.sample_type;
etm->branches_id = id;
id += 1;
attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
}
if (etm->synth_opts.last_branch) {
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
/*
* We don't use the hardware index, but the sample generation
* code uses the new format branch_stack with this field,
* so the event attributes must indicate that it's present.
*/
attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
}
if (etm->synth_opts.instructions) {
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
attr.sample_period = etm->synth_opts.period;
etm->instructions_sample_period = attr.sample_period;
err = cs_etm__synth_event(session, &attr, id);
if (err)
return err;
etm->instructions_sample_type = attr.sample_type;
etm->instructions_id = id;
id += 1;
}
return 0;
}
static int cs_etm__sample(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
struct cs_etm_auxtrace *etm = etmq->etm;
int ret;
u8 trace_chan_id = tidq->trace_chan_id;
u64 instrs_prev;
/* Get instructions remainder from previous packet */
instrs_prev = tidq->period_instructions;
tidq->period_instructions += tidq->packet->instr_count;
/*
* Record a branch when the last instruction in
* PREV_PACKET is a branch.
*/
if (etm->synth_opts.last_branch &&
tidq->prev_packet->sample_type == CS_ETM_RANGE &&
tidq->prev_packet->last_instr_taken_branch)
cs_etm__update_last_branch_rb(etmq, tidq);
if (etm->synth_opts.instructions &&
tidq->period_instructions >= etm->instructions_sample_period) {
/*
* Emit instruction sample periodically
* TODO: allow period to be defined in cycles and clock time
*/
/*
* Below diagram demonstrates the instruction samples
* generation flows:
*
* Instrs Instrs Instrs Instrs
* Sample(n) Sample(n+1) Sample(n+2) Sample(n+3)
* | | | |
* V V V V
* --------------------------------------------------
* ^ ^
* | |
* Period Period
* instructions(Pi) instructions(Pi')
*
* | |
* \---------------- -----------------/
* V
* tidq->packet->instr_count
*
* Instrs Sample(n...) are the synthesised samples occurring
* every etm->instructions_sample_period instructions - as
* defined on the perf command line. Sample(n) is being the
* last sample before the current etm packet, n+1 to n+3
* samples are generated from the current etm packet.
*
* tidq->packet->instr_count represents the number of
* instructions in the current etm packet.
*
* Period instructions (Pi) contains the number of
* instructions executed after the sample point(n) from the
* previous etm packet. This will always be less than
* etm->instructions_sample_period.
*
* When generate new samples, it combines with two parts
* instructions, one is the tail of the old packet and another
* is the head of the new coming packet, to generate
* sample(n+1); sample(n+2) and sample(n+3) consume the
* instructions with sample period. After sample(n+3), the rest
* instructions will be used by later packet and it is assigned
* to tidq->period_instructions for next round calculation.
*/
/*
* Get the initial offset into the current packet instructions;
* entry conditions ensure that instrs_prev is less than
* etm->instructions_sample_period.
*/
u64 offset = etm->instructions_sample_period - instrs_prev;
u64 addr;
/* Prepare last branches for instruction sample */
if (etm->synth_opts.last_branch)
cs_etm__copy_last_branch_rb(etmq, tidq);
while (tidq->period_instructions >=
etm->instructions_sample_period) {
/*
* Calculate the address of the sampled instruction (-1
* as sample is reported as though instruction has just
* been executed, but PC has not advanced to next
* instruction)
*/
addr = cs_etm__instr_addr(etmq, trace_chan_id,
tidq->packet, offset - 1);
ret = cs_etm__synth_instruction_sample(
etmq, tidq, addr,
etm->instructions_sample_period);
if (ret)
return ret;
offset += etm->instructions_sample_period;
tidq->period_instructions -=
etm->instructions_sample_period;
}
}
if (etm->synth_opts.branches) {
bool generate_sample = false;
/* Generate sample for tracing on packet */
if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
generate_sample = true;
/* Generate sample for branch taken packet */
if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
tidq->prev_packet->last_instr_taken_branch)
generate_sample = true;
if (generate_sample) {
ret = cs_etm__synth_branch_sample(etmq, tidq);
if (ret)
return ret;
}
}
cs_etm__packet_swap(etm, tidq);
return 0;
}
static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
{
/*
* When the exception packet is inserted, whether the last instruction
* in previous range packet is taken branch or not, we need to force
* to set 'prev_packet->last_instr_taken_branch' to true. This ensures
* to generate branch sample for the instruction range before the
* exception is trapped to kernel or before the exception returning.
*
* The exception packet includes the dummy address values, so don't
* swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
* for generating instruction and branch samples.
*/
if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
tidq->prev_packet->last_instr_taken_branch = true;
return 0;
}
static int cs_etm__flush(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
int err = 0;
struct cs_etm_auxtrace *etm = etmq->etm;
/* Handle start tracing packet */
if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
goto swap_packet;
if (etmq->etm->synth_opts.last_branch &&
etmq->etm->synth_opts.instructions &&
tidq->prev_packet->sample_type == CS_ETM_RANGE) {
u64 addr;
/* Prepare last branches for instruction sample */
cs_etm__copy_last_branch_rb(etmq, tidq);
/*
* Generate a last branch event for the branches left in the
* circular buffer at the end of the trace.
