| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2019 Intel Corporation |
| */ |
| |
| #include <linux/pm_runtime.h> |
| |
| #include "i915_drv.h" |
| #include "i915_vgpu.h" |
| #include "intel_gt.h" |
| #include "intel_gt_pm.h" |
| #include "intel_rc6.h" |
| #include "intel_sideband.h" |
| |
| /** |
| * DOC: RC6 |
| * |
| * RC6 is a special power stage which allows the GPU to enter an very |
| * low-voltage mode when idle, using down to 0V while at this stage. This |
| * stage is entered automatically when the GPU is idle when RC6 support is |
| * enabled, and as soon as new workload arises GPU wakes up automatically as |
| * well. |
| * |
| * There are different RC6 modes available in Intel GPU, which differentiate |
| * among each other with the latency required to enter and leave RC6 and |
| * voltage consumed by the GPU in different states. |
| * |
| * The combination of the following flags define which states GPU is allowed |
| * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and |
| * RC6pp is deepest RC6. Their support by hardware varies according to the |
| * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one |
| * which brings the most power savings; deeper states save more power, but |
| * require higher latency to switch to and wake up. |
| */ |
| |
| static struct intel_gt *rc6_to_gt(struct intel_rc6 *rc6) |
| { |
| return container_of(rc6, struct intel_gt, rc6); |
| } |
| |
| static struct intel_uncore *rc6_to_uncore(struct intel_rc6 *rc) |
| { |
| return rc6_to_gt(rc)->uncore; |
| } |
| |
| static struct drm_i915_private *rc6_to_i915(struct intel_rc6 *rc) |
| { |
| return rc6_to_gt(rc)->i915; |
| } |
| |
| static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) |
| { |
| intel_uncore_write_fw(uncore, reg, val); |
| } |
| |
| static void gen11_rc6_enable(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* 2b: Program RC6 thresholds.*/ |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); |
| set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); |
| |
| set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ |
| set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ |
| for_each_engine(engine, rc6_to_gt(rc6), id) |
| set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); |
| |
| set(uncore, GUC_MAX_IDLE_COUNT, 0xA); |
| |
| set(uncore, GEN6_RC_SLEEP, 0); |
| |
| set(uncore, GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */ |
| |
| /* |
| * 2c: Program Coarse Power Gating Policies. |
| * |
| * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we |
| * use instead is a more conservative estimate for the maximum time |
| * it takes us to service a CS interrupt and submit a new ELSP - that |
| * is the time which the GPU is idle waiting for the CPU to select the |
| * next request to execute. If the idle hysteresis is less than that |
| * interrupt service latency, the hardware will automatically gate |
| * the power well and we will then incur the wake up cost on top of |
| * the service latency. A similar guide from plane_state is that we |
| * do not want the enable hysteresis to less than the wakeup latency. |
| * |
| * igt/gem_exec_nop/sequential provides a rough estimate for the |
| * service latency, and puts it under 10us for Icelake, similar to |
| * Broadwell+, To be conservative, we want to factor in a context |
| * switch on top (due to ksoftirqd). |
| */ |
| set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 60); |
| set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 60); |
| |
| /* 3a: Enable RC6 */ |
| rc6->ctl_enable = |
| GEN6_RC_CTL_HW_ENABLE | |
| GEN6_RC_CTL_RC6_ENABLE | |
| GEN6_RC_CTL_EI_MODE(1); |
| |
| set(uncore, GEN9_PG_ENABLE, |
| GEN9_RENDER_PG_ENABLE | |
| GEN9_MEDIA_PG_ENABLE | |
| GEN11_MEDIA_SAMPLER_PG_ENABLE); |
| } |
| |
| static void gen9_rc6_enable(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* 2b: Program RC6 thresholds.*/ |
