| /* | 
 |  *	SGI UltraViolet TLB flush routines. | 
 |  * | 
 |  *	(c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI. | 
 |  * | 
 |  *	This code is released under the GNU General Public License version 2 or | 
 |  *	later. | 
 |  */ | 
 | #include <linux/seq_file.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/uv/uv.h> | 
 | #include <asm/uv/uv_mmrs.h> | 
 | #include <asm/uv/uv_hub.h> | 
 | #include <asm/uv/uv_bau.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/idle.h> | 
 | #include <asm/tsc.h> | 
 | #include <asm/irq_vectors.h> | 
 | #include <asm/timer.h> | 
 |  | 
 | /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */ | 
 | static int timeout_base_ns[] = { | 
 | 		20, | 
 | 		160, | 
 | 		1280, | 
 | 		10240, | 
 | 		81920, | 
 | 		655360, | 
 | 		5242880, | 
 | 		167772160 | 
 | }; | 
 | static int timeout_us; | 
 | static int nobau; | 
 | static int baudisabled; | 
 | static spinlock_t disable_lock; | 
 | static cycles_t congested_cycles; | 
 |  | 
 | /* tunables: */ | 
 | static int max_bau_concurrent = MAX_BAU_CONCURRENT; | 
 | static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT; | 
 | static int plugged_delay = PLUGGED_DELAY; | 
 | static int plugsb4reset = PLUGSB4RESET; | 
 | static int timeoutsb4reset = TIMEOUTSB4RESET; | 
 | static int ipi_reset_limit = IPI_RESET_LIMIT; | 
 | static int complete_threshold = COMPLETE_THRESHOLD; | 
 | static int congested_response_us = CONGESTED_RESPONSE_US; | 
 | static int congested_reps = CONGESTED_REPS; | 
 | static int congested_period = CONGESTED_PERIOD; | 
 | static struct dentry *tunables_dir; | 
 | static struct dentry *tunables_file; | 
 |  | 
 | static int __init setup_nobau(char *arg) | 
 | { | 
 | 	nobau = 1; | 
 | 	return 0; | 
 | } | 
 | early_param("nobau", setup_nobau); | 
 |  | 
 | /* base pnode in this partition */ | 
 | static int uv_partition_base_pnode __read_mostly; | 
 | /* position of pnode (which is nasid>>1): */ | 
 | static int uv_nshift __read_mostly; | 
 | static unsigned long uv_mmask __read_mostly; | 
 |  | 
 | static DEFINE_PER_CPU(struct ptc_stats, ptcstats); | 
 | static DEFINE_PER_CPU(struct bau_control, bau_control); | 
 | static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); | 
 |  | 
 | /* | 
 |  * Determine the first node on a uvhub. 'Nodes' are used for kernel | 
 |  * memory allocation. | 
 |  */ | 
 | static int __init uvhub_to_first_node(int uvhub) | 
 | { | 
 | 	int node, b; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		b = uv_node_to_blade_id(node); | 
 | 		if (uvhub == b) | 
 | 			return node; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the apicid of the first cpu on a uvhub. | 
 |  */ | 
 | static int __init uvhub_to_first_apicid(int uvhub) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_present_cpu(cpu) | 
 | 		if (uvhub == uv_cpu_to_blade_id(cpu)) | 
 | 			return per_cpu(x86_cpu_to_apicid, cpu); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a software acknowledge hardware resource by clearing its Pending | 
 |  * bit. This will return a reply to the sender. | 
 |  * If the message has timed out, a reply has already been sent by the | 
 |  * hardware but the resource has not been released. In that case our | 
 |  * clear of the Timeout bit (as well) will free the resource. No reply will | 
 |  * be sent (the hardware will only do one reply per message). | 
 |  */ | 
 | static inline void uv_reply_to_message(struct msg_desc *mdp, | 
 | 				       struct bau_control *bcp) | 
 | { | 
 | 	unsigned long dw; | 
 | 	struct bau_payload_queue_entry *msg; | 
 |  | 
 | 	msg = mdp->msg; | 
 | 	if (!msg->canceled) { | 