*
* Use the address of the end of the last reported execution
* range
*/
addr = cs_etm__last_executed_instr(tidq->prev_packet);
err = cs_etm__synth_instruction_sample(
etmq, tidq, addr,
tidq->period_instructions);
if (err)
return err;
tidq->period_instructions = 0;
}
if (etm->synth_opts.branches &&
tidq->prev_packet->sample_type == CS_ETM_RANGE) {
err = cs_etm__synth_branch_sample(etmq, tidq);
if (err)
return err;
}
swap_packet:
cs_etm__packet_swap(etm, tidq);
/* Reset last branches after flush the trace */
if (etm->synth_opts.last_branch)
cs_etm__reset_last_branch_rb(tidq);
return err;
}
static int cs_etm__end_block(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
int err;
/*
* It has no new packet coming and 'etmq->packet' contains the stale
* packet which was set at the previous time with packets swapping;
* so skip to generate branch sample to avoid stale packet.
*
* For this case only flush branch stack and generate a last branch
* event for the branches left in the circular buffer at the end of
* the trace.
*/
if (etmq->etm->synth_opts.last_branch &&
etmq->etm->synth_opts.instructions &&
tidq->prev_packet->sample_type == CS_ETM_RANGE) {
u64 addr;
/* Prepare last branches for instruction sample */
cs_etm__copy_last_branch_rb(etmq, tidq);
/*
* Use the address of the end of the last reported execution
* range.
*/
addr = cs_etm__last_executed_instr(tidq->prev_packet);
err = cs_etm__synth_instruction_sample(
etmq, tidq, addr,
tidq->period_instructions);
if (err)
return err;
tidq->period_instructions = 0;
}
return 0;
}
/*
* cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
* if need be.
* Returns: < 0 if error
* = 0 if no more auxtrace_buffer to read
* > 0 if the current buffer isn't empty yet
*/
static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
{
int ret;
if (!etmq->buf_len) {
ret = cs_etm__get_trace(etmq);
if (ret <= 0)
return ret;
/*
* We cannot assume consecutive blocks in the data file
* are contiguous, reset the decoder to force re-sync.
*/
ret = cs_etm_decoder__reset(etmq->decoder);
if (ret)
return ret;
}
return etmq->buf_len;
}
static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
struct cs_etm_packet *packet,
u64 end_addr)
{
/* Initialise to keep compiler happy */
u16 instr16 = 0;
u32 instr32 = 0;
u64 addr;
switch (packet->isa) {
case CS_ETM_ISA_T32:
/*
* The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
*
* b'15 b'8
* +-----------------+--------+
* | 1 1 0 1 1 1 1 1 | imm8 |
* +-----------------+--------+
*
* According to the specification, it only defines SVC for T32
* with 16 bits instruction and has no definition for 32bits;
* so below only read 2 bytes as instruction size for T32.
*/
addr = end_addr - 2;
cs_etm__mem_access(etmq, trace_chan_id, addr,
sizeof(instr16), (u8 *)&instr16);
if ((instr16 & 0xFF00) == 0xDF00)
return true;
break;
case CS_ETM_ISA_A32:
/*
* The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
*
* b'31 b'28 b'27 b'24
* +---------+---------+-------------------------+
* | !1111 | 1 1 1 1 | imm24 |
* +---------+---------+-------------------------+
*/
addr = end_addr - 4;
cs_etm__mem_access(etmq, trace_chan_id, addr,
sizeof(instr32), (u8 *)&instr32);
if ((instr32 & 0x0F000000) == 0x0F000000 &&
(instr32 & 0xF0000000) != 0xF0000000)
return true;
break;
case CS_ETM_ISA_A64:
/*
* The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
*
* b'31 b'21 b'4 b'0
* +-----------------------+---------+-----------+
* | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
* +-----------------------+---------+-----------+
*/
addr = end_addr - 4;
cs_etm__mem_access(etmq, trace_chan_id, addr,
sizeof(instr32), (u8 *)&instr32);
if ((instr32 & 0xFFE0001F) == 0xd4000001)
return true;
break;
case CS_ETM_ISA_UNKNOWN:
default:
break;
}
return false;
}
static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq, u64 magic)
{
u8 trace_chan_id = tidq->trace_chan_id;
struct cs_etm_packet *packet = tidq->packet;
struct cs_etm_packet *prev_packet = tidq->prev_packet;
if (magic == __perf_cs_etmv3_magic)
if (packet->exception_number == CS_ETMV3_EXC_SVC)
return true;
/*
* ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
* HVC cases; need to check if it's SVC instruction based on
* packet address.
*/
if (magic == __perf_cs_etmv4_magic) {
if (packet->exception_number == CS_ETMV4_EXC_CALL &&
cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
prev_packet->end_addr))
return true;
}
return false;
}
static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
u64 magic)
{
struct cs_etm_packet *packet = tidq->packet;
if (magic == __perf_cs_etmv3_magic)
if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
packet->exception_number == CS_ETMV3_EXC_IRQ ||
packet->exception_number == CS_ETMV3_EXC_FIQ)
return true;
if (magic == __perf_cs_etmv4_magic)
if (packet->exception_number == CS_ETMV4_EXC_RESET ||
packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
packet->exception_number == CS_ETMV4_EXC_IRQ ||
packet->exception_number == CS_ETMV4_EXC_FIQ)
return true;
return false;
}
static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq,
u64 magic)
{
u8 trace_chan_id = tidq->trace_chan_id;
struct cs_etm_packet *packet = tidq->packet;
struct cs_etm_packet *prev_packet = tidq->prev_packet;
if (magic == __perf_cs_etmv3_magic)
if (packet->exception_number == CS_ETMV3_EXC_SMC ||
packet->exception_number == CS_ETMV3_EXC_HYP ||
packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
packet->exception_number == CS_ETMV3_EXC_GENERIC)
return true;
if (magic == __perf_cs_etmv4_magic) {
if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
return true;
/*
* For CS_ETMV4_EXC_CALL, except SVC other instructions
* (SMC, HVC) are taken as sync exceptions.
