blob: b9a252272f1e9f596db7aeba99f4d28dd6b95f84 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* ARM CoreSight Architecture PMU driver.
*
* This driver adds support for uncore PMU based on ARM CoreSight Performance
* Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
* like other uncore PMUs, it does not support process specific events and
* cannot be used in sampling mode.
*
* This code is based on other uncore PMUs like ARM DSU PMU. It provides a
* generic implementation to operate the PMU according to CoreSight PMU
* architecture and ACPI ARM PMU table (APMT) documents below:
* - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
* - APMT document number: ARM DEN0117.
*
* The user should refer to the vendor technical documentation to get details
* about the supported events.
*
* Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
*/
#include <linux/acpi.h>
#include <linux/cacheinfo.h>
#include <linux/ctype.h>
#include <linux/interrupt.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/perf_event.h>
#include <linux/platform_device.h>
#include "arm_cspmu.h"
#define PMUNAME "arm_cspmu"
#define DRVNAME "arm-cs-arch-pmu"
#define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \
ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \
(unsigned long)_config)
/*
* CoreSight PMU Arch register offsets.
*/
#define PMEVCNTR_LO 0x0
#define PMEVCNTR_HI 0x4
#define PMEVTYPER 0x400
#define PMCCFILTR 0x47C
#define PMEVFILTR 0xA00
#define PMCNTENSET 0xC00
#define PMCNTENCLR 0xC20
#define PMINTENSET 0xC40
#define PMINTENCLR 0xC60
#define PMOVSCLR 0xC80
#define PMOVSSET 0xCC0
#define PMCFGR 0xE00
#define PMCR 0xE04
#define PMIIDR 0xE08
/* PMCFGR register field */
#define PMCFGR_NCG GENMASK(31, 28)
#define PMCFGR_HDBG BIT(24)
#define PMCFGR_TRO BIT(23)
#define PMCFGR_SS BIT(22)
#define PMCFGR_FZO BIT(21)
#define PMCFGR_MSI BIT(20)
#define PMCFGR_UEN BIT(19)
#define PMCFGR_NA BIT(17)
#define PMCFGR_EX BIT(16)
#define PMCFGR_CCD BIT(15)
#define PMCFGR_CC BIT(14)
#define PMCFGR_SIZE GENMASK(13, 8)
#define PMCFGR_N GENMASK(7, 0)
/* PMCR register field */
#define PMCR_TRO BIT(11)
#define PMCR_HDBG BIT(10)
#define PMCR_FZO BIT(9)
#define PMCR_NA BIT(8)
#define PMCR_DP BIT(5)
#define PMCR_X BIT(4)
#define PMCR_D BIT(3)
#define PMCR_C BIT(2)
#define PMCR_P BIT(1)
#define PMCR_E BIT(0)
/* Each SET/CLR register supports up to 32 counters. */
#define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5
#define ARM_CSPMU_SET_CLR_COUNTER_NUM \
(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
/* Convert counter idx into SET/CLR register number. */
#define COUNTER_TO_SET_CLR_ID(idx) \
(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
/* Convert counter idx into SET/CLR register bit. */
#define COUNTER_TO_SET_CLR_BIT(idx) \
(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
#define ARM_CSPMU_ACTIVE_CPU_MASK 0x0
#define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1
/*
* Maximum poll count for reading counter value using high-low-high sequence.
*/
#define HILOHI_MAX_POLL 1000
static unsigned long arm_cspmu_cpuhp_state;
static DEFINE_MUTEX(arm_cspmu_lock);
static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
struct hw_perf_event *hwc, u32 filter);
static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
{
struct acpi_apmt_node **ptr = dev_get_platdata(dev);
return ptr ? *ptr : NULL;
}
/*
* In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
* counter register. The counter register can be implemented as 32-bit or 64-bit
* register depending on the value of PMCFGR.SIZE field. For 64-bit access,
* single-copy 64-bit atomic support is implementation defined. APMT node flag
* is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
* single copy atomic is not supported, the driver treats the register as a pair
* of 32-bit register.