 | 		dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) | | 
 | 						msg->sw_ack_vector; | 
 | 		uv_write_local_mmr( | 
 | 				UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); | 
 | 	} | 
 | 	msg->replied_to = 1; | 
 | 	msg->sw_ack_vector = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Process the receipt of a RETRY message | 
 |  */ | 
 | static inline void uv_bau_process_retry_msg(struct msg_desc *mdp, | 
 | 					    struct bau_control *bcp) | 
 | { | 
 | 	int i; | 
 | 	int cancel_count = 0; | 
 | 	int slot2; | 
 | 	unsigned long msg_res; | 
 | 	unsigned long mmr = 0; | 
 | 	struct bau_payload_queue_entry *msg; | 
 | 	struct bau_payload_queue_entry *msg2; | 
 | 	struct ptc_stats *stat; | 
 |  | 
 | 	msg = mdp->msg; | 
 | 	stat = bcp->statp; | 
 | 	stat->d_retries++; | 
 | 	/* | 
 | 	 * cancel any message from msg+1 to the retry itself | 
 | 	 */ | 
 | 	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { | 
 | 		if (msg2 > mdp->va_queue_last) | 
 | 			msg2 = mdp->va_queue_first; | 
 | 		if (msg2 == msg) | 
 | 			break; | 
 |  | 
 | 		/* same conditions for cancellation as uv_do_reset */ | 
 | 		if ((msg2->replied_to == 0) && (msg2->canceled == 0) && | 
 | 		    (msg2->sw_ack_vector) && ((msg2->sw_ack_vector & | 
 | 			msg->sw_ack_vector) == 0) && | 
 | 		    (msg2->sending_cpu == msg->sending_cpu) && | 
 | 		    (msg2->msg_type != MSG_NOOP)) { | 
 | 			slot2 = msg2 - mdp->va_queue_first; | 
 | 			mmr = uv_read_local_mmr | 
 | 				(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); | 
 | 			msg_res = msg2->sw_ack_vector; | 
 | 			/* | 
 | 			 * This is a message retry; clear the resources held | 
 | 			 * by the previous message only if they timed out. | 
 | 			 * If it has not timed out we have an unexpected | 
 | 			 * situation to report. | 
 | 			 */ | 
 | 			if (mmr & (msg_res << UV_SW_ACK_NPENDING)) { | 
 | 				/* | 
 | 				 * is the resource timed out? | 
 | 				 * make everyone ignore the cancelled message. | 
 | 				 */ | 
 | 				msg2->canceled = 1; | 
 | 				stat->d_canceled++; | 
 | 				cancel_count++; | 
 | 				uv_write_local_mmr( | 
 | 				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, | 
 | 					(msg_res << UV_SW_ACK_NPENDING) | | 
 | 					 msg_res); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (!cancel_count) | 
 | 		stat->d_nocanceled++; | 
 | } | 
 |  | 
 | /* | 
 |  * Do all the things a cpu should do for a TLB shootdown message. | 
 |  * Other cpu's may come here at the same time for this message. | 
 |  */ | 
 | static void uv_bau_process_message(struct msg_desc *mdp, | 
 | 				   struct bau_control *bcp) | 
 | { | 
 | 	int msg_ack_count; | 
 | 	short socket_ack_count = 0; | 
 | 	struct ptc_stats *stat; | 
 | 	struct bau_payload_queue_entry *msg; | 
 | 	struct bau_control *smaster = bcp->socket_master; | 
 |  | 
 | 	/* | 
 | 	 * This must be a normal message, or retry of a normal message | 
 | 	 */ | 
 | 	msg = mdp->msg; | 
 | 	stat = bcp->statp; | 
 | 	if (msg->address == TLB_FLUSH_ALL) { | 
 | 		local_flush_tlb(); | 
 | 		stat->d_alltlb++; | 
 | 	} else { | 
 | 		__flush_tlb_one(msg->address); | 
 | 		stat->d_onetlb++; | 
 | 	} | 
 | 	stat->d_requestee++; | 
 |  | 
 | 	/* | 
 | 	 * One cpu on each uvhub has the additional job on a RETRY | 
 | 	 * of releasing the resource held by the message that is | 
 | 	 * being retried.  That message is identified by sending | 
 | 	 * cpu number. | 
 | 	 */ | 
 | 	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) | 
 | 		uv_bau_process_retry_msg(mdp, bcp); | 
 |  | 
 | 	/* | 
 | 	 * This is a sw_ack message, so we have to reply to it. | 