*/
if (packet->exception_number == CS_ETMV4_EXC_CALL &&
!cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
prev_packet->end_addr))
return true;
/*
* ETMv4 has 5 bits for exception number; if the numbers
* are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
* they are implementation defined exceptions.
*
* For this case, simply take it as sync exception.
*/
if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
packet->exception_number <= CS_ETMV4_EXC_END)
return true;
}
return false;
}
static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
struct cs_etm_packet *packet = tidq->packet;
struct cs_etm_packet *prev_packet = tidq->prev_packet;
u8 trace_chan_id = tidq->trace_chan_id;
u64 magic;
int ret;
switch (packet->sample_type) {
case CS_ETM_RANGE:
/*
* Immediate branch instruction without neither link nor
* return flag, it's normal branch instruction within
* the function.
*/
if (packet->last_instr_type == OCSD_INSTR_BR &&
packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
packet->flags = PERF_IP_FLAG_BRANCH;
if (packet->last_instr_cond)
packet->flags |= PERF_IP_FLAG_CONDITIONAL;
}
/*
* Immediate branch instruction with link (e.g. BL), this is
* branch instruction for function call.
*/
if (packet->last_instr_type == OCSD_INSTR_BR &&
packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_CALL;
/*
* Indirect branch instruction with link (e.g. BLR), this is
* branch instruction for function call.
*/
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_CALL;
/*
* Indirect branch instruction with subtype of
* OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
* function return for A32/T32.
*/
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_RETURN;
/*
* Indirect branch instruction without link (e.g. BR), usually
* this is used for function return, especially for functions
* within dynamic link lib.
*/
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
packet->last_instr_subtype == OCSD_S_INSTR_NONE)
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_RETURN;
/* Return instruction for function return. */
if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_RETURN;
/*
* Decoder might insert a discontinuity in the middle of
* instruction packets, fixup prev_packet with flag
* PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
*/
if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
prev_packet->flags |= PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_BEGIN;
/*
* If the previous packet is an exception return packet
* and the return address just follows SVC instruction,
* it needs to calibrate the previous packet sample flags
* as PERF_IP_FLAG_SYSCALLRET.
*/
if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_RETURN |
PERF_IP_FLAG_INTERRUPT) &&
cs_etm__is_svc_instr(etmq, trace_chan_id,
packet, packet->start_addr))
prev_packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_RETURN |
PERF_IP_FLAG_SYSCALLRET;
break;
case CS_ETM_DISCONTINUITY:
/*
* The trace is discontinuous, if the previous packet is
* instruction packet, set flag PERF_IP_FLAG_TRACE_END
* for previous packet.
*/
if (prev_packet->sample_type == CS_ETM_RANGE)
prev_packet->flags |= PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_END;
break;
case CS_ETM_EXCEPTION:
ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
if (ret)
return ret;
/* The exception is for system call. */
if (cs_etm__is_syscall(etmq, tidq, magic))
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_CALL |
PERF_IP_FLAG_SYSCALLRET;
/*
* The exceptions are triggered by external signals from bus,
* interrupt controller, debug module, PE reset or halt.
*/
else if (cs_etm__is_async_exception(tidq, magic))
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_CALL |
PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT;
/*
* Otherwise, exception is caused by trap, instruction &
* data fault, or alignment errors.
*/
else if (cs_etm__is_sync_exception(etmq, tidq, magic))
packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_CALL |
PERF_IP_FLAG_INTERRUPT;
/*
* When the exception packet is inserted, since exception
* packet is not used standalone for generating samples
* and it's affiliation to the previous instruction range
* packet; so set previous range packet flags to tell perf
* it is an exception taken branch.
*/
if (prev_packet->sample_type == CS_ETM_RANGE)
prev_packet->flags = packet->flags;
break;
case CS_ETM_EXCEPTION_RET:
/*
* When the exception return packet is inserted, since
* exception return packet is not used standalone for
* generating samples and it's affiliation to the previous
* instruction range packet; so set previous range packet
* flags to tell perf it is an exception return branch.
*
* The exception return can be for either system call or
* other exception types; unfortunately the packet doesn't
* contain exception type related info so we cannot decide
* the exception type purely based on exception return packet.
* If we record the exception number from exception packet and
* reuse it for exception return packet, this is not reliable
* due the trace can be discontinuity or the interrupt can
* be nested, thus the recorded exception number cannot be
* used for exception return packet for these two cases.
*
* For exception return packet, we only need to distinguish the
* packet is for system call or for other types. Thus the
* decision can be deferred when receive the next packet which
* contains the return address, based on the return address we
* can read out the previous instruction and check if it's a
* system call instruction and then calibrate the sample flag
* as needed.