| if (INTEL_GEN(rc6_to_i915(rc6)) >= 10) { |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); |
| set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); |
| } else if (IS_SKYLAKE(rc6_to_i915(rc6))) { |
| /* |
| * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only |
| * when CPG is enabled |
| */ |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16); |
| } else { |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16); |
| } |
| |
| set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ |
| set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ |
| for_each_engine(engine, rc6_to_gt(rc6), id) |
| set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); |
| |
| set(uncore, GUC_MAX_IDLE_COUNT, 0xA); |
| |
| set(uncore, GEN6_RC_SLEEP, 0); |
| |
| /* |
| * 2c: Program Coarse Power Gating Policies. |
| * |
| * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we |
| * use instead is a more conservative estimate for the maximum time |
| * it takes us to service a CS interrupt and submit a new ELSP - that |
| * is the time which the GPU is idle waiting for the CPU to select the |
| * next request to execute. If the idle hysteresis is less than that |
| * interrupt service latency, the hardware will automatically gate |
| * the power well and we will then incur the wake up cost on top of |
| * the service latency. A similar guide from plane_state is that we |
| * do not want the enable hysteresis to less than the wakeup latency. |
| * |
| * igt/gem_exec_nop/sequential provides a rough estimate for the |
| * service latency, and puts it around 10us for Broadwell (and other |
| * big core) and around 40us for Broxton (and other low power cores). |
| * [Note that for legacy ringbuffer submission, this is less than 1us!] |
| * However, the wakeup latency on Broxton is closer to 100us. To be |
| * conservative, we have to factor in a context switch on top (due |
| * to ksoftirqd). |
| */ |
| set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250); |
| set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 250); |
| |
| /* 3a: Enable RC6 */ |
| set(uncore, GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */ |
| |
| |
| rc6->ctl_enable = |
| GEN6_RC_CTL_HW_ENABLE | |
| GEN6_RC_CTL_RC6_ENABLE | |
| GEN6_RC_CTL_EI_MODE(1); |
| |
| /* |
| * WaRsDisableCoarsePowerGating:skl,cnl |
| * - Render/Media PG need to be disabled with RC6. |
| */ |
| if (!NEEDS_WaRsDisableCoarsePowerGating(rc6_to_i915(rc6))) |
| set(uncore, GEN9_PG_ENABLE, |
| GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE); |
| } |
| |
| static void gen8_rc6_enable(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* 2b: Program RC6 thresholds.*/ |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); |
| set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ |
| set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ |
| for_each_engine(engine, rc6_to_gt(rc6), id) |
| set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); |
| set(uncore, GEN6_RC_SLEEP, 0); |
| set(uncore, GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */ |
| |
| /* 3: Enable RC6 */ |
| rc6->ctl_enable = |
| GEN6_RC_CTL_HW_ENABLE | |
| GEN7_RC_CTL_TO_MODE | |
| GEN6_RC_CTL_RC6_ENABLE; |
| } |
| |
| static void gen6_rc6_enable(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| u32 rc6vids, rc6_mask; |
| int ret; |
| |
| set(uncore, GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); |
| set(uncore, GEN6_RC6pp_WAKE_RATE_LIMIT, 30); |
| set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); |
| set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); |
| |
| for_each_engine(engine, rc6_to_gt(rc6), id) |
| set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); |
| |
| set(uncore, GEN6_RC_SLEEP, 0); |
| set(uncore, GEN6_RC1e_THRESHOLD, 1000); |
| set(uncore, GEN6_RC6_THRESHOLD, 50000); |
| set(uncore, GEN6_RC6p_THRESHOLD, 150000); |
| set(uncore, GEN6_RC6pp_THRESHOLD, 64000); /* unused */ |
| |
