blob: 502d1b97855ca35057dae1e838962a8fff34dcf3 [file] [log] [blame]
/*
* Copyright (c) 2007 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/mlx4/cq.h>
#include <linux/slab.h>
#include <linux/mlx4/qp.h>
#include <linux/skbuff.h>
#include <linux/rculist.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/irq.h>
#include <net/ip.h>
#if IS_ENABLED(CONFIG_IPV6)
#include <net/ip6_checksum.h>
#endif
#include "mlx4_en.h"
static int mlx4_alloc_page(struct mlx4_en_priv *priv,
struct mlx4_en_rx_alloc *frag,
gfp_t gfp)
{
struct page *page;
dma_addr_t dma;
page = alloc_page(gfp);
if (unlikely(!page))
return -ENOMEM;
dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE, priv->dma_dir);
if (unlikely(dma_mapping_error(priv->ddev, dma))) {
__free_page(page);
return -ENOMEM;
}
frag->page = page;
frag->dma = dma;
frag->page_offset = priv->rx_headroom;
return 0;
}
static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring,
struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_alloc *frags,
gfp_t gfp)
{
int i;
for (i = 0; i < priv->num_frags; i++, frags++) {
if (!frags->page) {
if (mlx4_alloc_page(priv, frags, gfp))
return -ENOMEM;
ring->rx_alloc_pages++;
}
rx_desc->data[i].addr = cpu_to_be64(frags->dma +
frags->page_offset);
}
return 0;
}
static void mlx4_en_free_frag(const struct mlx4_en_priv *priv,
struct mlx4_en_rx_alloc *frag)
{
if (frag->page) {
dma_unmap_page(priv->ddev, frag->dma,
PAGE_SIZE, priv->dma_dir);
__free_page(frag->page);
}
/* We need to clear all fields, otherwise a change of priv->log_rx_info
* could lead to see garbage later in frag->page.
*/
memset(frag, 0, sizeof(*frag));
}
static void mlx4_en_init_rx_desc(const struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
int possible_frags;
int i;
/* Set size and memtype fields */
for (i = 0; i < priv->num_frags; i++) {
rx_desc->data[i].byte_count =
cpu_to_be32(priv->frag_info[i].frag_size);
rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
}
/* If the number of used fragments does not fill up the ring stride,
* remaining (unused) fragments must be padded with null address/size
* and a special memory key */
possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
for (i = priv->num_frags; i < possible_frags; i++) {
rx_desc->data[i].byte_count = 0;
rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
rx_desc->data[i].addr = 0;
}
}
static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index,
gfp_t gfp)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf +
(index << ring->log_stride);
struct mlx4_en_rx_alloc *frags = ring->rx_info +
(index << priv->log_rx_info);
if (likely(ring->page_cache.index > 0)) {
/* XDP uses a single page per frame */
if (!frags->page) {
ring->page_cache.index--;
frags->page = ring->page_cache.buf[ring->page_cache.index].page;
frags->dma = ring->page_cache.buf[ring->page_cache.index].dma;
}
frags->page_offset = XDP_PACKET_HEADROOM;
rx_desc->data[0].addr = cpu_to_be64(frags->dma +
XDP_PACKET_HEADROOM);
return 0;
}
return mlx4_en_alloc_frags(priv, ring, rx_desc, frags, gfp);
}
static bool mlx4_en_is_ring_empty(const struct mlx4_en_rx_ring *ring)
{
return ring->prod == ring->cons;
}
static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
{
*ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
}
/* slow path */
static void mlx4_en_free_rx_desc(const struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring,
int index)
{
struct mlx4_en_rx_alloc *frags;
int nr;
frags = ring->rx_info + (index << priv->log_rx_info);
for (nr = 0; nr < priv->num_frags; nr++) {
en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
mlx4_en_free_frag(priv, frags + nr);
}
}
/* Function not in fast-path */
static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int ring_ind;
int buf_ind;
int new_size;
for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
if (mlx4_en_prepare_rx_desc(priv, ring,
ring->actual_size,
GFP_KERNEL)) {
if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
en_err(priv, "Failed to allocate enough rx buffers\n");