*/
if (prev_packet->sample_type == CS_ETM_RANGE)
prev_packet->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_RETURN |
PERF_IP_FLAG_INTERRUPT;
break;
case CS_ETM_EMPTY:
default:
break;
}
return 0;
}
static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
{
int ret = 0;
size_t processed = 0;
/*
* Packets are decoded and added to the decoder's packet queue
* until the decoder packet processing callback has requested that
* processing stops or there is nothing left in the buffer. Normal
* operations that stop processing are a timestamp packet or a full
* decoder buffer queue.
*/
ret = cs_etm_decoder__process_data_block(etmq->decoder,
etmq->offset,
&etmq->buf[etmq->buf_used],
etmq->buf_len,
&processed);
if (ret)
goto out;
etmq->offset += processed;
etmq->buf_used += processed;
etmq->buf_len -= processed;
out:
return ret;
}
static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
struct cs_etm_traceid_queue *tidq)
{
int ret;
struct cs_etm_packet_queue *packet_queue;
packet_queue = &tidq->packet_queue;
/* Process each packet in this chunk */
while (1) {
ret = cs_etm_decoder__get_packet(packet_queue,
tidq->packet);
if (ret <= 0)
/*
* Stop processing this chunk on
* end of data or error
*/
break;
/*
* Since packet addresses are swapped in packet
* handling within below switch() statements,
* thus setting sample flags must be called
* prior to switch() statement to use address
* information before packets swapping.
*/
ret = cs_etm__set_sample_flags(etmq, tidq);
if (ret < 0)
break;
switch (tidq->packet->sample_type) {
case CS_ETM_RANGE:
/*
* If the packet contains an instruction
* range, generate instruction sequence
* events.
*/
cs_etm__sample(etmq, tidq);
break;
case CS_ETM_EXCEPTION:
case CS_ETM_EXCEPTION_RET:
/*
* If the exception packet is coming,
* make sure the previous instruction
* range packet to be handled properly.
*/
cs_etm__exception(tidq);
break;
case CS_ETM_DISCONTINUITY:
/*
* Discontinuity in trace, flush
* previous branch stack
*/
cs_etm__flush(etmq, tidq);
break;
case CS_ETM_EMPTY:
/*
* Should not receive empty packet,
* report error.
*/
pr_err("CS ETM Trace: empty packet\n");
return -EINVAL;
default:
break;
}
}
return ret;
}
static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
{
int idx;
struct int_node *inode;
struct cs_etm_traceid_queue *tidq;
struct intlist *traceid_queues_list = etmq->traceid_queues_list;
intlist__for_each_entry(inode, traceid_queues_list) {
idx = (int)(intptr_t)inode->priv;
tidq = etmq->traceid_queues[idx];
/* Ignore return value */
cs_etm__process_traceid_queue(etmq, tidq);
/*
* Generate an instruction sample with the remaining
* branchstack entries.
*/
cs_etm__flush(etmq, tidq);
}
}
static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
{
int err = 0;
struct cs_etm_traceid_queue *tidq;
tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
if (!tidq)
return -EINVAL;
/* Go through each buffer in the queue and decode them one by one */
while (1) {
err = cs_etm__get_data_block(etmq);
if (err <= 0)
return err;
/* Run trace decoder until buffer consumed or end of trace */
do {
err = cs_etm__decode_data_block(etmq);
if (err)
return err;
/*
* Process each packet in this chunk, nothing to do if
* an error occurs other than hoping the next one will
* be better.
*/
err = cs_etm__process_traceid_queue(etmq, tidq);
} while (etmq->buf_len);
if (err == 0)
/* Flush any remaining branch stack entries */
err = cs_etm__end_block(etmq, tidq);
}
return err;
}
static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
pid_t tid)
{
unsigned int i;
struct auxtrace_queues *queues = &etm->queues;
for (i = 0; i < queues->nr_queues; i++) {
struct auxtrace_queue *queue = &etm->queues.queue_array[i];
struct cs_etm_queue *etmq = queue->priv;
struct cs_etm_traceid_queue *tidq;
if (!etmq)
continue;
tidq = cs_etm__etmq_get_traceid_queue(etmq,
CS_ETM_PER_THREAD_TRACEID);
if (!tidq)
continue;
if ((tid == -1) || (tidq->tid == tid)) {
cs_etm__set_pid_tid_cpu(etm, tidq);
cs_etm__run_decoder(etmq);
}
}
return 0;
}
static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
{
int ret = 0;
unsigned int cs_queue_nr, queue_nr, i;
u8 trace_chan_id;
u64 cs_timestamp;
struct auxtrace_queue *queue;
struct cs_etm_queue *etmq;
struct cs_etm_traceid_queue *tidq;
/*
* Pre-populate the heap with one entry from each queue so that we can
* start processing in time order across all queues.
*/
for (i = 0; i < etm->queues.nr_queues; i++) {
etmq = etm->queues.queue_array[i].priv;
if (!etmq)
continue;
ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
if (ret)
return ret;
}
while (1) {
if (!etm->heap.heap_cnt)
goto out;
/* Take the entry at the top of the min heap */
cs_queue_nr = etm->heap.heap_array[0].queue_nr;
queue_nr = TO_QUEUE_NR(cs_queue_nr);
trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
queue = &etm->queues.queue_array[queue_nr];
etmq = queue->priv;
/*
* Remove the top entry from the heap since we are about
* to process it.
*/
auxtrace_heap__pop(&etm->heap);
tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
if (!tidq) {
/*
* No traceID queue has been allocated for this traceID,
* which means something somewhere went very wrong. No
* other choice than simply exit.