 | 	 * Count each responding cpu on the socket. This avoids | 
 | 	 * pinging the count's cache line back and forth between | 
 | 	 * the sockets. | 
 | 	 */ | 
 | 	socket_ack_count = atomic_add_short_return(1, (struct atomic_short *) | 
 | 			&smaster->socket_acknowledge_count[mdp->msg_slot]); | 
 | 	if (socket_ack_count == bcp->cpus_in_socket) { | 
 | 		/* | 
 | 		 * Both sockets dump their completed count total into | 
 | 		 * the message's count. | 
 | 		 */ | 
 | 		smaster->socket_acknowledge_count[mdp->msg_slot] = 0; | 
 | 		msg_ack_count = atomic_add_short_return(socket_ack_count, | 
 | 				(struct atomic_short *)&msg->acknowledge_count); | 
 |  | 
 | 		if (msg_ack_count == bcp->cpus_in_uvhub) { | 
 | 			/* | 
 | 			 * All cpus in uvhub saw it; reply | 
 | 			 */ | 
 | 			uv_reply_to_message(mdp, bcp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the first cpu on a uvhub. | 
 |  */ | 
 | static int uvhub_to_first_cpu(int uvhub) | 
 | { | 
 | 	int cpu; | 
 | 	for_each_present_cpu(cpu) | 
 | 		if (uvhub == uv_cpu_to_blade_id(cpu)) | 
 | 			return cpu; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Last resort when we get a large number of destination timeouts is | 
 |  * to clear resources held by a given cpu. | 
 |  * Do this with IPI so that all messages in the BAU message queue | 
 |  * can be identified by their nonzero sw_ack_vector field. | 
 |  * | 
 |  * This is entered for a single cpu on the uvhub. | 
 |  * The sender want's this uvhub to free a specific message's | 
 |  * sw_ack resources. | 
 |  */ | 
 | static void | 
 | uv_do_reset(void *ptr) | 
 | { | 
 | 	int i; | 
 | 	int slot; | 
 | 	int count = 0; | 
 | 	unsigned long mmr; | 
 | 	unsigned long msg_res; | 
 | 	struct bau_control *bcp; | 
 | 	struct reset_args *rap; | 
 | 	struct bau_payload_queue_entry *msg; | 
 | 	struct ptc_stats *stat; | 
 |  | 
 | 	bcp = &per_cpu(bau_control, smp_processor_id()); | 
 | 	rap = (struct reset_args *)ptr; | 
 | 	stat = bcp->statp; | 
 | 	stat->d_resets++; | 
 |  | 
 | 	/* | 
 | 	 * We're looking for the given sender, and | 
 | 	 * will free its sw_ack resource. | 
 | 	 * If all cpu's finally responded after the timeout, its | 
 | 	 * message 'replied_to' was set. | 
 | 	 */ | 
 | 	for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { | 
 | 		/* uv_do_reset: same conditions for cancellation as | 
 | 		   uv_bau_process_retry_msg() */ | 
 | 		if ((msg->replied_to == 0) && | 
 | 		    (msg->canceled == 0) && | 
 | 		    (msg->sending_cpu == rap->sender) && | 
 | 		    (msg->sw_ack_vector) && | 
 | 		    (msg->msg_type != MSG_NOOP)) { | 
 | 			/* | 
 | 			 * make everyone else ignore this message | 
 | 			 */ | 
 | 			msg->canceled = 1; | 
 | 			slot = msg - bcp->va_queue_first; | 
 | 			count++; | 
 | 			/* | 
 | 			 * only reset the resource if it is still pending | 
 | 			 */ | 
 | 			mmr = uv_read_local_mmr | 
 | 					(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); | 
 | 			msg_res = msg->sw_ack_vector; | 
 | 			if (mmr & msg_res) { | 
 | 				stat->d_rcanceled++; | 
 | 				uv_write_local_mmr( | 
 | 				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, | 
 | 					(msg_res << UV_SW_ACK_NPENDING) | | 
 | 					 msg_res); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Use IPI to get all target uvhubs to release resources held by | 
 |  * a given sending cpu number. | 
 |  */ | 
 | static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution, | 
 | 			      int sender) | 
 | { | 
 | 	int uvhub; | 
 | 	int cpu; | 
 | 	cpumask_t mask; | 
 | 	struct reset_args reset_args; | 
 |  | 
 | 	reset_args.sender = sender; | 
 |  | 