return -ENOMEM;
} else {
new_size = rounddown_pow_of_two(ring->actual_size);
en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n",
ring->actual_size, new_size);
goto reduce_rings;
}
}
ring->actual_size++;
ring->prod++;
}
}
return 0;
reduce_rings:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
while (ring->actual_size > new_size) {
ring->actual_size--;
ring->prod--;
mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
}
}
return 0;
}
static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int index;
en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
ring->cons, ring->prod);
/* Unmap and free Rx buffers */
for (index = 0; index < ring->size; index++) {
en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
mlx4_en_free_rx_desc(priv, ring, index);
}
ring->cons = 0;
ring->prod = 0;
}
void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
{
int i;
int num_of_eqs;
int num_rx_rings;
struct mlx4_dev *dev = mdev->dev;
mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
num_of_eqs = max_t(int, MIN_RX_RINGS,
min_t(int,
mlx4_get_eqs_per_port(mdev->dev, i),
DEF_RX_RINGS));
num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
min_t(int, num_of_eqs, num_online_cpus());
mdev->profile.prof[i].rx_ring_num =
rounddown_pow_of_two(num_rx_rings);
}
}
int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size, u16 stride, int node, int queue_index)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring;
int err = -ENOMEM;
int tmp;
ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
if (!ring) {
en_err(priv, "Failed to allocate RX ring structure\n");
return -ENOMEM;
}
ring->prod = 0;
ring->cons = 0;
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
if (xdp_rxq_info_reg(&ring->xdp_rxq, priv->dev, queue_index) < 0)
goto err_ring;
tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
sizeof(struct mlx4_en_rx_alloc));
ring->rx_info = kvzalloc_node(tmp, GFP_KERNEL, node);
if (!ring->rx_info) {
err = -ENOMEM;
goto err_xdp_info;
}
en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
ring->rx_info, tmp);
/* Allocate HW buffers on provided NUMA node */
set_dev_node(&mdev->dev->persist->pdev->dev, node);
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node);
if (err)
goto err_info;
ring->buf = ring->wqres.buf.direct.buf;
ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
*pring = ring;
return 0;
err_info:
kvfree(ring->rx_info);
ring->rx_info = NULL;
err_xdp_info:
xdp_rxq_info_unreg(&ring->xdp_rxq);
err_ring:
kfree(ring);
*pring = NULL;
return err;
}
int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int i;
int ring_ind;
int err;
int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
DS_SIZE * priv->num_frags);
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->prod = 0;
ring->cons = 0;
ring->actual_size = 0;
ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
ring->stride = stride;
if (ring->stride <= TXBB_SIZE) {
/* Stamp first unused send wqe */
__be32 *ptr = (__be32 *)ring->buf;
__be32 stamp = cpu_to_be32(1 << STAMP_SHIFT);
*ptr = stamp;
/* Move pointer to start of rx section */
ring->buf += TXBB_SIZE;
}
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride;
memset(ring->buf, 0, ring->buf_size);
mlx4_en_update_rx_prod_db(ring);
/* Initialize all descriptors */
for (i = 0; i < ring->size; i++)
mlx4_en_init_rx_desc(priv, ring, i);
}
err = mlx4_en_fill_rx_buffers(priv);
if (err)
goto err_buffers;
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->size_mask = ring->actual_size - 1;
mlx4_en_update_rx_prod_db(ring);
}
return 0;
err_buffers:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
ring_ind = priv->rx_ring_num - 1;
while (ring_ind >= 0) {
if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE)
priv->rx_ring[ring_ind]->buf -= TXBB_SIZE;
ring_ind--;
}
return err;
}
/* We recover from out of memory by scheduling our napi poll
* function (mlx4_en_process_cq), which tries to allocate
* all missing RX buffers (call to mlx4_en_refill_rx_buffers).