*/
ret = -EINVAL;
goto out;
}
/*
* Packets associated with this timestamp are already in
* the etmq's traceID queue, so process them.
*/
ret = cs_etm__process_traceid_queue(etmq, tidq);
if (ret < 0)
goto out;
/*
* Packets for this timestamp have been processed, time to
* move on to the next timestamp, fetching a new auxtrace_buffer
* if need be.
*/
refetch:
ret = cs_etm__get_data_block(etmq);
if (ret < 0)
goto out;
/*
* No more auxtrace_buffers to process in this etmq, simply
* move on to another entry in the auxtrace_heap.
*/
if (!ret)
continue;
ret = cs_etm__decode_data_block(etmq);
if (ret)
goto out;
cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
if (!cs_timestamp) {
/*
* Function cs_etm__decode_data_block() returns when
* there is no more traces to decode in the current
* auxtrace_buffer OR when a timestamp has been
* encountered on any of the traceID queues. Since we
* did not get a timestamp, there is no more traces to
* process in this auxtrace_buffer. As such empty and
* flush all traceID queues.
*/
cs_etm__clear_all_traceid_queues(etmq);
/* Fetch another auxtrace_buffer for this etmq */
goto refetch;
}
/*
* Add to the min heap the timestamp for packets that have
* just been decoded. They will be processed and synthesized
* during the next call to cs_etm__process_traceid_queue() for
* this queue/traceID.
*/
cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
}
out:
return ret;
}
static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
union perf_event *event)
{
struct thread *th;
if (etm->timeless_decoding)
return 0;
/*
* Add the tid/pid to the log so that we can get a match when
* we get a contextID from the decoder.
*/
th = machine__findnew_thread(etm->machine,
event->itrace_start.pid,
event->itrace_start.tid);
if (!th)
return -ENOMEM;
thread__put(th);
return 0;
}
static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
union perf_event *event)
{
struct thread *th;
bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
/*
* Context switch in per-thread mode are irrelevant since perf
* will start/stop tracing as the process is scheduled.
*/
if (etm->timeless_decoding)
return 0;
/*
* SWITCH_IN events carry the next process to be switched out while
* SWITCH_OUT events carry the process to be switched in. As such
* we don't care about IN events.
*/
if (!out)
return 0;
/*
* Add the tid/pid to the log so that we can get a match when
* we get a contextID from the decoder.
*/
th = machine__findnew_thread(etm->machine,
event->context_switch.next_prev_pid,
event->context_switch.next_prev_tid);
if (!th)
return -ENOMEM;
thread__put(th);
return 0;
}
static int cs_etm__process_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool)
{
u64 sample_kernel_timestamp;
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
if (dump_trace)
return 0;
if (!tool->ordered_events) {
pr_err("CoreSight ETM Trace requires ordered events\n");
return -EINVAL;
}
if (sample->time && (sample->time != (u64) -1))
sample_kernel_timestamp = sample->time;
else
sample_kernel_timestamp = 0;
/*
* Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
* need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
* ETM_OPT_CTXTID is not enabled.
*/
if (etm->timeless_decoding &&
event->header.type == PERF_RECORD_EXIT)
return cs_etm__process_timeless_queues(etm,
event->fork.tid);
if (event->header.type == PERF_RECORD_ITRACE_START)
return cs_etm__process_itrace_start(etm, event);
else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
return cs_etm__process_switch_cpu_wide(etm, event);
if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
/*
* Record the latest kernel timestamp available in the header
* for samples so that synthesised samples occur from this point
* onwards.
*/
etm->latest_kernel_timestamp = sample_kernel_timestamp;
}
return 0;
}
static void dump_queued_data(struct cs_etm_auxtrace *etm,
struct perf_record_auxtrace *event)
{
struct auxtrace_buffer *buf;
unsigned int i;
/*
* Find all buffers with same reference in the queues and dump them.
* This is because the queues can contain multiple entries of the same
* buffer that were split on aux records.
*/
for (i = 0; i < etm->queues.nr_queues; ++i)
list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
if (buf->reference == event->reference)
cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
}
static int cs_etm__process_auxtrace_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool __maybe_unused)
{
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
if (!etm->data_queued) {
struct auxtrace_buffer *buffer;
off_t data_offset;
int fd = perf_data__fd(session->data);
bool is_pipe = perf_data__is_pipe(session->data);
int err;
int idx = event->auxtrace.idx;
if (is_pipe)
data_offset = 0;
else {
data_offset = lseek(fd, 0, SEEK_CUR);
if (data_offset == -1)
return -errno;
}
err = auxtrace_queues__add_event(&etm->queues, session,
event, data_offset, &buffer);
if (err)
return err;
/*
* Knowing if the trace is formatted or not requires a lookup of
* the aux record so only works in non-piped mode where data is
* queued in cs_etm__queue_aux_records(). Always assume
* formatted in piped mode (true).
*/
err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
idx, true);
if (err)
return err;
if (dump_trace)
if (auxtrace_buffer__get_data(buffer, fd)) {
cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
auxtrace_buffer__put_data(buffer);
}
} else if (dump_trace)
dump_queued_data(etm, &event->auxtrace);
return 0;
}
static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
{
struct evsel *evsel;
struct evlist *evlist = etm->session->evlist;
bool timeless_decoding = true;
/* Override timeless mode with user input from --itrace=Z */
if (etm->synth_opts.timeless_decoding)
return true;
/*
* Circle through the list of event and complain if we find one
* with the time bit set.