 | 	cpus_clear(mask); | 
 | 	/* find a single cpu for each uvhub in this distribution mask */ | 
 | 	for (uvhub = 0; | 
 | 		    uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE; | 
 | 		    uvhub++) { | 
 | 		if (!bau_uvhub_isset(uvhub, distribution)) | 
 | 			continue; | 
 | 		/* find a cpu for this uvhub */ | 
 | 		cpu = uvhub_to_first_cpu(uvhub); | 
 | 		cpu_set(cpu, mask); | 
 | 	} | 
 | 	/* IPI all cpus; Preemption is already disabled */ | 
 | 	smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1); | 
 | 	return; | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | cycles_2_us(unsigned long long cyc) | 
 | { | 
 | 	unsigned long long ns; | 
 | 	unsigned long us; | 
 | 	ns =  (cyc * per_cpu(cyc2ns, smp_processor_id())) | 
 | 						>> CYC2NS_SCALE_FACTOR; | 
 | 	us = ns / 1000; | 
 | 	return us; | 
 | } | 
 |  | 
 | /* | 
 |  * wait for all cpus on this hub to finish their sends and go quiet | 
 |  * leaves uvhub_quiesce set so that no new broadcasts are started by | 
 |  * bau_flush_send_and_wait() | 
 |  */ | 
 | static inline void | 
 | quiesce_local_uvhub(struct bau_control *hmaster) | 
 | { | 
 | 	atomic_add_short_return(1, (struct atomic_short *) | 
 | 		 &hmaster->uvhub_quiesce); | 
 | } | 
 |  | 
 | /* | 
 |  * mark this quiet-requestor as done | 
 |  */ | 
 | static inline void | 
 | end_uvhub_quiesce(struct bau_control *hmaster) | 
 | { | 
 | 	atomic_add_short_return(-1, (struct atomic_short *) | 
 | 		&hmaster->uvhub_quiesce); | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for completion of a broadcast software ack message | 
 |  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP | 
 |  */ | 
 | static int uv_wait_completion(struct bau_desc *bau_desc, | 
 | 	unsigned long mmr_offset, int right_shift, int this_cpu, | 
 | 	struct bau_control *bcp, struct bau_control *smaster, long try) | 
 | { | 
 | 	unsigned long descriptor_status; | 
 | 	cycles_t ttime; | 
 | 	struct ptc_stats *stat = bcp->statp; | 
 | 	struct bau_control *hmaster; | 
 |  | 
 | 	hmaster = bcp->uvhub_master; | 
 |  | 
 | 	/* spin on the status MMR, waiting for it to go idle */ | 
 | 	while ((descriptor_status = (((unsigned long) | 
 | 		uv_read_local_mmr(mmr_offset) >> | 
 | 			right_shift) & UV_ACT_STATUS_MASK)) != | 
 | 			DESC_STATUS_IDLE) { | 
 | 		/* | 
 | 		 * Our software ack messages may be blocked because there are | 
 | 		 * no swack resources available.  As long as none of them | 
 | 		 * has timed out hardware will NACK our message and its | 
 | 		 * state will stay IDLE. | 
 | 		 */ | 
 | 		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { | 
 | 			stat->s_stimeout++; | 
 | 			return FLUSH_GIVEUP; | 
 | 		} else if (descriptor_status == | 
 | 					DESC_STATUS_DESTINATION_TIMEOUT) { | 
 | 			stat->s_dtimeout++; | 
 | 			ttime = get_cycles(); | 
 |  | 
 | 			/* | 
 | 			 * Our retries may be blocked by all destination | 
 | 			 * swack resources being consumed, and a timeout | 
 | 			 * pending.  In that case hardware returns the | 
 | 			 * ERROR that looks like a destination timeout. | 
 | 			 */ | 
 | 			if (cycles_2_us(ttime - bcp->send_message) < | 
 | 							timeout_us) { | 
 | 				bcp->conseccompletes = 0; | 
 | 				return FLUSH_RETRY_PLUGGED; | 
 | 			} | 
 |  | 
 | 			bcp->conseccompletes = 0; | 
 | 			return FLUSH_RETRY_TIMEOUT; | 
 | 		} else { | 
 | 			/* | 
 | 			 * descriptor_status is still BUSY | 
 | 			 */ | 
 | 			cpu_relax(); | 
 | 		} | 
 | 	} | 
 | 	bcp->conseccompletes++; | 
 | 	return FLUSH_COMPLETE; | 
 | } | 
 |  | 
 | static inline cycles_t | 
 | sec_2_cycles(unsigned long sec) | 
 | { | 
 | 	unsigned long ns; | 