*/
void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv)
{
int ring;
if (!priv->port_up)
return;
for (ring = 0; ring < priv->rx_ring_num; ring++) {
if (mlx4_en_is_ring_empty(priv->rx_ring[ring])) {
local_bh_disable();
napi_reschedule(&priv->rx_cq[ring]->napi);
local_bh_enable();
}
}
}
/* When the rx ring is running in page-per-packet mode, a released frame can go
* directly into a small cache, to avoid unmapping or touching the page
* allocator. In bpf prog performance scenarios, buffers are either forwarded
* or dropped, never converted to skbs, so every page can come directly from
* this cache when it is sized to be a multiple of the napi budget.
*/
bool mlx4_en_rx_recycle(struct mlx4_en_rx_ring *ring,
struct mlx4_en_rx_alloc *frame)
{
struct mlx4_en_page_cache *cache = &ring->page_cache;
if (cache->index >= MLX4_EN_CACHE_SIZE)
return false;
cache->buf[cache->index].page = frame->page;
cache->buf[cache->index].dma = frame->dma;
cache->index++;
return true;
}
void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size, u16 stride)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring = *pring;
struct bpf_prog *old_prog;
old_prog = rcu_dereference_protected(
ring->xdp_prog,
lockdep_is_held(&mdev->state_lock));
if (old_prog)
bpf_prog_put(old_prog);
xdp_rxq_info_unreg(&ring->xdp_rxq);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
kvfree(ring->rx_info);
ring->rx_info = NULL;
kfree(ring);
*pring = NULL;
}
void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int i;
for (i = 0; i < ring->page_cache.index; i++) {
dma_unmap_page(priv->ddev, ring->page_cache.buf[i].dma,
PAGE_SIZE, priv->dma_dir);
put_page(ring->page_cache.buf[i].page);
}
ring->page_cache.index = 0;
mlx4_en_free_rx_buf(priv, ring);
if (ring->stride <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
}
static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_alloc *frags,
struct sk_buff *skb,
int length)
{
const struct mlx4_en_frag_info *frag_info = priv->frag_info;
unsigned int truesize = 0;
bool release = true;
int nr, frag_size;
struct page *page;
dma_addr_t dma;
/* Collect used fragments while replacing them in the HW descriptors */
for (nr = 0;; frags++) {
frag_size = min_t(int, length, frag_info->frag_size);
page = frags->page;
if (unlikely(!page))
goto fail;
dma = frags->dma;
dma_sync_single_range_for_cpu(priv->ddev, dma, frags->page_offset,
frag_size, priv->dma_dir);
__skb_fill_page_desc(skb, nr, page, frags->page_offset,
frag_size);
truesize += frag_info->frag_stride;
if (frag_info->frag_stride == PAGE_SIZE / 2) {
frags->page_offset ^= PAGE_SIZE / 2;
release = page_count(page) != 1 ||
page_is_pfmemalloc(page) ||
page_to_nid(page) != numa_mem_id();
} else if (!priv->rx_headroom) {
/* rx_headroom for non XDP setup is always 0.
* When XDP is set, the above condition will
* guarantee page is always released.