*/
/*
* Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
*/
static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
{
u32 val_lo, val_hi;
u64 val;
/* Use high-low-high sequence to avoid tearing */
do {
if (max_poll_count-- == 0) {
pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
return 0;
}
val_hi = readl(addr + 4);
val_lo = readl(addr);
} while (val_hi != readl(addr + 4));
val = (((u64)val_hi << 32) | val_lo);
return val;
}
/* Check if cycle counter is supported. */
static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
{
return (cspmu->pmcfgr & PMCFGR_CC);
}
/* Get counter size, which is (PMCFGR_SIZE + 1). */
static inline u32 counter_size(const struct arm_cspmu *cspmu)
{
return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
}
/* Get counter mask. */
static inline u64 counter_mask(const struct arm_cspmu *cspmu)
{
return GENMASK_ULL(counter_size(cspmu) - 1, 0);
}
/* Check if counter is implemented as 64-bit register. */
static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
{
return (counter_size(cspmu) > 32);
}
ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct perf_pmu_events_attr *pmu_attr;
pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
}
EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
/* Default event list. */
static struct attribute *arm_cspmu_event_attrs[] = {
ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
NULL,
};
static struct attribute **
arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
{
struct attribute **attrs;
attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
return attrs;
}
static umode_t
arm_cspmu_event_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int unused)
{
struct device *dev = kobj_to_dev(kobj);
struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
struct perf_pmu_events_attr *eattr;
eattr = container_of(attr, typeof(*eattr), attr.attr);
/* Hide cycle event if not supported */
if (!supports_cycle_counter(cspmu) &&
eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
return 0;
return attr->mode;
}
ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *eattr =
container_of(attr, struct dev_ext_attribute, attr);
return sysfs_emit(buf, "%s\n", (char *)eattr->var);
}
EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
static struct attribute *arm_cspmu_format_attrs[] = {
ARM_CSPMU_FORMAT_EVENT_ATTR,
ARM_CSPMU_FORMAT_FILTER_ATTR,
NULL,
};
static struct attribute **
arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
{
struct attribute **attrs;
attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
return attrs;
}
static u32 arm_cspmu_event_type(const struct perf_event *event)
{
return event->attr.config & ARM_CSPMU_EVENT_MASK;
}
static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
{
return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
}
static u32 arm_cspmu_event_filter(const struct perf_event *event)
{
return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
}
static ssize_t arm_cspmu_identifier_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
return sysfs_emit(page, "%s\n", cspmu->identifier);
}
static struct device_attribute arm_cspmu_identifier_attr =
__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
static struct attribute *arm_cspmu_identifier_attrs[] = {
&arm_cspmu_identifier_attr.attr,
NULL,
};
static struct attribute_group arm_cspmu_identifier_attr_group = {
.attrs = arm_cspmu_identifier_attrs,
};
static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
{
const char *identifier =
devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
cspmu->impl.pmiidr);
return identifier;
}
static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
"mc",
"smmu",
"pcie",
"acpi",
"cache",
};
static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
{
struct device *dev;
struct acpi_apmt_node *apmt_node;
u8 pmu_type;
char *name;
char acpi_hid_string[ACPI_ID_LEN] = { 0 };
static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
dev = cspmu->dev;
apmt_node = arm_cspmu_apmt_node(dev);
if (!apmt_node)
return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
atomic_fetch_inc(&pmu_idx[0]));
pmu_type = apmt_node->type;
if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
return NULL;
}
if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
memcpy(acpi_hid_string,