*/
evlist__for_each_entry(evlist, evsel) {
if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
timeless_decoding = false;
}
return timeless_decoding;
}
static const char * const cs_etm_global_header_fmts[] = {
[CS_HEADER_VERSION] = " Header version %llx\n",
[CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
[CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
};
static const char * const cs_etm_priv_fmts[] = {
[CS_ETM_MAGIC] = " Magic number %llx\n",
[CS_ETM_CPU] = " CPU %lld\n",
[CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n",
[CS_ETM_ETMCR] = " ETMCR %llx\n",
[CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
[CS_ETM_ETMCCER] = " ETMCCER %llx\n",
[CS_ETM_ETMIDR] = " ETMIDR %llx\n",
};
static const char * const cs_etmv4_priv_fmts[] = {
[CS_ETM_MAGIC] = " Magic number %llx\n",
[CS_ETM_CPU] = " CPU %lld\n",
[CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n",
[CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
[CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
[CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
[CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
[CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
[CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
[CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
[CS_ETE_TRCDEVARCH] = " TRCDEVARCH %llx\n"
};
static const char * const param_unk_fmt =
" Unknown parameter [%d] %llx\n";
static const char * const magic_unk_fmt =
" Magic number Unknown %llx\n";
static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
{
int i = *offset, j, nr_params = 0, fmt_offset;
__u64 magic;
/* check magic value */
magic = val[i + CS_ETM_MAGIC];
if ((magic != __perf_cs_etmv3_magic) &&
(magic != __perf_cs_etmv4_magic)) {
/* failure - note bad magic value */
fprintf(stdout, magic_unk_fmt, magic);
return -EINVAL;
}
/* print common header block */
fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
if (magic == __perf_cs_etmv3_magic) {
nr_params = CS_ETM_NR_TRC_PARAMS_V0;
fmt_offset = CS_ETM_ETMCR;
/* after common block, offset format index past NR_PARAMS */
for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
} else if (magic == __perf_cs_etmv4_magic) {
nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
fmt_offset = CS_ETMV4_TRCCONFIGR;
/* after common block, offset format index past NR_PARAMS */
for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
}
*offset = i;
return 0;
}
static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
{
int i = *offset, j, total_params = 0;
__u64 magic;
magic = val[i + CS_ETM_MAGIC];
/* total params to print is NR_PARAMS + common block size for v1 */
total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
if (magic == __perf_cs_etmv3_magic) {
for (j = 0; j < total_params; j++, i++) {
/* if newer record - could be excess params */
if (j >= CS_ETM_PRIV_MAX)
fprintf(stdout, param_unk_fmt, j, val[i]);
else
fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
}
} else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) {
/*
* ETE and ETMv4 can be printed in the same block because the number of parameters
* is saved and they share the list of parameter names. ETE is also only supported
* in V1 files.
*/
for (j = 0; j < total_params; j++, i++) {
/* if newer record - could be excess params */
if (j >= CS_ETE_PRIV_MAX)
fprintf(stdout, param_unk_fmt, j, val[i]);
else
fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
}
} else {
/* failure - note bad magic value and error out */
fprintf(stdout, magic_unk_fmt, magic);
return -EINVAL;
}
*offset = i;
return 0;
}
static void cs_etm__print_auxtrace_info(__u64 *val, int num)
{
int i, cpu = 0, version, err;
/* bail out early on bad header version */
version = val[0];
if (version > CS_HEADER_CURRENT_VERSION) {
/* failure.. return */
fprintf(stdout, " Unknown Header Version = %x, ", version);
fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
return;
}
for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
if (version == 0)
err = cs_etm__print_cpu_metadata_v0(val, &i);
else if (version == 1)
err = cs_etm__print_cpu_metadata_v1(val, &i);
if (err)
return;
}
}
/*
* Read a single cpu parameter block from the auxtrace_info priv block.
*
* For version 1 there is a per cpu nr_params entry. If we are handling
* version 1 file, then there may be less, the same, or more params
* indicated by this value than the compile time number we understand.
*
* For a version 0 info block, there are a fixed number, and we need to
* fill out the nr_param value in the metadata we create.
*/
static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
int out_blk_size, int nr_params_v0)
{
u64 *metadata = NULL;
int hdr_version;
int nr_in_params, nr_out_params, nr_cmn_params;
int i, k;
metadata = zalloc(sizeof(*metadata) * out_blk_size);
if (!metadata)
return NULL;
/* read block current index & version */
i = *buff_in_offset;
hdr_version = buff_in[CS_HEADER_VERSION];
if (!hdr_version) {
/* read version 0 info block into a version 1 metadata block */
nr_in_params = nr_params_v0;
metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
/* remaining block params at offset +1 from source */
for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
metadata[k + 1] = buff_in[i + k];
/* version 0 has 2 common params */
nr_cmn_params = 2;
} else {
/* read version 1 info block - input and output nr_params may differ */
/* version 1 has 3 common params */
nr_cmn_params = 3;
nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
/* if input has more params than output - skip excess */
nr_out_params = nr_in_params + nr_cmn_params;
if (nr_out_params > out_blk_size)
nr_out_params = out_blk_size;
for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
metadata[k] = buff_in[i + k];
/* record the actual nr params we copied */
metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
}
/* adjust in offset by number of in params used */
i += nr_in_params + nr_cmn_params;
*buff_in_offset = i;
return metadata;
}
/**
* Puts a fragment of an auxtrace buffer into the auxtrace queues based
* on the bounds of aux_event, if it matches with the buffer that's at
* file_offset.