| /* We don't use those on Haswell */ |
| rc6_mask = GEN6_RC_CTL_RC6_ENABLE; |
| if (HAS_RC6p(i915)) |
| rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; |
| if (HAS_RC6pp(i915)) |
| rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; |
| rc6->ctl_enable = |
| rc6_mask | |
| GEN6_RC_CTL_EI_MODE(1) | |
| GEN6_RC_CTL_HW_ENABLE; |
| |
| rc6vids = 0; |
| ret = sandybridge_pcode_read(i915, GEN6_PCODE_READ_RC6VIDS, |
| &rc6vids, NULL); |
| if (IS_GEN(i915, 6) && ret) { |
| drm_dbg(&i915->drm, "Couldn't check for BIOS workaround\n"); |
| } else if (IS_GEN(i915, 6) && |
| (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { |
| drm_dbg(&i915->drm, |
| "You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", |
| GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); |
| rc6vids &= 0xffff00; |
| rc6vids |= GEN6_ENCODE_RC6_VID(450); |
| ret = sandybridge_pcode_write(i915, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); |
| if (ret) |
| drm_err(&i915->drm, |
| "Couldn't fix incorrect rc6 voltage\n"); |
| } |
| } |
| |
| /* Check that the pcbr address is not empty. */ |
| static int chv_rc6_init(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| resource_size_t pctx_paddr, paddr; |
| resource_size_t pctx_size = 32 * SZ_1K; |
| u32 pcbr; |
| |
| pcbr = intel_uncore_read(uncore, VLV_PCBR); |
| if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) { |
| drm_dbg(&i915->drm, "BIOS didn't set up PCBR, fixing up\n"); |
| paddr = i915->dsm.end + 1 - pctx_size; |
| GEM_BUG_ON(paddr > U32_MAX); |
| |
| pctx_paddr = (paddr & ~4095); |
| intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); |
| } |
| |
| return 0; |
| } |
| |
| static int vlv_rc6_init(struct intel_rc6 *rc6) |
| { |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct drm_i915_gem_object *pctx; |
| resource_size_t pctx_paddr; |
| resource_size_t pctx_size = 24 * SZ_1K; |
| u32 pcbr; |
| |
| pcbr = intel_uncore_read(uncore, VLV_PCBR); |
| if (pcbr) { |
| /* BIOS set it up already, grab the pre-alloc'd space */ |
| resource_size_t pcbr_offset; |
| |
| pcbr_offset = (pcbr & ~4095) - i915->dsm.start; |
| pctx = i915_gem_object_create_stolen_for_preallocated(i915, |
| pcbr_offset, |
| pctx_size); |
| if (IS_ERR(pctx)) |
| return PTR_ERR(pctx); |
| |
| goto out; |
| } |
| |
| drm_dbg(&i915->drm, "BIOS didn't set up PCBR, fixing up\n"); |
| |
| /* |
| * From the Gunit register HAS: |
| * The Gfx driver is expected to program this register and ensure |
| * proper allocation within Gfx stolen memory. For example, this |
| * register should be programmed such than the PCBR range does not |
| * overlap with other ranges, such as the frame buffer, protected |
| * memory, or any other relevant ranges. |
| */ |
| pctx = i915_gem_object_create_stolen(i915, pctx_size); |
| if (IS_ERR(pctx)) { |
| drm_dbg(&i915->drm, |
| "not enough stolen space for PCTX, disabling\n"); |
| return PTR_ERR(pctx); |
| } |
| |
| GEM_BUG_ON(range_overflows_end_t(u64, |
| i915->dsm.start, |
| pctx->stolen->start, |
| U32_MAX)); |
| pctx_paddr = i915->dsm.start + pctx->stolen->start; |
| intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); |
| |
| out: |
| rc6->pctx = pctx; |
| return 0; |
| } |
| |
| static void chv_rc6_enable(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* 2a: Program RC6 thresholds.*/ |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); |
| set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ |
| set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ |
| |
| for_each_engine(engine, rc6_to_gt(rc6), id) |
| set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); |
| set(uncore, GEN6_RC_SLEEP, 0); |
| |
| /* TO threshold set to 500 us (0x186 * 1.28 us) */ |
| set(uncore, GEN6_RC6_THRESHOLD, 0x186); |
| |
| /* Allows RC6 residency counter to work */ |
| set(uncore, VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | |
| VLV_MEDIA_RC6_COUNT_EN | |
| VLV_RENDER_RC6_COUNT_EN)); |
| |