*/
u32 sz_align = ALIGN(frag_size, SMP_CACHE_BYTES);
frags->page_offset += sz_align;
release = frags->page_offset + frag_info->frag_size > PAGE_SIZE;
}
if (release) {
dma_unmap_page(priv->ddev, dma, PAGE_SIZE, priv->dma_dir);
frags->page = NULL;
} else {
page_ref_inc(page);
}
nr++;
length -= frag_size;
if (!length)
break;
frag_info++;
}
skb->truesize += truesize;
return nr;
fail:
while (nr > 0) {
nr--;
__skb_frag_unref(skb_shinfo(skb)->frags + nr);
}
return 0;
}
static void validate_loopback(struct mlx4_en_priv *priv, void *va)
{
const unsigned char *data = va + ETH_HLEN;
int i;
for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++) {
if (data[i] != (unsigned char)i)
return;
}
/* Loopback found */
priv->loopback_ok = 1;
}
static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
u32 missing = ring->actual_size - (ring->prod - ring->cons);
/* Try to batch allocations, but not too much. */
if (missing < 8)
return;
do {
if (mlx4_en_prepare_rx_desc(priv, ring,
ring->prod & ring->size_mask,
GFP_ATOMIC | __GFP_MEMALLOC))
break;
ring->prod++;
} while (likely(--missing));
mlx4_en_update_rx_prod_db(ring);
}
/* When hardware doesn't strip the vlan, we need to calculate the checksum
* over it and add it to the hardware's checksum calculation
*/
static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum,
struct vlan_hdr *vlanh)
{
return csum_add(hw_checksum, *(__wsum *)vlanh);
}
/* Although the stack expects checksum which doesn't include the pseudo
* header, the HW adds it. To address that, we are subtracting the pseudo
* header checksum from the checksum value provided by the HW.
*/
static int get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb,
struct iphdr *iph)
{
__u16 length_for_csum = 0;
__wsum csum_pseudo_header = 0;
__u8 ipproto = iph->protocol;
if (unlikely(ipproto == IPPROTO_SCTP))
return -1;
length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2));
csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr,
length_for_csum, ipproto, 0);
skb->csum = csum_sub(hw_checksum, csum_pseudo_header);
return 0;
}
#if IS_ENABLED(CONFIG_IPV6)
/* In IPv6 packets, hw_checksum lacks 6 bytes from IPv6 header:
* 4 first bytes : priority, version, flow_lbl
* and 2 additional bytes : nexthdr, hop_limit.
*/
static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb,
struct ipv6hdr *ipv6h)
{
__u8 nexthdr = ipv6h->nexthdr;
__wsum temp;
if (unlikely(nexthdr == IPPROTO_FRAGMENT ||
nexthdr == IPPROTO_HOPOPTS ||
nexthdr == IPPROTO_SCTP))
return -1;
/* priority, version, flow_lbl */
temp = csum_add(hw_checksum, *(__wsum *)ipv6h);
/* nexthdr and hop_limit */
skb->csum = csum_add(temp, (__force __wsum)*(__be16 *)&ipv6h->nexthdr);
return 0;
}
#endif
#define short_frame(size) ((size) <= ETH_ZLEN + ETH_FCS_LEN)
/* We reach this function only after checking that any of
* the (IPv4 | IPv6) bits are set in cqe->status.
*/
static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va,
netdev_features_t dev_features)
{
__wsum hw_checksum = 0;
void *hdr;
/* CQE csum doesn't cover padding octets in short ethernet
* frames. And the pad field is appended prior to calculating
* and appending the FCS field.
*
* Detecting these padded frames requires to verify and parse
* IP headers, so we simply force all those small frames to skip
* checksum complete.