*
* Normally, whole auxtrace buffers would be added to the queue. But we
* want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
* is reset across each buffer, so splitting the buffers up in advance has
* the same effect.
*/
static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
struct perf_record_aux *aux_event, struct perf_sample *sample)
{
int err;
char buf[PERF_SAMPLE_MAX_SIZE];
union perf_event *auxtrace_event_union;
struct perf_record_auxtrace *auxtrace_event;
union perf_event auxtrace_fragment;
__u64 aux_offset, aux_size;
__u32 idx;
bool formatted;
struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
struct cs_etm_auxtrace,
auxtrace);
/*
* There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
* from looping through the auxtrace index.
*/
err = perf_session__peek_event(session, file_offset, buf,
PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
if (err)
return err;
auxtrace_event = &auxtrace_event_union->auxtrace;
if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
return -EINVAL;
if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
auxtrace_event->header.size != sz) {
return -EINVAL;
}
/*
* In per-thread mode, CPU is set to -1, but TID will be set instead. See
* auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
*/
if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
auxtrace_event->cpu != sample->cpu)
return 1;
if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
/*
* Clamp size in snapshot mode. The buffer size is clamped in
* __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
* the buffer size.
*/
aux_size = min(aux_event->aux_size, auxtrace_event->size);
/*
* In this mode, the head also points to the end of the buffer so aux_offset
* needs to have the size subtracted so it points to the beginning as in normal mode
*/
aux_offset = aux_event->aux_offset - aux_size;
} else {
aux_size = aux_event->aux_size;
aux_offset = aux_event->aux_offset;
}
if (aux_offset >= auxtrace_event->offset &&
aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
/*
* If this AUX event was inside this buffer somewhere, create a new auxtrace event
* based on the sizes of the aux event, and queue that fragment.
*/
auxtrace_fragment.auxtrace = *auxtrace_event;
auxtrace_fragment.auxtrace.size = aux_size;
auxtrace_fragment.auxtrace.offset = aux_offset;
file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
" tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
file_offset, NULL);
if (err)
return err;
idx = auxtrace_event->idx;
formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
idx, formatted);
}
/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
return 1;
}
static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
u64 offset __maybe_unused, void *data __maybe_unused)
{
struct perf_sample sample;
int ret;
struct auxtrace_index_entry *ent;
struct auxtrace_index *auxtrace_index;
struct evsel *evsel;
size_t i;
/* Don't care about any other events, we're only queuing buffers for AUX events */
if (event->header.type != PERF_RECORD_AUX)
return 0;
if (event->header.size < sizeof(struct perf_record_aux))
return -EINVAL;
/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
if (!event->aux.aux_size)
return 0;
/*
* Parse the sample, we need the sample_id_all data that comes after the event so that the
* CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
*/
evsel = evlist__event2evsel(session->evlist, event);
if (!evsel)
return -EINVAL;
ret = evsel__parse_sample(evsel, event, &sample);
if (ret)
return ret;
/*
* Loop through the auxtrace index to find the buffer that matches up with this aux event.
*/
list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
for (i = 0; i < auxtrace_index->nr; i++) {
ent = &auxtrace_index->entries[i];
ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
ent->sz, &event->aux, &sample);
/*
* Stop search on error or successful values. Continue search on
* 1 ('not found')
*/
if (ret != 1)
return ret;
}
}
/*
* Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
* don't exit with an error because it will still be possible to decode other aux records.
*/
pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
" tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
return 0;
}
static int cs_etm__queue_aux_records(struct perf_session *session)
{
struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
struct auxtrace_index, list);
if (index && index->nr > 0)
return perf_session__peek_events(session, session->header.data_offset,
session->header.data_size,
cs_etm__queue_aux_records_cb, NULL);
/*
* We would get here if there are no entries in the index (either no auxtrace
* buffers or no index at all). Fail silently as there is the possibility of
* queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
* false.
*
* In that scenario, buffers will not be split by AUX records.
*/
return 0;
}
int cs_etm__process_auxtrace_info(union perf_event *event,
struct perf_session *session)
{
struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
struct cs_etm_auxtrace *etm = NULL;
struct int_node *inode;
unsigned int pmu_type;
int event_header_size = sizeof(struct perf_event_header);
int info_header_size;
int total_size = auxtrace_info->header.size;
int priv_size = 0;
int num_cpu, trcidr_idx;
int err = 0;
int i, j;
u64 *ptr, *hdr = NULL;
u64 **metadata = NULL;
u64 hdr_version;
/*
* sizeof(auxtrace_info_event::type) +
* sizeof(auxtrace_info_event::reserved) == 8
*/
info_header_size = 8;
if (total_size < (event_header_size + info_header_size))
return -EINVAL;
priv_size = total_size - event_header_size - info_header_size;
/* First the global part */
ptr = (u64 *) auxtrace_info->priv;
/* Look for version of the header */
hdr_version = ptr[0];
if (hdr_version > CS_HEADER_CURRENT_VERSION) {
/* print routine will print an error on bad version */
if (dump_trace)
cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
return -EINVAL;
}
hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
if (!hdr)
return -ENOMEM;
/* Extract header information - see cs-etm.h for format */
for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
hdr[i] = ptr[i];
num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
0xffffffff);
/*
* Create an RB tree for traceID-metadata tuple. Since the conversion
* has to be made for each packet that gets decoded, optimizing access
* in anything other than a sequential array is worth doing.