 | 	cycles_t cyc; | 
 |  | 
 | 	ns = sec * 1000000000; | 
 | 	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | 
 | 	return cyc; | 
 | } | 
 |  | 
 | /* | 
 |  * conditionally add 1 to *v, unless *v is >= u | 
 |  * return 0 if we cannot add 1 to *v because it is >= u | 
 |  * return 1 if we can add 1 to *v because it is < u | 
 |  * the add is atomic | 
 |  * | 
 |  * This is close to atomic_add_unless(), but this allows the 'u' value | 
 |  * to be lowered below the current 'v'.  atomic_add_unless can only stop | 
 |  * on equal. | 
 |  */ | 
 | static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u) | 
 | { | 
 | 	spin_lock(lock); | 
 | 	if (atomic_read(v) >= u) { | 
 | 		spin_unlock(lock); | 
 | 		return 0; | 
 | 	} | 
 | 	atomic_inc(v); | 
 | 	spin_unlock(lock); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Our retries are blocked by all destination swack resources being | 
 |  * in use, and a timeout is pending. In that case hardware immediately | 
 |  * returns the ERROR that looks like a destination timeout. | 
 |  */ | 
 | static void | 
 | destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp, | 
 | 			struct bau_control *hmaster, struct ptc_stats *stat) | 
 | { | 
 | 	udelay(bcp->plugged_delay); | 
 | 	bcp->plugged_tries++; | 
 | 	if (bcp->plugged_tries >= bcp->plugsb4reset) { | 
 | 		bcp->plugged_tries = 0; | 
 | 		quiesce_local_uvhub(hmaster); | 
 | 		spin_lock(&hmaster->queue_lock); | 
 | 		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu); | 
 | 		spin_unlock(&hmaster->queue_lock); | 
 | 		end_uvhub_quiesce(hmaster); | 
 | 		bcp->ipi_attempts++; | 
 | 		stat->s_resets_plug++; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp, | 
 | 			struct bau_control *hmaster, struct ptc_stats *stat) | 
 | { | 
 | 	hmaster->max_bau_concurrent = 1; | 
 | 	bcp->timeout_tries++; | 
 | 	if (bcp->timeout_tries >= bcp->timeoutsb4reset) { | 
 | 		bcp->timeout_tries = 0; | 
 | 		quiesce_local_uvhub(hmaster); | 
 | 		spin_lock(&hmaster->queue_lock); | 
 | 		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu); | 
 | 		spin_unlock(&hmaster->queue_lock); | 
 | 		end_uvhub_quiesce(hmaster); | 
 | 		bcp->ipi_attempts++; | 
 | 		stat->s_resets_timeout++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Completions are taking a very long time due to a congested numalink | 
 |  * network. | 
 |  */ | 
 | static void | 
 | disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat) | 
 | { | 
 | 	int tcpu; | 
 | 	struct bau_control *tbcp; | 
 |  | 
 | 	/* let only one cpu do this disabling */ | 
 | 	spin_lock(&disable_lock); | 
 | 	if (!baudisabled && bcp->period_requests && | 
 | 	    ((bcp->period_time / bcp->period_requests) > congested_cycles)) { | 
 | 		/* it becomes this cpu's job to turn on the use of the | 
 | 		   BAU again */ | 
 | 		baudisabled = 1; | 
 | 		bcp->set_bau_off = 1; | 
 | 		bcp->set_bau_on_time = get_cycles() + | 
 | 			sec_2_cycles(bcp->congested_period); | 
 | 		stat->s_bau_disabled++; | 
 | 		for_each_present_cpu(tcpu) { | 
 | 			tbcp = &per_cpu(bau_control, tcpu); | 
 | 				tbcp->baudisabled = 1; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&disable_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * uv_flush_send_and_wait | 
 |  * | 
 |  * Send a broadcast and wait for it to complete. | 
 |  * | 
 |  * The flush_mask contains the cpus the broadcast is to be sent to including | 
 |  * cpus that are on the local uvhub. | 
 |  * | 
 |  * Returns 0 if all flushing represented in the mask was done. | 
 |  * Returns 1 if it gives up entirely and the original cpu mask is to be | 
 |  * returned to the kernel. | 