| /* 3: Enable RC6 */ |
| rc6->ctl_enable = GEN7_RC_CTL_TO_MODE; |
| } |
| |
| static void vlv_rc6_enable(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000); |
| set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); |
| set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); |
| |
| for_each_engine(engine, rc6_to_gt(rc6), id) |
| set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); |
| |
| set(uncore, GEN6_RC6_THRESHOLD, 0x557); |
| |
| /* Allows RC6 residency counter to work */ |
| set(uncore, VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | |
| VLV_MEDIA_RC0_COUNT_EN | |
| VLV_RENDER_RC0_COUNT_EN | |
| VLV_MEDIA_RC6_COUNT_EN | |
| VLV_RENDER_RC6_COUNT_EN)); |
| |
| rc6->ctl_enable = |
| GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL; |
| } |
| |
| static bool bxt_check_bios_rc6_setup(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| u32 rc6_ctx_base, rc_ctl, rc_sw_target; |
| bool enable_rc6 = true; |
| |
| rc_ctl = intel_uncore_read(uncore, GEN6_RC_CONTROL); |
| rc_sw_target = intel_uncore_read(uncore, GEN6_RC_STATE); |
| rc_sw_target &= RC_SW_TARGET_STATE_MASK; |
| rc_sw_target >>= RC_SW_TARGET_STATE_SHIFT; |
| drm_dbg(&i915->drm, "BIOS enabled RC states: " |
| "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n", |
| onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE), |
| onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE), |
| rc_sw_target); |
| |
| if (!(intel_uncore_read(uncore, RC6_LOCATION) & RC6_CTX_IN_DRAM)) { |
| drm_dbg(&i915->drm, "RC6 Base location not set properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| /* |
| * The exact context size is not known for BXT, so assume a page size |
| * for this check. |
| */ |
| rc6_ctx_base = |
| intel_uncore_read(uncore, RC6_CTX_BASE) & RC6_CTX_BASE_MASK; |
| if (!(rc6_ctx_base >= i915->dsm_reserved.start && |
| rc6_ctx_base + PAGE_SIZE < i915->dsm_reserved.end)) { |
| drm_dbg(&i915->drm, "RC6 Base address not as expected.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!((intel_uncore_read(uncore, PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1 && |
| (intel_uncore_read(uncore, PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1 && |
| (intel_uncore_read(uncore, PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1 && |
| (intel_uncore_read(uncore, PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1)) { |
| drm_dbg(&i915->drm, |
| "Engine Idle wait time not set properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!intel_uncore_read(uncore, GEN8_PUSHBUS_CONTROL) || |
| !intel_uncore_read(uncore, GEN8_PUSHBUS_ENABLE) || |
| !intel_uncore_read(uncore, GEN8_PUSHBUS_SHIFT)) { |
| drm_dbg(&i915->drm, "Pushbus not setup properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!intel_uncore_read(uncore, GEN6_GFXPAUSE)) { |
| drm_dbg(&i915->drm, "GFX pause not setup properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!intel_uncore_read(uncore, GEN8_MISC_CTRL0)) { |
| drm_dbg(&i915->drm, "GPM control not setup properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| return enable_rc6; |
| } |
| |
| static bool rc6_supported(struct intel_rc6 *rc6) |
| { |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| |
| if (!HAS_RC6(i915)) |
| return false; |
| |
| if (intel_vgpu_active(i915)) |
| return false; |
| |
| if (is_mock_gt(rc6_to_gt(rc6))) |
| return false; |
| |
| if (IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(rc6)) { |
| drm_notice(&i915->drm, |
| "RC6 and powersaving disabled by BIOS\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void rpm_get(struct intel_rc6 *rc6) |
| { |
| GEM_BUG_ON(rc6->wakeref); |
| pm_runtime_get_sync(&rc6_to_i915(rc6)->drm.pdev->dev); |
| rc6->wakeref = true; |
| } |
| |
| static void rpm_put(struct intel_rc6 *rc6) |
| { |
| GEM_BUG_ON(!rc6->wakeref); |
| pm_runtime_put(&rc6_to_i915(rc6)->drm.pdev->dev); |
| rc6->wakeref = false; |
| } |
| |