*/
if (short_frame(skb->len))
return -EINVAL;
hdr = (u8 *)va + sizeof(struct ethhdr);
hw_checksum = csum_unfold((__force __sum16)cqe->checksum);
if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) &&
!(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) {
hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr);
hdr += sizeof(struct vlan_hdr);
}
#if IS_ENABLED(CONFIG_IPV6)
if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6))
return get_fixed_ipv6_csum(hw_checksum, skb, hdr);
#endif
return get_fixed_ipv4_csum(hw_checksum, skb, hdr);
}
#if IS_ENABLED(CONFIG_IPV6)
#define MLX4_CQE_STATUS_IP_ANY (MLX4_CQE_STATUS_IPV4 | MLX4_CQE_STATUS_IPV6)
#else
#define MLX4_CQE_STATUS_IP_ANY (MLX4_CQE_STATUS_IPV4)
#endif
int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int factor = priv->cqe_factor;
struct mlx4_en_rx_ring *ring;
struct bpf_prog *xdp_prog;
int cq_ring = cq->ring;
bool doorbell_pending;
struct mlx4_cqe *cqe;
struct xdp_buff xdp;
int polled = 0;
int index;
if (unlikely(!priv->port_up || budget <= 0))
return 0;
ring = priv->rx_ring[cq_ring];
/* Protect accesses to: ring->xdp_prog, priv->mac_hash list */
rcu_read_lock();
xdp_prog = rcu_dereference(ring->xdp_prog);
xdp.rxq = &ring->xdp_rxq;
xdp.frame_sz = priv->frag_info[0].frag_stride;
doorbell_pending = 0;
/* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
* descriptor offset can be deduced from the CQE index instead of
* reading 'cqe->index' */
index = cq->mcq.cons_index & ring->size_mask;
cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cq->mcq.cons_index & cq->size)) {
struct mlx4_en_rx_alloc *frags;
enum pkt_hash_types hash_type;
struct sk_buff *skb;
unsigned int length;
int ip_summed;
void *va;
int nr;
frags = ring->rx_info + (index << priv->log_rx_info);
va = page_address(frags[0].page) + frags[0].page_offset;
net_prefetchw(va);
/*
* make sure we read the CQE after we read the ownership bit
*/
dma_rmb();
/* Drop packet on bad receive or bad checksum */
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
((struct mlx4_err_cqe *)cqe)->syndrome);
goto next;
}
if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
goto next;
}
/* Check if we need to drop the packet if SRIOV is not enabled
* and not performing the selftest or flb disabled
*/
if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
const struct ethhdr *ethh = va;
dma_addr_t dma;
/* Get pointer to first fragment since we haven't
* skb yet and cast it to ethhdr struct
*/
dma = frags[0].dma + frags[0].page_offset;
dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
DMA_FROM_DEVICE);
if (is_multicast_ether_addr(ethh->h_dest)) {
struct mlx4_mac_entry *entry;
struct hlist_head *bucket;
unsigned int mac_hash;
/* Drop the packet, since HW loopback-ed it */
mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
bucket = &priv->mac_hash[mac_hash];
hlist_for_each_entry_rcu(entry, bucket, hlist) {
if (ether_addr_equal_64bits(entry->mac,
ethh->h_source))
goto next;
}
}
}
if (unlikely(priv->validate_loopback)) {
validate_loopback(priv, va);
goto next;
}
/*
* Packet is OK - process it.
*/
length = be32_to_cpu(cqe->byte_cnt);
length -= ring->fcs_del;
/* A bpf program gets first chance to drop the packet. It may
* read bytes but not past the end of the frag.
*/
if (xdp_prog) {
dma_addr_t dma;
void *orig_data;
u32 act;
dma = frags[0].dma + frags[0].page_offset;
dma_sync_single_for_cpu(priv->ddev, dma,
priv->frag_info[0].frag_size,
DMA_FROM_DEVICE);
xdp.data_hard_start = va - frags[0].page_offset;
xdp.data = va;
xdp_set_data_meta_invalid(&xdp);
xdp.data_end = xdp.data + length;
orig_data = xdp.data;
act = bpf_prog_run_xdp(xdp_prog, &xdp);
length = xdp.data_end - xdp.data;
if (xdp.data != orig_data) {
frags[0].page_offset = xdp.data -
xdp.data_hard_start;
va = xdp.data;
}
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
if (likely(!mlx4_en_xmit_frame(ring, frags, priv,
length, cq_ring,
&doorbell_pending))) {
frags[0].page = NULL;
goto next;
}
trace_xdp_exception(dev, xdp_prog, act);
goto xdp_drop_no_cnt; /* Drop on xmit failure */
default:
bpf_warn_invalid_xdp_action(act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(dev, xdp_prog, act);
fallthrough;