&apmt_node->inst_primary,
sizeof(apmt_node->inst_primary));
name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
arm_cspmu_type_str[pmu_type],
acpi_hid_string,
apmt_node->inst_secondary);
} else {
name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
arm_cspmu_type_str[pmu_type],
atomic_fetch_inc(&pmu_idx[pmu_type]));
}
return name;
}
static ssize_t arm_cspmu_cpumask_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
struct dev_ext_attribute *eattr =
container_of(attr, struct dev_ext_attribute, attr);
unsigned long mask_id = (unsigned long)eattr->var;
const cpumask_t *cpumask;
switch (mask_id) {
case ARM_CSPMU_ACTIVE_CPU_MASK:
cpumask = &cspmu->active_cpu;
break;
case ARM_CSPMU_ASSOCIATED_CPU_MASK:
cpumask = &cspmu->associated_cpus;
break;
default:
return 0;
}
return cpumap_print_to_pagebuf(true, buf, cpumask);
}
static struct attribute *arm_cspmu_cpumask_attrs[] = {
ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
NULL,
};
static struct attribute_group arm_cspmu_cpumask_attr_group = {
.attrs = arm_cspmu_cpumask_attrs,
};
static struct arm_cspmu_impl_match impl_match[] = {
{
.module_name = "nvidia_cspmu",
.pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA,
.pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
.module = NULL,
.impl_init_ops = NULL,
},
{
.module_name = "ampere_cspmu",
.pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE,
.pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
.module = NULL,
.impl_init_ops = NULL,
},
{0}
};
static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
{
struct arm_cspmu_impl_match *match = impl_match;
for (; match->pmiidr_val; match++) {
u32 mask = match->pmiidr_mask;
if ((match->pmiidr_val & mask) == (pmiidr & mask))
return match;
}
return NULL;
}
#define DEFAULT_IMPL_OP(name) .name = arm_cspmu_##name
static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
{
int ret = 0;
struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
struct arm_cspmu_impl_match *match;
/* Start with a default PMU implementation */
cspmu->impl.module = THIS_MODULE;
cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR);
cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
DEFAULT_IMPL_OP(get_event_attrs),
DEFAULT_IMPL_OP(get_format_attrs),
DEFAULT_IMPL_OP(get_identifier),
DEFAULT_IMPL_OP(get_name),
DEFAULT_IMPL_OP(is_cycle_counter_event),
DEFAULT_IMPL_OP(event_type),
DEFAULT_IMPL_OP(event_filter),
DEFAULT_IMPL_OP(set_ev_filter),
DEFAULT_IMPL_OP(event_attr_is_visible),
};
/* Firmware may override implementer/product ID from PMIIDR */
if (apmt_node && apmt_node->impl_id)
cspmu->impl.pmiidr = apmt_node->impl_id;
/* Find implementer specific attribute ops. */
match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
/* Load implementer module and initialize the callbacks. */
if (match) {
mutex_lock(&arm_cspmu_lock);
if (match->impl_init_ops) {
/* Prevent unload until PMU registration is done. */
if (try_module_get(match->module)) {
cspmu->impl.module = match->module;
cspmu->impl.match = match;
ret = match->impl_init_ops(cspmu);
if (ret)
module_put(match->module);
} else {
WARN(1, "arm_cspmu failed to get module: %s\n",
match->module_name);
ret = -EINVAL;
}
} else {
request_module_nowait(match->module_name);
ret = -EPROBE_DEFER;
}
mutex_unlock(&arm_cspmu_lock);
}
return ret;
}
static struct attribute_group *
arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
{
struct attribute_group *event_group;
struct device *dev = cspmu->dev;
const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
event_group =
devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
if (!event_group)
return NULL;
event_group->name = "events";
event_group->is_visible = impl_ops->event_attr_is_visible;
event_group->attrs = impl_ops->get_event_attrs(cspmu);
if (!event_group->attrs)
return NULL;
return event_group;
}
static struct attribute_group *
arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
{
struct attribute_group *format_group;
struct device *dev = cspmu->dev;
format_group =
devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
if (!format_group)
return NULL;
format_group->name = "format";
format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
if (!format_group->attrs)
return NULL;
return format_group;
}
static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
{