 |  */ | 
 | int uv_flush_send_and_wait(struct bau_desc *bau_desc, | 
 | 			   struct cpumask *flush_mask, struct bau_control *bcp) | 
 | { | 
 | 	int right_shift; | 
 | 	int completion_status = 0; | 
 | 	int seq_number = 0; | 
 | 	long try = 0; | 
 | 	int cpu = bcp->uvhub_cpu; | 
 | 	int this_cpu = bcp->cpu; | 
 | 	unsigned long mmr_offset; | 
 | 	unsigned long index; | 
 | 	cycles_t time1; | 
 | 	cycles_t time2; | 
 | 	cycles_t elapsed; | 
 | 	struct ptc_stats *stat = bcp->statp; | 
 | 	struct bau_control *smaster = bcp->socket_master; | 
 | 	struct bau_control *hmaster = bcp->uvhub_master; | 
 |  | 
 | 	if (!atomic_inc_unless_ge(&hmaster->uvhub_lock, | 
 | 			&hmaster->active_descriptor_count, | 
 | 			hmaster->max_bau_concurrent)) { | 
 | 		stat->s_throttles++; | 
 | 		do { | 
 | 			cpu_relax(); | 
 | 		} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock, | 
 | 			&hmaster->active_descriptor_count, | 
 | 			hmaster->max_bau_concurrent)); | 
 | 	} | 
 | 	while (hmaster->uvhub_quiesce) | 
 | 		cpu_relax(); | 
 |  | 
 | 	if (cpu < UV_CPUS_PER_ACT_STATUS) { | 
 | 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; | 
 | 		right_shift = cpu * UV_ACT_STATUS_SIZE; | 
 | 	} else { | 
 | 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; | 
 | 		right_shift = | 
 | 		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); | 
 | 	} | 
 | 	time1 = get_cycles(); | 
 | 	do { | 
 | 		if (try == 0) { | 
 | 			bau_desc->header.msg_type = MSG_REGULAR; | 
 | 			seq_number = bcp->message_number++; | 
 | 		} else { | 
 | 			bau_desc->header.msg_type = MSG_RETRY; | 
 | 			stat->s_retry_messages++; | 
 | 		} | 
 | 		bau_desc->header.sequence = seq_number; | 
 | 		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | | 
 | 			bcp->uvhub_cpu; | 
 | 		bcp->send_message = get_cycles(); | 
 | 		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); | 
 | 		try++; | 
 | 		completion_status = uv_wait_completion(bau_desc, mmr_offset, | 
 | 			right_shift, this_cpu, bcp, smaster, try); | 
 |  | 
 | 		if (completion_status == FLUSH_RETRY_PLUGGED) { | 
 | 			destination_plugged(bau_desc, bcp, hmaster, stat); | 
 | 		} else if (completion_status == FLUSH_RETRY_TIMEOUT) { | 
 | 			destination_timeout(bau_desc, bcp, hmaster, stat); | 
 | 		} | 
 | 		if (bcp->ipi_attempts >= bcp->ipi_reset_limit) { | 
 | 			bcp->ipi_attempts = 0; | 
 | 			completion_status = FLUSH_GIVEUP; | 
 | 			break; | 
 | 		} | 
 | 		cpu_relax(); | 
 | 	} while ((completion_status == FLUSH_RETRY_PLUGGED) || | 
 | 		 (completion_status == FLUSH_RETRY_TIMEOUT)); | 
 | 	time2 = get_cycles(); | 
 | 	bcp->plugged_tries = 0; | 
 | 	bcp->timeout_tries = 0; | 
 | 	if ((completion_status == FLUSH_COMPLETE) && | 
 | 	    (bcp->conseccompletes > bcp->complete_threshold) && | 
 | 	    (hmaster->max_bau_concurrent < | 
 | 					hmaster->max_bau_concurrent_constant)) | 
 | 			hmaster->max_bau_concurrent++; | 
 | 	while (hmaster->uvhub_quiesce) | 
 | 		cpu_relax(); | 
 | 	atomic_dec(&hmaster->active_descriptor_count); | 
 | 	if (time2 > time1) { | 
 | 		elapsed = time2 - time1; | 
 | 		stat->s_time += elapsed; | 
 | 		if ((completion_status == FLUSH_COMPLETE) && (try == 1)) { | 
 | 			bcp->period_requests++; | 
 | 			bcp->period_time += elapsed; | 
 | 			if ((elapsed > congested_cycles) && | 
 | 			    (bcp->period_requests > bcp->congested_reps)) { | 
 | 				disable_for_congestion(bcp, stat); | 
 | 			} | 
 | 		} | 
 | 	} else | 
 | 		stat->s_requestor--; | 
 | 	if (completion_status == FLUSH_COMPLETE && try > 1) | 
 | 		stat->s_retriesok++; | 
 | 	else if (completion_status == FLUSH_GIVEUP) { | 