case XDP_DROP:
ring->xdp_drop++;
xdp_drop_no_cnt:
goto next;
}
}
ring->bytes += length;
ring->packets++;
skb = napi_get_frags(&cq->napi);
if (unlikely(!skb))
goto next;
if (unlikely(ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL)) {
u64 timestamp = mlx4_en_get_cqe_ts(cqe);
mlx4_en_fill_hwtstamps(priv->mdev, skb_hwtstamps(skb),
timestamp);
}
skb_record_rx_queue(skb, cq_ring);
if (likely(dev->features & NETIF_F_RXCSUM)) {
/* TODO: For IP non TCP/UDP packets when csum complete is
* not an option (not supported or any other reason) we can
* actually check cqe IPOK status bit and report
* CHECKSUM_UNNECESSARY rather than CHECKSUM_NONE
*/
if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP |
MLX4_CQE_STATUS_UDP)) &&
(cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
cqe->checksum == cpu_to_be16(0xffff)) {
bool l2_tunnel;
l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) &&
(cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL));
ip_summed = CHECKSUM_UNNECESSARY;
hash_type = PKT_HASH_TYPE_L4;
if (l2_tunnel)
skb->csum_level = 1;
ring->csum_ok++;
} else {
if (!(priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP &&
(cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IP_ANY))))
goto csum_none;
if (check_csum(cqe, skb, va, dev->features))
goto csum_none;
ip_summed = CHECKSUM_COMPLETE;
hash_type = PKT_HASH_TYPE_L3;
ring->csum_complete++;
}
} else {
csum_none:
ip_summed = CHECKSUM_NONE;
hash_type = PKT_HASH_TYPE_L3;
ring->csum_none++;
}
skb->ip_summed = ip_summed;
if (dev->features & NETIF_F_RXHASH)
skb_set_hash(skb,
be32_to_cpu(cqe->immed_rss_invalid),
hash_type);
if ((cqe->vlan_my_qpn &
cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_RX))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
be16_to_cpu(cqe->sl_vid));
else if ((cqe->vlan_my_qpn &
cpu_to_be32(MLX4_CQE_SVLAN_PRESENT_MASK)) &&
(dev->features & NETIF_F_HW_VLAN_STAG_RX))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD),
be16_to_cpu(cqe->sl_vid));
nr = mlx4_en_complete_rx_desc(priv, frags, skb, length);
if (likely(nr)) {
skb_shinfo(skb)->nr_frags = nr;
skb->len = length;
skb->data_len = length;
napi_gro_frags(&cq->napi);
} else {
__vlan_hwaccel_clear_tag(skb);
skb_clear_hash(skb);
}
next:
++cq->mcq.cons_index;
index = (cq->mcq.cons_index) & ring->size_mask;
cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
if (unlikely(++polled == budget))
break;
}
rcu_read_unlock();
if (likely(polled)) {
if (doorbell_pending) {
priv->tx_cq[TX_XDP][cq_ring]->xdp_busy = true;
mlx4_en_xmit_doorbell(priv->tx_ring[TX_XDP][cq_ring]);
}
mlx4_cq_set_ci(&cq->mcq);
wmb(); /* ensure HW sees CQ consumer before we post new buffers */
ring->cons = cq->mcq.cons_index;
}
AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
mlx4_en_refill_rx_buffers(priv, ring);
return polled;
}
void mlx4_en_rx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
if (likely(priv->port_up))
napi_schedule_irqoff(&cq->napi);
else
mlx4_en_arm_cq(priv, cq);
}
/* Rx CQ polling - called by NAPI */
int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
{
struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
struct net_device *dev = cq->dev;
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_cq *xdp_tx_cq = NULL;
bool clean_complete = true;
int done;
if (!budget)
return 0;
if (priv->tx_ring_num[TX_XDP]) {
xdp_tx_cq = priv->tx_cq[TX_XDP][cq->ring];
if (xdp_tx_cq->xdp_busy) {
clean_complete = mlx4_en_process_tx_cq(dev, xdp_tx_cq,
budget) < budget;
xdp_tx_cq->xdp_busy = !clean_complete;
}
}
done = mlx4_en_process_rx_cq(dev, cq, budget);
/* If we used up all the quota - we're probably not done yet... */
if (done == budget || !clean_complete) {
const struct cpumask *aff;
struct irq_data *idata;
int cpu_curr;
/* in case we got here because of !clean_complete */
done = budget;
INC_PERF_COUNTER(priv->pstats.napi_quota);
cpu_curr = smp_processor_id();
idata = irq_desc_get_irq_data(cq->irq_desc);
aff = irq_data_get_affinity_mask(idata);
if (likely(cpumask_test_cpu(cpu_curr, aff)))
return budget;
/* Current cpu is not according to smp_irq_affinity -
* probably affinity changed. Need to stop this NAPI
* poll, and restart it on the right CPU.