const struct attribute_group **attr_groups = cspmu->attr_groups;
const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
cspmu->identifier = impl_ops->get_identifier(cspmu);
cspmu->name = impl_ops->get_name(cspmu);
if (!cspmu->identifier || !cspmu->name)
return -ENOMEM;
attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
attr_groups[2] = &arm_cspmu_identifier_attr_group;
attr_groups[3] = &arm_cspmu_cpumask_attr_group;
if (!attr_groups[0] || !attr_groups[1])
return -ENOMEM;
return 0;
}
static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
{
writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
}
static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
{
writel(PMCR_E, cspmu->base0 + PMCR);
}
static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
{
writel(0, cspmu->base0 + PMCR);
}
static void arm_cspmu_enable(struct pmu *pmu)
{
bool disabled;
struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
cspmu->num_logical_ctrs);
if (disabled)
return;
arm_cspmu_start_counters(cspmu);
}
static void arm_cspmu_disable(struct pmu *pmu)
{
struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
arm_cspmu_stop_counters(cspmu);
}
static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
struct perf_event *event)
{
int idx, ret;
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
if (supports_cycle_counter(cspmu)) {
if (cspmu->impl.ops.is_cycle_counter_event(event)) {
/* Search for available cycle counter. */
if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
hw_events->used_ctrs))
return -EAGAIN;
return cspmu->cycle_counter_logical_idx;
}
/*
* Search a regular counter from the used counter bitmap.
* The cycle counter divides the bitmap into two parts. Search
* the first then second half to exclude the cycle counter bit.
*/
idx = find_first_zero_bit(hw_events->used_ctrs,
cspmu->cycle_counter_logical_idx);
if (idx >= cspmu->cycle_counter_logical_idx) {
idx = find_next_zero_bit(
hw_events->used_ctrs,
cspmu->num_logical_ctrs,
cspmu->cycle_counter_logical_idx + 1);
}
} else {
idx = find_first_zero_bit(hw_events->used_ctrs,
cspmu->num_logical_ctrs);
}
if (idx >= cspmu->num_logical_ctrs)
return -EAGAIN;
if (cspmu->impl.ops.validate_event) {
ret = cspmu->impl.ops.validate_event(cspmu, event);
if (ret)
return ret;
}
set_bit(idx, hw_events->used_ctrs);
return idx;
}
static bool arm_cspmu_validate_event(struct pmu *pmu,
struct arm_cspmu_hw_events *hw_events,
struct perf_event *event)
{
if (is_software_event(event))
return true;
/* Reject groups spanning multiple HW PMUs. */
if (event->pmu != pmu)
return false;
return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
}
/*
* Make sure the group of events can be scheduled at once
* on the PMU.
*/
static bool arm_cspmu_validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct arm_cspmu_hw_events fake_hw_events;
if (event->group_leader == event)
return true;
memset(&fake_hw_events, 0, sizeof(fake_hw_events));
if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
return false;
for_each_sibling_event(sibling, leader) {
if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
sibling))
return false;
}
return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
}
static int arm_cspmu_event_init(struct perf_event *event)
{
struct arm_cspmu *cspmu;
struct hw_perf_event *hwc = &event->hw;
cspmu = to_arm_cspmu(event->pmu);
if (event->attr.type != event->pmu->type)
return -ENOENT;
/*
* Following other "uncore" PMUs, we do not support sampling mode or
* attach to a task (per-process mode).
*/
if (is_sampling_event(event)) {
dev_dbg(cspmu->pmu.dev,
"Can't support sampling events\n");
return -EOPNOTSUPP;
}
if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
dev_dbg(cspmu->pmu.dev,
"Can't support per-task counters\n");
return -EINVAL;
}
/*
* Make sure the CPU assignment is on one of the CPUs associated with
* this PMU.
*/
if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
dev_dbg(cspmu->pmu.dev,
"Requested cpu is not associated with the PMU\n");
return -EINVAL;
}
/* Enforce the current active CPU to handle the events in this PMU. */
event->cpu = cpumask_first(&cspmu->active_cpu);
if (event->cpu >= nr_cpu_ids)
return -EINVAL;
if (!arm_cspmu_validate_group(event))
return -EINVAL;
/*
* The logical counter id is tracked with hw_perf_event.extra_reg.idx.