| static bool pctx_corrupted(struct intel_rc6 *rc6) |
| { |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| |
| if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915)) |
| return false; |
| |
| if (intel_uncore_read(rc6_to_uncore(rc6), GEN8_RC6_CTX_INFO)) |
| return false; |
| |
| drm_notice(&i915->drm, |
| "RC6 context corruption, disabling runtime power management\n"); |
| return true; |
| } |
| |
| static void __intel_rc6_disable(struct intel_rc6 *rc6) |
| { |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| |
| intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); |
| if (INTEL_GEN(i915) >= 9) |
| set(uncore, GEN9_PG_ENABLE, 0); |
| set(uncore, GEN6_RC_CONTROL, 0); |
| set(uncore, GEN6_RC_STATE, 0); |
| intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); |
| } |
| |
| void intel_rc6_init(struct intel_rc6 *rc6) |
| { |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| int err; |
| |
| /* Disable runtime-pm until we can save the GPU state with rc6 pctx */ |
| rpm_get(rc6); |
| |
| if (!rc6_supported(rc6)) |
| return; |
| |
| if (IS_CHERRYVIEW(i915)) |
| err = chv_rc6_init(rc6); |
| else if (IS_VALLEYVIEW(i915)) |
| err = vlv_rc6_init(rc6); |
| else |
| err = 0; |
| |
| /* Sanitize rc6, ensure it is disabled before we are ready. */ |
| __intel_rc6_disable(rc6); |
| |
| rc6->supported = err == 0; |
| } |
| |
| void intel_rc6_sanitize(struct intel_rc6 *rc6) |
| { |
| memset(rc6->prev_hw_residency, 0, sizeof(rc6->prev_hw_residency)); |
| |
| if (rc6->enabled) { /* unbalanced suspend/resume */ |
| rpm_get(rc6); |
| rc6->enabled = false; |
| } |
| |
| if (rc6->supported) |
| __intel_rc6_disable(rc6); |
| } |
| |
| void intel_rc6_enable(struct intel_rc6 *rc6) |
| { |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| |
| if (!rc6->supported) |
| return; |
| |
| GEM_BUG_ON(rc6->enabled); |
| |
| intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); |
| |
| if (IS_CHERRYVIEW(i915)) |
| chv_rc6_enable(rc6); |
| else if (IS_VALLEYVIEW(i915)) |
| vlv_rc6_enable(rc6); |
| else if (INTEL_GEN(i915) >= 11) |
| gen11_rc6_enable(rc6); |
| else if (INTEL_GEN(i915) >= 9) |
| gen9_rc6_enable(rc6); |
| else if (IS_BROADWELL(i915)) |
| gen8_rc6_enable(rc6); |
| else if (INTEL_GEN(i915) >= 6) |
| gen6_rc6_enable(rc6); |
| |
| rc6->manual = rc6->ctl_enable & GEN6_RC_CTL_RC6_ENABLE; |
| if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) |
| rc6->ctl_enable = 0; |
| |
| intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); |
| |
| if (unlikely(pctx_corrupted(rc6))) |
| return; |
| |
| /* rc6 is ready, runtime-pm is go! */ |
| rpm_put(rc6); |
| rc6->enabled = true; |
| } |
| |
| void intel_rc6_unpark(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| |
| if (!rc6->enabled) |
| return; |
| |
| /* Restore HW timers for automatic RC6 entry while busy */ |
| set(uncore, GEN6_RC_CONTROL, rc6->ctl_enable); |
| } |
| |
| void intel_rc6_park(struct intel_rc6 *rc6) |
| { |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| unsigned int target; |
| |
| if (!rc6->enabled) |
| return; |
| |
| if (unlikely(pctx_corrupted(rc6))) { |
| intel_rc6_disable(rc6); |
| return; |
| } |
| |
| if (!rc6->manual) |
| return; |
| |
| /* Turn off the HW timers and go directly to rc6 */ |
| set(uncore, GEN6_RC_CONTROL, GEN6_RC_CTL_RC6_ENABLE); |
| |
| if (HAS_RC6pp(rc6_to_i915(rc6))) |
| target = 0x6; /* deepest rc6 */ |
| else if (HAS_RC6p(rc6_to_i915(rc6))) |
| target = 0x5; /* deep rc6 */ |
| else |
| target = 0x4; /* normal rc6 */ |
| set(uncore, GEN6_RC_STATE, target << RC_SW_TARGET_STATE_SHIFT); |
| } |
| |
| void intel_rc6_disable(struct intel_rc6 *rc6) |
| { |
| if (!rc6->enabled) |
| return; |
| |
| rpm_get(rc6); |
| rc6->enabled = false; |
| |
| __intel_rc6_disable(rc6); |
| } |
| |
| void intel_rc6_fini(struct intel_rc6 *rc6) |
| { |
| struct drm_i915_gem_object *pctx; |
| |
| intel_rc6_disable(rc6); |
| |
| pctx = fetch_and_zero(&rc6->pctx); |
| if (pctx) |