* Try to avoid returning a too small value (like 0),
* to not fool net_rx_action() and its netdev_budget
*/
if (done)
done--;
}
/* Done for now */
if (likely(napi_complete_done(napi, done)))
mlx4_en_arm_cq(priv, cq);
return done;
}
void mlx4_en_calc_rx_buf(struct net_device *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int eff_mtu = MLX4_EN_EFF_MTU(dev->mtu);
int i = 0;
/* bpf requires buffers to be set up as 1 packet per page.
* This only works when num_frags == 1.
*/
if (priv->tx_ring_num[TX_XDP]) {
priv->frag_info[0].frag_size = eff_mtu;
/* This will gain efficient xdp frame recycling at the
* expense of more costly truesize accounting
*/
priv->frag_info[0].frag_stride = PAGE_SIZE;
priv->dma_dir = PCI_DMA_BIDIRECTIONAL;
priv->rx_headroom = XDP_PACKET_HEADROOM;
i = 1;
} else {
int frag_size_max = 2048, buf_size = 0;
/* should not happen, right ? */
if (eff_mtu > PAGE_SIZE + (MLX4_EN_MAX_RX_FRAGS - 1) * 2048)
frag_size_max = PAGE_SIZE;
while (buf_size < eff_mtu) {
int frag_stride, frag_size = eff_mtu - buf_size;
int pad, nb;
if (i < MLX4_EN_MAX_RX_FRAGS - 1)
frag_size = min(frag_size, frag_size_max);
priv->frag_info[i].frag_size = frag_size;
frag_stride = ALIGN(frag_size, SMP_CACHE_BYTES);
/* We can only pack 2 1536-bytes frames in on 4K page
* Therefore, each frame would consume more bytes (truesize)
*/
nb = PAGE_SIZE / frag_stride;
pad = (PAGE_SIZE - nb * frag_stride) / nb;
pad &= ~(SMP_CACHE_BYTES - 1);
priv->frag_info[i].frag_stride = frag_stride + pad;
buf_size += frag_size;
i++;
}
priv->dma_dir = PCI_DMA_FROMDEVICE;
priv->rx_headroom = 0;
}
priv->num_frags = i;
priv->rx_skb_size = eff_mtu;
priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n",
eff_mtu, priv->num_frags);
for (i = 0; i < priv->num_frags; i++) {
en_dbg(DRV,
priv,
" frag:%d - size:%d stride:%d\n",
i,
priv->frag_info[i].frag_size,
priv->frag_info[i].frag_stride);
}
}
/* RSS related functions */
static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
struct mlx4_en_rx_ring *ring,
enum mlx4_qp_state *state,
struct mlx4_qp *qp)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_qp_context *context;
int err = 0;
context = kmalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return -ENOMEM;
err = mlx4_qp_alloc(mdev->dev, qpn, qp);
if (err) {
en_err(priv, "Failed to allocate qp #%x\n", qpn);
goto out;
}
qp->event = mlx4_en_sqp_event;
memset(context, 0, sizeof(*context));
mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
qpn, ring->cqn, -1, context);
context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
/* Cancel FCS removal if FW allows */
if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
context->param3 |= cpu_to_be32(1 << 29);
if (priv->dev->features & NETIF_F_RXFCS)
ring->fcs_del = 0;
else
ring->fcs_del = ETH_FCS_LEN;
} else
ring->fcs_del = 0;
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
if (err) {
mlx4_qp_remove(mdev->dev, qp);
mlx4_qp_free(mdev->dev, qp);
}
mlx4_en_update_rx_prod_db(ring);
out:
kfree(context);
return err;
}
int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
{
int err;
u32 qpn;
err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn,
MLX4_RESERVE_A0_QP,
MLX4_RES_USAGE_DRIVER);
if (err) {
en_err(priv, "Failed reserving drop qpn\n");
return err;
}
err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp);
if (err) {
en_err(priv, "Failed allocating drop qp\n");
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
return err;
}
return 0;
}
void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