* The physical counter id is tracked with hw_perf_event.idx.
* We don't assign an index until we actually place the event onto
* hardware. Use -1 to signify that we haven't decided where to put it
* yet.
*/
hwc->idx = -1;
hwc->extra_reg.idx = -1;
hwc->config = cspmu->impl.ops.event_type(event);
return 0;
}
static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
{
return (PMEVCNTR_LO + (reg_sz * ctr_idx));
}
static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
{
u32 offset;
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
if (use_64b_counter_reg(cspmu)) {
offset = counter_offset(sizeof(u64), event->hw.idx);
if (cspmu->has_atomic_dword)
writeq(val, cspmu->base1 + offset);
else
lo_hi_writeq(val, cspmu->base1 + offset);
} else {
offset = counter_offset(sizeof(u32), event->hw.idx);
writel(lower_32_bits(val), cspmu->base1 + offset);
}
}
static u64 arm_cspmu_read_counter(struct perf_event *event)
{
u32 offset;
const void __iomem *counter_addr;
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
if (use_64b_counter_reg(cspmu)) {
offset = counter_offset(sizeof(u64), event->hw.idx);
counter_addr = cspmu->base1 + offset;
return cspmu->has_atomic_dword ?
readq(counter_addr) :
read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
}
offset = counter_offset(sizeof(u32), event->hw.idx);
return readl(cspmu->base1 + offset);
}
/*
* arm_cspmu_set_event_period: Set the period for the counter.
*
* To handle cases of extreme interrupt latency, we program
* the counter with half of the max count for the counters.
*/
static void arm_cspmu_set_event_period(struct perf_event *event)
{
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
u64 val = counter_mask(cspmu) >> 1ULL;
local64_set(&event->hw.prev_count, val);
arm_cspmu_write_counter(event, val);
}
static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
{
u32 reg_id, reg_bit, inten_off, cnten_off;
reg_id = COUNTER_TO_SET_CLR_ID(idx);
reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
inten_off = PMINTENSET + (4 * reg_id);
cnten_off = PMCNTENSET + (4 * reg_id);
writel(BIT(reg_bit), cspmu->base0 + inten_off);
writel(BIT(reg_bit), cspmu->base0 + cnten_off);
}
static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
{
u32 reg_id, reg_bit, inten_off, cnten_off;
reg_id = COUNTER_TO_SET_CLR_ID(idx);
reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
inten_off = PMINTENCLR + (4 * reg_id);
cnten_off = PMCNTENCLR + (4 * reg_id);
writel(BIT(reg_bit), cspmu->base0 + cnten_off);
writel(BIT(reg_bit), cspmu->base0 + inten_off);
}
static void arm_cspmu_event_update(struct perf_event *event)
{
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u64 delta, prev, now;
do {
prev = local64_read(&hwc->prev_count);
now = arm_cspmu_read_counter(event);
} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
delta = (now - prev) & counter_mask(cspmu);
local64_add(delta, &event->count);
}
static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
struct hw_perf_event *hwc)
{
u32 offset = PMEVTYPER + (4 * hwc->idx);
writel(hwc->config, cspmu->base0 + offset);
}
static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
struct hw_perf_event *hwc,
u32 filter)
{
u32 offset = PMEVFILTR + (4 * hwc->idx);
writel(filter, cspmu->base0 + offset);
}
static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
{
u32 offset = PMCCFILTR;
writel(filter, cspmu->base0 + offset);
}
static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
{
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u32 filter;
/* We always reprogram the counter */
if (pmu_flags & PERF_EF_RELOAD)
WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
arm_cspmu_set_event_period(event);
filter = cspmu->impl.ops.event_filter(event);
if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
arm_cspmu_set_cc_filter(cspmu, filter);
} else {
arm_cspmu_set_event(cspmu, hwc);
cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
}
hwc->state = 0;
arm_cspmu_enable_counter(cspmu, hwc->idx);
}
static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
{
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
if (hwc->state & PERF_HES_STOPPED)
return;
arm_cspmu_disable_counter(cspmu, hwc->idx);
arm_cspmu_event_update(event);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
{
return (idx == cspmu->cycle_counter_logical_idx) ?