| i915_gem_object_put(pctx); |
| |
| if (rc6->wakeref) |
| rpm_put(rc6); |
| } |
| |
| static u64 vlv_residency_raw(struct intel_uncore *uncore, const i915_reg_t reg) |
| { |
| u32 lower, upper, tmp; |
| int loop = 2; |
| |
| /* |
| * The register accessed do not need forcewake. We borrow |
| * uncore lock to prevent concurrent access to range reg. |
| */ |
| lockdep_assert_held(&uncore->lock); |
| |
| /* |
| * vlv and chv residency counters are 40 bits in width. |
| * With a control bit, we can choose between upper or lower |
| * 32bit window into this counter. |
| * |
| * Although we always use the counter in high-range mode elsewhere, |
| * userspace may attempt to read the value before rc6 is initialised, |
| * before we have set the default VLV_COUNTER_CONTROL value. So always |
| * set the high bit to be safe. |
| */ |
| set(uncore, VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); |
| upper = intel_uncore_read_fw(uncore, reg); |
| do { |
| tmp = upper; |
| |
| set(uncore, VLV_COUNTER_CONTROL, |
| _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH)); |
| lower = intel_uncore_read_fw(uncore, reg); |
| |
| set(uncore, VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); |
| upper = intel_uncore_read_fw(uncore, reg); |
| } while (upper != tmp && --loop); |
| |
| /* |
| * Everywhere else we always use VLV_COUNTER_CONTROL with the |
| * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set |
| * now. |
| */ |
| |
| return lower | (u64)upper << 8; |
| } |
| |
| u64 intel_rc6_residency_ns(struct intel_rc6 *rc6, const i915_reg_t reg) |
| { |
| struct drm_i915_private *i915 = rc6_to_i915(rc6); |
| struct intel_uncore *uncore = rc6_to_uncore(rc6); |
| u64 time_hw, prev_hw, overflow_hw; |
| unsigned int fw_domains; |
| unsigned long flags; |
| unsigned int i; |
| u32 mul, div; |
| |
| if (!rc6->supported) |
| return 0; |
| |
| /* |
| * Store previous hw counter values for counter wrap-around handling. |
| * |
| * There are only four interesting registers and they live next to each |
| * other so we can use the relative address, compared to the smallest |
| * one as the index into driver storage. |
| */ |
| i = (i915_mmio_reg_offset(reg) - |
| i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32); |
| if (drm_WARN_ON_ONCE(&i915->drm, i >= ARRAY_SIZE(rc6->cur_residency))) |
| return 0; |
| |
| fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ); |
| |
| spin_lock_irqsave(&uncore->lock, flags); |
| intel_uncore_forcewake_get__locked(uncore, fw_domains); |
| |
| /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ |
| if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { |
| mul = 1000000; |
| div = i915->czclk_freq; |
| overflow_hw = BIT_ULL(40); |
| time_hw = vlv_residency_raw(uncore, reg); |
| } else { |
| /* 833.33ns units on Gen9LP, 1.28us elsewhere. */ |
| if (IS_GEN9_LP(i915)) { |
| mul = 10000; |
| div = 12; |
| } else { |
| mul = 1280; |
| div = 1; |
| } |
| |
| overflow_hw = BIT_ULL(32); |
| time_hw = intel_uncore_read_fw(uncore, reg); |
| } |
| |
| /* |
| * Counter wrap handling. |
| * |
| * But relying on a sufficient frequency of queries otherwise counters |
| * can still wrap. |
| */ |
| prev_hw = rc6->prev_hw_residency[i]; |
| rc6->prev_hw_residency[i] = time_hw; |
| |
| /* RC6 delta from last sample. */ |
| if (time_hw >= prev_hw) |
| time_hw -= prev_hw; |
| else |
| time_hw += overflow_hw - prev_hw; |
| |
| /* Add delta to RC6 extended raw driver copy. */ |
| time_hw += rc6->cur_residency[i]; |
| rc6->cur_residency[i] = time_hw; |
| |
| intel_uncore_forcewake_put__locked(uncore, fw_domains); |
| spin_unlock_irqrestore(&uncore->lock, flags); |
| |
| return mul_u64_u32_div(time_hw, mul, div); |
| } |
| |
| u64 intel_rc6_residency_us(struct intel_rc6 *rc6, i915_reg_t reg) |
| { |
| return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(rc6, reg), 1000); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftest_rc6.c" |
| #endif |