 | 		stat->s_giveup++; | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * uv_flush_tlb_others - globally purge translation cache of a virtual | 
 |  * address or all TLB's | 
 |  * @cpumask: mask of all cpu's in which the address is to be removed | 
 |  * @mm: mm_struct containing virtual address range | 
 |  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) | 
 |  * @cpu: the current cpu | 
 |  * | 
 |  * This is the entry point for initiating any UV global TLB shootdown. | 
 |  * | 
 |  * Purges the translation caches of all specified processors of the given | 
 |  * virtual address, or purges all TLB's on specified processors. | 
 |  * | 
 |  * The caller has derived the cpumask from the mm_struct.  This function | 
 |  * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) | 
 |  * | 
 |  * The cpumask is converted into a uvhubmask of the uvhubs containing | 
 |  * those cpus. | 
 |  * | 
 |  * Note that this function should be called with preemption disabled. | 
 |  * | 
 |  * Returns NULL if all remote flushing was done. | 
 |  * Returns pointer to cpumask if some remote flushing remains to be | 
 |  * done.  The returned pointer is valid till preemption is re-enabled. | 
 |  */ | 
 | const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, | 
 | 					  struct mm_struct *mm, | 
 | 					  unsigned long va, unsigned int cpu) | 
 | { | 
 | 	int tcpu; | 
 | 	int uvhub; | 
 | 	int locals = 0; | 
 | 	int remotes = 0; | 
 | 	int hubs = 0; | 
 | 	struct bau_desc *bau_desc; | 
 | 	struct cpumask *flush_mask; | 
 | 	struct ptc_stats *stat; | 
 | 	struct bau_control *bcp; | 
 | 	struct bau_control *tbcp; | 
 |  | 
 | 	/* kernel was booted 'nobau' */ | 
 | 	if (nobau) | 
 | 		return cpumask; | 
 |  | 
 | 	bcp = &per_cpu(bau_control, cpu); | 
 | 	stat = bcp->statp; | 
 |  | 
 | 	/* bau was disabled due to slow response */ | 
 | 	if (bcp->baudisabled) { | 
 | 		/* the cpu that disabled it must re-enable it */ | 
 | 		if (bcp->set_bau_off) { | 
 | 			if (get_cycles() >= bcp->set_bau_on_time) { | 
 | 				stat->s_bau_reenabled++; | 
 | 				baudisabled = 0; | 
 | 				for_each_present_cpu(tcpu) { | 
 | 					tbcp = &per_cpu(bau_control, tcpu); | 
 | 					tbcp->baudisabled = 0; | 
 | 					tbcp->period_requests = 0; | 
 | 					tbcp->period_time = 0; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		return cpumask; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Each sending cpu has a per-cpu mask which it fills from the caller's | 
 | 	 * cpu mask.  All cpus are converted to uvhubs and copied to the | 
 | 	 * activation descriptor. | 
 | 	 */ | 
 | 	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); | 
 | 	/* don't actually do a shootdown of the local cpu */ | 
 | 	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); | 
 | 	if (cpu_isset(cpu, *cpumask)) | 
 | 		stat->s_ntargself++; | 
 |  | 
 | 	bau_desc = bcp->descriptor_base; | 
 | 	bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu; | 
 | 	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); | 
 |  | 
 | 	/* cpu statistics */ | 
 | 	for_each_cpu(tcpu, flush_mask) { | 
 | 		uvhub = uv_cpu_to_blade_id(tcpu); | 
 | 		bau_uvhub_set(uvhub, &bau_desc->distribution); | 
 | 		if (uvhub == bcp->uvhub) | 
 | 			locals++; | 
 | 		else | 
 | 			remotes++; | 
 | 	} | 
 | 	if ((locals + remotes) == 0) | 
 | 		return NULL; | 
 | 	stat->s_requestor++; | 
 | 	stat->s_ntargcpu += remotes + locals; | 
 | 	stat->s_ntargremotes += remotes; | 
 | 	stat->s_ntarglocals += locals; | 
 | 	remotes = bau_uvhub_weight(&bau_desc->distribution); | 
 |  | 
 | 	/* uvhub statistics */ | 
 | 	hubs = bau_uvhub_weight(&bau_desc->distribution); | 