{
u32 qpn;
qpn = priv->drop_qp.qpn;
mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
}
/* Allocate rx qp's and configure them according to rss map */
int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
struct mlx4_qp_context context;
struct mlx4_rss_context *rss_context;
int rss_rings;
void *ptr;
u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
MLX4_RSS_TCP_IPV6);
int i, qpn;
int err = 0;
int good_qps = 0;
u8 flags;
en_dbg(DRV, priv, "Configuring rss steering\n");
flags = priv->rx_ring_num == 1 ? MLX4_RESERVE_A0_QP : 0;
err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
priv->rx_ring_num,
&rss_map->base_qpn, flags,
MLX4_RES_USAGE_DRIVER);
if (err) {
en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
return err;
}
for (i = 0; i < priv->rx_ring_num; i++) {
qpn = rss_map->base_qpn + i;
err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i],
&rss_map->state[i],
&rss_map->qps[i]);
if (err)
goto rss_err;
++good_qps;
}
if (priv->rx_ring_num == 1) {
rss_map->indir_qp = &rss_map->qps[0];
priv->base_qpn = rss_map->indir_qp->qpn;
en_info(priv, "Optimized Non-RSS steering\n");
return 0;
}
rss_map->indir_qp = kzalloc(sizeof(*rss_map->indir_qp), GFP_KERNEL);
if (!rss_map->indir_qp) {
err = -ENOMEM;
goto rss_err;
}
/* Configure RSS indirection qp */
err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, rss_map->indir_qp);
if (err) {
en_err(priv, "Failed to allocate RSS indirection QP\n");
goto qp_alloc_err;
}
rss_map->indir_qp->event = mlx4_en_sqp_event;
mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
priv->rx_ring[0]->cqn, -1, &context);
if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
rss_rings = priv->rx_ring_num;
else
rss_rings = priv->prof->rss_rings;
ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
+ MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
rss_context = ptr;
rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
(rss_map->base_qpn));
rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
if (priv->mdev->profile.udp_rss) {
rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
rss_context->base_qpn_udp = rss_context->default_qpn;
}
if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n");
rss_mask |= MLX4_RSS_BY_INNER_HEADERS;
}
rss_context->flags = rss_mask;
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) {
rss_context->hash_fn = MLX4_RSS_HASH_XOR;
} else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) {
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
memcpy(rss_context->rss_key, priv->rss_key,
MLX4_EN_RSS_KEY_SIZE);
} else {
en_err(priv, "Unknown RSS hash function requested\n");
err = -EINVAL;
goto indir_err;
}
err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
rss_map->indir_qp, &rss_map->indir_state);
if (err)
goto indir_err;
return 0;
indir_err:
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, rss_map->indir_qp);
mlx4_qp_free(mdev->dev, rss_map->indir_qp);
qp_alloc_err:
kfree(rss_map->indir_qp);
rss_map->indir_qp = NULL;
rss_err:
for (i = 0; i < good_qps; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
return err;
}
void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
int i;
if (priv->rx_ring_num > 1) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0,
rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, rss_map->indir_qp);
mlx4_qp_free(mdev->dev, rss_map->indir_qp);
kfree(rss_map->indir_qp);
rss_map->indir_qp = NULL;
}
for (i = 0; i < priv->rx_ring_num; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
}