ARM_CSPMU_CYCLE_CNTR_IDX : idx;
}
static int arm_cspmu_add(struct perf_event *event, int flags)
{
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
struct hw_perf_event *hwc = &event->hw;
int idx;
if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
&cspmu->associated_cpus)))
return -ENOENT;
idx = arm_cspmu_get_event_idx(hw_events, event);
if (idx < 0)
return idx;
hw_events->events[idx] = event;
hwc->idx = to_phys_idx(cspmu, idx);
hwc->extra_reg.idx = idx;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
arm_cspmu_start(event, PERF_EF_RELOAD);
/* Propagate changes to the userspace mapping. */
perf_event_update_userpage(event);
return 0;
}
static void arm_cspmu_del(struct perf_event *event, int flags)
{
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->extra_reg.idx;
arm_cspmu_stop(event, PERF_EF_UPDATE);
hw_events->events[idx] = NULL;
clear_bit(idx, hw_events->used_ctrs);
perf_event_update_userpage(event);
}
static void arm_cspmu_read(struct perf_event *event)
{
arm_cspmu_event_update(event);
}
static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
{
struct acpi_apmt_node *apmt_node;
struct arm_cspmu *cspmu;
struct device *dev = &pdev->dev;
cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
if (!cspmu)
return NULL;
cspmu->dev = dev;
platform_set_drvdata(pdev, cspmu);
apmt_node = arm_cspmu_apmt_node(dev);
if (apmt_node) {
cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
} else {
u32 width = 0;
device_property_read_u32(dev, "reg-io-width", &width);
cspmu->has_atomic_dword = (width == 8);
}
return cspmu;
}
static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
{
struct device *dev;
struct platform_device *pdev;
dev = cspmu->dev;
pdev = to_platform_device(dev);
/* Base address for page 0. */
cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(cspmu->base0)) {
dev_err(dev, "ioremap failed for page-0 resource\n");
return PTR_ERR(cspmu->base0);
}
/* Base address for page 1 if supported. Otherwise point to page 0. */
cspmu->base1 = cspmu->base0;
if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(cspmu->base1)) {
dev_err(dev, "ioremap failed for page-1 resource\n");
return PTR_ERR(cspmu->base1);
}
}
cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
if (supports_cycle_counter(cspmu)) {
/*
* The last logical counter is mapped to cycle counter if
* there is a gap between regular and cycle counter. Otherwise,
* logical and physical have 1-to-1 mapping.
*/
cspmu->cycle_counter_logical_idx =
(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
cspmu->num_logical_ctrs - 1 :
ARM_CSPMU_CYCLE_CNTR_IDX;
}
cspmu->num_set_clr_reg =
DIV_ROUND_UP(cspmu->num_logical_ctrs,
ARM_CSPMU_SET_CLR_COUNTER_NUM);
cspmu->hw_events.events =
devm_kcalloc(dev, cspmu->num_logical_ctrs,
sizeof(*cspmu->hw_events.events), GFP_KERNEL);
if (!cspmu->hw_events.events)
return -ENOMEM;
return 0;
}
static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
u32 *pmovs)
{
int i;
u32 pmovclr_offset = PMOVSCLR;
u32 has_overflowed = 0;
for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
has_overflowed |= pmovs[i];
writel(pmovs[i], cspmu->base1 + pmovclr_offset);
pmovclr_offset += sizeof(u32);
}
return has_overflowed != 0;
}
static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
{
int idx, has_overflowed;
struct perf_event *event;
struct arm_cspmu *cspmu = dev;
DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
bool handled = false;
arm_cspmu_stop_counters(cspmu);
has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
if (!has_overflowed)
goto done;
for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
cspmu->num_logical_ctrs) {
event = cspmu->hw_events.events[idx];
if (!event)
continue;
if (!test_bit(event->hw.idx, pmovs))
continue;
arm_cspmu_event_update(event);
arm_cspmu_set_event_period(event);
handled = true;
}
done:
arm_cspmu_start_counters(cspmu);
return IRQ_RETVAL(handled);