*/
traceid_list = intlist__new(NULL);
if (!traceid_list) {
err = -ENOMEM;
goto err_free_hdr;
}
metadata = zalloc(sizeof(*metadata) * num_cpu);
if (!metadata) {
err = -ENOMEM;
goto err_free_traceid_list;
}
/*
* The metadata is stored in the auxtrace_info section and encodes
* the configuration of the ARM embedded trace macrocell which is
* required by the trace decoder to properly decode the trace due
* to its highly compressed nature.
*/
for (j = 0; j < num_cpu; j++) {
if (ptr[i] == __perf_cs_etmv3_magic) {
metadata[j] =
cs_etm__create_meta_blk(ptr, &i,
CS_ETM_PRIV_MAX,
CS_ETM_NR_TRC_PARAMS_V0);
/* The traceID is our handle */
trcidr_idx = CS_ETM_ETMTRACEIDR;
} else if (ptr[i] == __perf_cs_etmv4_magic) {
metadata[j] =
cs_etm__create_meta_blk(ptr, &i,
CS_ETMV4_PRIV_MAX,
CS_ETMV4_NR_TRC_PARAMS_V0);
/* The traceID is our handle */
trcidr_idx = CS_ETMV4_TRCTRACEIDR;
} else if (ptr[i] == __perf_cs_ete_magic) {
metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
/* ETE shares first part of metadata with ETMv4 */
trcidr_idx = CS_ETMV4_TRCTRACEIDR;
} else {
ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
ptr[i]);
err = -EINVAL;
goto err_free_metadata;
}
if (!metadata[j]) {
err = -ENOMEM;
goto err_free_metadata;
}
/* Get an RB node for this CPU */
inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
/* Something went wrong, no need to continue */
if (!inode) {
err = -ENOMEM;
goto err_free_metadata;
}
/*
* The node for that CPU should not be taken.
* Back out if that's the case.
*/
if (inode->priv) {
err = -EINVAL;
goto err_free_metadata;
}
/* All good, associate the traceID with the metadata pointer */
inode->priv = metadata[j];
}
/*
* Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
* CS_ETMV4_PRIV_MAX mark how many double words are in the
* global metadata, and each cpu's metadata respectively.
* The following tests if the correct number of double words was
* present in the auxtrace info section.
*/
if (i * 8 != priv_size) {
err = -EINVAL;
goto err_free_metadata;
}
etm = zalloc(sizeof(*etm));
if (!etm) {
err = -ENOMEM;
goto err_free_metadata;
}
err = auxtrace_queues__init(&etm->queues);
if (err)
goto err_free_etm;
if (session->itrace_synth_opts->set) {
etm->synth_opts = *session->itrace_synth_opts;
} else {
itrace_synth_opts__set_default(&etm->synth_opts,
session->itrace_synth_opts->default_no_sample);
etm->synth_opts.callchain = false;
}
etm->session = session;
etm->machine = &session->machines.host;
etm->num_cpu = num_cpu;
etm->pmu_type = pmu_type;
etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
etm->metadata = metadata;
etm->auxtrace_type = auxtrace_info->type;
etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
etm->auxtrace.process_event = cs_etm__process_event;
etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
etm->auxtrace.flush_events = cs_etm__flush_events;
etm->auxtrace.free_events = cs_etm__free_events;
etm->auxtrace.free = cs_etm__free;
etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
session->auxtrace = &etm->auxtrace;
etm->unknown_thread = thread__new(999999999, 999999999);
if (!etm->unknown_thread) {
err = -ENOMEM;
goto err_free_queues;
}
/*
* Initialize list node so that at thread__zput() we can avoid
* segmentation fault at list_del_init().
*/
INIT_LIST_HEAD(&etm->unknown_thread->node);
err = thread__set_comm(etm->unknown_thread, "unknown", 0);
if (err)
goto err_delete_thread;
if (thread__init_maps(etm->unknown_thread, etm->machine)) {
err = -ENOMEM;
goto err_delete_thread;
}
if (dump_trace) {
cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
}
err = cs_etm__synth_events(etm, session);
if (err)
goto err_delete_thread;
err = cs_etm__queue_aux_records(session);
if (err)
goto err_delete_thread;
etm->data_queued = etm->queues.populated;
/*
* Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
* cs_etm__queue_aux_fragment() for details relating to limitations.
*/
if (!etm->data_queued)
pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
"Continuing with best effort decoding in piped mode.\n\n");
return 0;
err_delete_thread:
thread__zput(etm->unknown_thread);
err_free_queues:
auxtrace_queues__free(&etm->queues);
session->auxtrace = NULL;
err_free_etm:
zfree(&etm);
err_free_metadata:
/* No need to check @metadata[j], free(NULL) is supported */
for (j = 0; j < num_cpu; j++)
zfree(&metadata[j]);
zfree(&metadata);
err_free_traceid_list:
intlist__delete(traceid_list);
err_free_hdr:
zfree(&hdr);
/*
* At this point, as a minimum we have valid header. Dump the rest of
* the info section - the print routines will error out on structural
* issues.
*/
if (dump_trace)
cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
return err;
}