blob: 51780282d87217ed0d67cf7bc44027f06fb0f8aa [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include "debugfs_gt.h"
#include "intel_sseu_debugfs.h"
#include "i915_drv.h"
static void sseu_copy_subslices(const struct sseu_dev_info *sseu,
int slice, u8 *to_mask)
{
int offset = slice * sseu->ss_stride;
memcpy(&to_mask[offset], &sseu->subslice_mask[offset], sseu->ss_stride);
}
static void cherryview_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
#define SS_MAX 2
struct intel_uncore *uncore = gt->uncore;
const int ss_max = SS_MAX;
u32 sig1[SS_MAX], sig2[SS_MAX];
int ss;
sig1[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG1);
sig1[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG1);
sig2[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG2);
sig2[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG2);
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (sig1[ss] & CHV_SS_PG_ENABLE)
/* skip disabled subslice */
continue;
sseu->slice_mask = BIT(0);
sseu->subslice_mask[0] |= BIT(ss);
eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice, eu_cnt);
}
#undef SS_MAX
}
static void gen10_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
#define SS_MAX 6
struct intel_uncore *uncore = gt->uncore;
const struct intel_gt_info *info = &gt->info;
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
/*
* FIXME: Valid SS Mask respects the spec and read
* only valid bits for those registers, excluding reserved
* although this seems wrong because it would leave many
* subslices without ACK.
*/
s_reg[s] = intel_uncore_read(uncore, GEN10_SLICE_PGCTL_ACK(s)) &
GEN10_PGCTL_VALID_SS_MASK(s);
eu_reg[2 * s] = intel_uncore_read(uncore,
GEN10_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] = intel_uncore_read(uncore,
GEN10_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
sseu_copy_subslices(&info->sseu, s, sseu->subslice_mask);
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
if (info->sseu.has_subslice_pg &&
!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
eu_mask[ss % 2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void gen9_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
#define SS_MAX 3
struct intel_uncore *uncore = gt->uncore;
const struct intel_gt_info *info = &gt->info;
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
s_reg[s] = intel_uncore_read(uncore, GEN9_SLICE_PGCTL_ACK(s));
eu_reg[2 * s] =
intel_uncore_read(uncore, GEN9_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] =
intel_uncore_read(uncore, GEN9_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
if (IS_GEN9_BC(gt->i915))
sseu_copy_subslices(&info->sseu, s,
sseu->subslice_mask);
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
u8 ss_idx = s * info->sseu.ss_stride +
ss / BITS_PER_BYTE;
if (IS_GEN9_LP(gt->i915)) {
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
sseu->subslice_mask[ss_idx] |=
BIT(ss % BITS_PER_BYTE);
}
eu_cnt = eu_reg[2 * s + ss / 2] & eu_mask[ss % 2];
eu_cnt = 2 * hweight32(eu_cnt);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void bdw_sseu_device_status(struct intel_gt *gt,
struct sseu_dev_info *sseu)
{
const struct intel_gt_info *info = &gt->info;
u32 slice_info = intel_uncore_read(gt->uncore, GEN8_GT_SLICE_INFO);
int s;
sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
if (sseu->slice_mask) {
sseu->eu_per_subslice = info->sseu.eu_per_subslice;
for (s = 0; s < fls(sseu->slice_mask); s++)
sseu_copy_subslices(&info->sseu, s,
sseu->subslice_mask);
sseu->eu_total = sseu->eu_per_subslice *
intel_sseu_subslice_total(sseu);
/* subtract fused off EU(s) from enabled slice(s) */
for (s = 0; s < fls(sseu->slice_mask); s++) {
u8 subslice_7eu = info->sseu.subslice_7eu[s];
sseu->eu_total -= hweight8(subslice_7eu);
}
}
}
static void i915_print_sseu_info(struct seq_file *m,
bool is_available_info,
bool has_pooled_eu,
const struct sseu_dev_info *sseu)
{
const char *type = is_available_info ? "Available" : "Enabled";
int s;
seq_printf(m, " %s Slice Mask: %04x\n", type,
sseu->slice_mask);
seq_printf(m, " %s Slice Total: %u\n", type,
hweight8(sseu->slice_mask));
seq_printf(m, " %s Subslice Total: %u\n", type,
intel_sseu_subslice_total(sseu));
for (s = 0; s < fls(sseu->slice_mask); s++) {
seq_printf(m, " %s Slice%i subslices: %u\n", type,
s, intel_sseu_subslices_per_slice(sseu, s));
}
seq_printf(m, " %s EU Total: %u\n", type,
sseu->eu_total);
seq_printf(m, " %s EU Per Subslice: %u\n", type,
sseu->eu_per_subslice);
if (!is_available_info)
return;
seq_printf(m, " Has Pooled EU: %s\n", yesno(has_pooled_eu));
if (has_pooled_eu)
seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
seq_printf(m, " Has Slice Power Gating: %s\n",
yesno(sseu->has_slice_pg));
seq_printf(m, " Has Subslice Power Gating: %s\n",
yesno(sseu->has_subslice_pg));
seq_printf(m, " Has EU Power Gating: %s\n",
yesno(sseu->has_eu_pg));
}
/*
* this is called from top-level debugfs as well, so we can't get the gt from
* the seq_file.
*/
int intel_sseu_status(struct seq_file *m, struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
const struct intel_gt_info *info = &gt->info;
struct sseu_dev_info sseu;
intel_wakeref_t wakeref;
if (INTEL_GEN(i915) < 8)
return -ENODEV;
seq_puts(m, "SSEU Device Info\n");
i915_print_sseu_info(m, true, HAS_POOLED_EU(i915), &info->sseu);
seq_puts(m, "SSEU Device Status\n");
memset(&sseu, 0, sizeof(sseu));
intel_sseu_set_info(&sseu, info->sseu.max_slices,
info->sseu.max_subslices,
info->sseu.max_eus_per_subslice);
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
if (IS_CHERRYVIEW(i915))
cherryview_sseu_device_status(gt, &sseu);
else if (IS_BROADWELL(i915))
bdw_sseu_device_status(gt, &sseu);
else if (IS_GEN(i915, 9))
gen9_sseu_device_status(gt, &sseu);
else if (INTEL_GEN(i915) >= 10)
gen10_sseu_device_status(gt, &sseu);
}
i915_print_sseu_info(m, false, HAS_POOLED_EU(i915), &sseu);
return 0;
}
static int sseu_status_show(struct seq_file *m, void *unused)
{
struct intel_gt *gt = m->private;
return intel_sseu_status(m, gt);
}
DEFINE_GT_DEBUGFS_ATTRIBUTE(sseu_status);
static int rcs_topology_show(struct seq_file *m, void *unused)
{
struct intel_gt *gt = m->private;
struct drm_printer p = drm_seq_file_printer(m);
intel_sseu_print_topology(&gt->info.sseu, &p);
return 0;
}
DEFINE_GT_DEBUGFS_ATTRIBUTE(rcs_topology);
void intel_sseu_debugfs_register(struct intel_gt *gt, struct dentry *root)
{
static const struct debugfs_gt_file files[] = {
{ "sseu_status", &sseu_status_fops, NULL },
{ "rcs_topology", &rcs_topology_fops, NULL },
};
intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt);
}