}
static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
{
int irq, ret;
struct device *dev;
struct platform_device *pdev;
dev = cspmu->dev;
pdev = to_platform_device(dev);
/* Skip IRQ request if the PMU does not support overflow interrupt. */
irq = platform_get_irq_optional(pdev, 0);
if (irq < 0)
return irq == -ENXIO ? 0 : irq;
ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
cspmu);
if (ret) {
dev_err(dev, "Could not request IRQ %d\n", irq);
return ret;
}
cspmu->irq = irq;
return 0;
}
#if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
#include <acpi/processor.h>
static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
{
struct device *cpu_dev;
struct acpi_device *acpi_dev;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev)
return -ENODEV;
acpi_dev = ACPI_COMPANION(cpu_dev);
while (acpi_dev) {
if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
return 0;
acpi_dev = acpi_dev_parent(acpi_dev);
}
return -ENODEV;
}
static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
{
struct acpi_apmt_node *apmt_node;
int affinity_flag;
int cpu;
apmt_node = arm_cspmu_apmt_node(cspmu->dev);
affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
for_each_possible_cpu(cpu) {
if (apmt_node->proc_affinity ==
get_acpi_id_for_cpu(cpu)) {
cpumask_set_cpu(cpu, &cspmu->associated_cpus);
break;
}
}
} else {
for_each_possible_cpu(cpu) {
if (arm_cspmu_find_cpu_container(
cpu, apmt_node->proc_affinity))
continue;
cpumask_set_cpu(cpu, &cspmu->associated_cpus);
}
}
return 0;
}
#else
static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
{
return -ENODEV;
}
#endif
static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
{
struct of_phandle_iterator it;
int ret, cpu;
of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
cpu = of_cpu_node_to_id(it.node);
if (cpu < 0)
continue;
cpumask_set_cpu(cpu, &cspmu->associated_cpus);
}
return ret == -ENOENT ? 0 : ret;
}
static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
{
int ret = 0;
if (arm_cspmu_apmt_node(cspmu->dev))
ret = arm_cspmu_acpi_get_cpus(cspmu);
else if (device_property_present(cspmu->dev, "cpus"))
ret = arm_cspmu_of_get_cpus(cspmu);
else
cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
ret = -ENODEV;
}
return ret;
}
static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
{
int ret, capabilities;
ret = arm_cspmu_alloc_attr_groups(cspmu);
if (ret)
return ret;
ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
&cspmu->cpuhp_node);
if (ret)
return ret;
capabilities = PERF_PMU_CAP_NO_EXCLUDE;
if (cspmu->irq == 0)
capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
cspmu->pmu = (struct pmu){
.task_ctx_nr = perf_invalid_context,
.module = cspmu->impl.module,
.pmu_enable = arm_cspmu_enable,
.pmu_disable = arm_cspmu_disable,
.event_init = arm_cspmu_event_init,
.add = arm_cspmu_add,
.del = arm_cspmu_del,
.start = arm_cspmu_start,
.stop = arm_cspmu_stop,
.read = arm_cspmu_read,
.attr_groups = cspmu->attr_groups,
.capabilities = capabilities,
};
/* Hardware counter init */
arm_cspmu_reset_counters(cspmu);
ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
if (ret) {
cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
&cspmu->cpuhp_node);
}
return ret;
}
static int arm_cspmu_device_probe(struct platform_device *pdev)
{
int ret;
struct arm_cspmu *cspmu;
cspmu = arm_cspmu_alloc(pdev);
if (!cspmu)
return -ENOMEM;
ret = arm_cspmu_init_mmio(cspmu);
if (ret)
return ret;
ret = arm_cspmu_request_irq(cspmu);
if (ret)
return ret;
ret = arm_cspmu_get_cpus(cspmu);
if (ret)
return ret;
ret = arm_cspmu_init_impl_ops(cspmu);
if (ret)
return ret;
ret = arm_cspmu_register_pmu(cspmu);
/* Matches arm_cspmu_init_impl_ops() above. */
if (cspmu->impl.module != THIS_MODULE)
module_put(cspmu->impl.module);
return ret;
}
static void arm_cspmu_device_remove(struct platform_device *pdev)
{
struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
perf_pmu_unregister(&cspmu->pmu);
cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
}
static const struct platform_device_id arm_cspmu_id[] = {
{DRVNAME, 0},
{ },
};
MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
static const struct of_device_id arm_cspmu_of_match[] = {
{ .compatible = "arm,coresight-pmu" },
{}
};
MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
static struct platform_driver arm_cspmu_driver = {
.driver = {
.name = DRVNAME,
.of_match_table = arm_cspmu_of_match,
.suppress_bind_attrs = true,
},
.probe = arm_cspmu_device_probe,
.remove_new = arm_cspmu_device_remove,
.id_table = arm_cspmu_id,
};
static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
{
cpumask_set_cpu(cpu, &cspmu->active_cpu);
if (cspmu->irq)
WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
}
static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
{
struct arm_cspmu *cspmu =
hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
return 0;
/* If the PMU is already managed, there is nothing to do */
if (!cpumask_empty(&cspmu->active_cpu))
return 0;
/* Use this CPU for event counting */
arm_cspmu_set_active_cpu(cpu, cspmu);
return 0;
}
static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
{
int dst;
struct cpumask online_supported;
struct arm_cspmu *cspmu =
hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
/* Nothing to do if this CPU doesn't own the PMU */
if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
return 0;
/* Choose a new CPU to migrate ownership of the PMU to */
cpumask_and(&online_supported, &cspmu->associated_cpus,
cpu_online_mask);
dst = cpumask_any_but(&online_supported, cpu);
if (dst >= nr_cpu_ids)
return 0;
/* Use this CPU for event counting */
perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
arm_cspmu_set_active_cpu(dst, cspmu);
return 0;
}
static int __init arm_cspmu_init(void)
{
int ret;
ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
"perf/arm/cspmu:online",
arm_cspmu_cpu_online,
arm_cspmu_cpu_teardown);
if (ret < 0)
return ret;
arm_cspmu_cpuhp_state = ret;
return platform_driver_register(&arm_cspmu_driver);
}
static void __exit arm_cspmu_exit(void)
{
platform_driver_unregister(&arm_cspmu_driver);
cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
}
int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
{
struct arm_cspmu_impl_match *match;
int ret = 0;
match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
if (match) {
mutex_lock(&arm_cspmu_lock);
if (!match->impl_init_ops) {
match->module = impl_match->module;
match->impl_init_ops = impl_match->impl_init_ops;
} else {
/* Broken match table may contain non-unique entries */
WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
match->module_name,
match->pmiidr_val,
match->pmiidr_mask);
ret = -EINVAL;
}
mutex_unlock(&arm_cspmu_lock);
if (!ret)
ret = driver_attach(&arm_cspmu_driver.driver);
} else {
pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
impl_match->pmiidr_val);
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
static int arm_cspmu_match_device(struct device *dev, const void *match)
{
struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
return (cspmu && cspmu->impl.match == match) ? 1 : 0;
}
void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
{
struct device *dev;
struct arm_cspmu_impl_match *match;
match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
if (WARN_ON(!match))
return;
/* Unbind the driver from all matching backend devices. */
while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
match, arm_cspmu_match_device)))
device_release_driver(dev);
mutex_lock(&arm_cspmu_lock);
match->module = NULL;
match->impl_init_ops = NULL;
mutex_unlock(&arm_cspmu_lock);
}
EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
module_init(arm_cspmu_init);
module_exit(arm_cspmu_exit);
MODULE_LICENSE("GPL v2");