 | 	if (locals) { | 
 | 		stat->s_ntarglocaluvhub++; | 
 | 		stat->s_ntargremoteuvhub += (hubs - 1); | 
 | 	} else | 
 | 		stat->s_ntargremoteuvhub += hubs; | 
 | 	stat->s_ntarguvhub += hubs; | 
 | 	if (hubs >= 16) | 
 | 		stat->s_ntarguvhub16++; | 
 | 	else if (hubs >= 8) | 
 | 		stat->s_ntarguvhub8++; | 
 | 	else if (hubs >= 4) | 
 | 		stat->s_ntarguvhub4++; | 
 | 	else if (hubs >= 2) | 
 | 		stat->s_ntarguvhub2++; | 
 | 	else | 
 | 		stat->s_ntarguvhub1++; | 
 |  | 
 | 	bau_desc->payload.address = va; | 
 | 	bau_desc->payload.sending_cpu = cpu; | 
 |  | 
 | 	/* | 
 | 	 * uv_flush_send_and_wait returns 0 if all cpu's were messaged, | 
 | 	 * or 1 if it gave up and the original cpumask should be returned. | 
 | 	 */ | 
 | 	if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp)) | 
 | 		return NULL; | 
 | 	else | 
 | 		return cpumask; | 
 | } | 
 |  | 
 | /* | 
 |  * The BAU message interrupt comes here. (registered by set_intr_gate) | 
 |  * See entry_64.S | 
 |  * | 
 |  * We received a broadcast assist message. | 
 |  * | 
 |  * Interrupts are disabled; this interrupt could represent | 
 |  * the receipt of several messages. | 
 |  * | 
 |  * All cores/threads on this hub get this interrupt. | 
 |  * The last one to see it does the software ack. | 
 |  * (the resource will not be freed until noninterruptable cpus see this | 
 |  *  interrupt; hardware may timeout the s/w ack and reply ERROR) | 
 |  */ | 
 | void uv_bau_message_interrupt(struct pt_regs *regs) | 
 | { | 
 | 	int count = 0; | 
 | 	cycles_t time_start; | 
 | 	struct bau_payload_queue_entry *msg; | 
 | 	struct bau_control *bcp; | 
 | 	struct ptc_stats *stat; | 
 | 	struct msg_desc msgdesc; | 
 |  | 
 | 	time_start = get_cycles(); | 
 | 	bcp = &per_cpu(bau_control, smp_processor_id()); | 
 | 	stat = bcp->statp; | 
 | 	msgdesc.va_queue_first = bcp->va_queue_first; | 
 | 	msgdesc.va_queue_last = bcp->va_queue_last; | 
 | 	msg = bcp->bau_msg_head; | 
 | 	while (msg->sw_ack_vector) { | 
 | 		count++; | 
 | 		msgdesc.msg_slot = msg - msgdesc.va_queue_first; | 
 | 		msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1; | 
 | 		msgdesc.msg = msg; | 
 | 		uv_bau_process_message(&msgdesc, bcp); | 
 | 		msg++; | 
 | 		if (msg > msgdesc.va_queue_last) | 
 | 			msg = msgdesc.va_queue_first; | 
 | 		bcp->bau_msg_head = msg; | 
 | 	} | 
 | 	stat->d_time += (get_cycles() - time_start); | 
 | 	if (!count) | 
 | 		stat->d_nomsg++; | 
 | 	else if (count > 1) | 
 | 		stat->d_multmsg++; | 
 | 	ack_APIC_irq(); | 
 | } | 
 |  | 
 | /* | 
 |  * uv_enable_timeouts | 
 |  * | 
 |  * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have | 
 |  * shootdown message timeouts enabled.  The timeout does not cause | 
 |  * an interrupt, but causes an error message to be returned to | 
 |  * the sender. | 
 |  */ | 
 | static void uv_enable_timeouts(void) | 
 | { | 
 | 	int uvhub; | 
 | 	int nuvhubs; | 
 | 	int pnode; | 
 | 	unsigned long mmr_image; | 
 |  | 
 | 	nuvhubs = uv_num_possible_blades(); | 
 |  | 
 | 	for (uvhub = 0; uvhub < nuvhubs; uvhub++) { | 
 | 		if (!uv_blade_nr_possible_cpus(uvhub)) | 
 | 			continue; | 
 |  | 
 | 		pnode = uv_blade_to_pnode(uvhub); | 
 | 		mmr_image = | 
 | 		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL); | 
 | 		/* | 
 | 		 * Set the timeout period and then lock it in, in three | 
 | 		 * steps; captures and locks in the period. | 
 | 		 * | 
 | 		 * To program the period, the SOFT_ACK_MODE must be off. | 
 | 		 */ | 
 | 		mmr_image &= ~((unsigned long)1 << | 
 | 		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); | 
 | 		uv_write_global_mmr64 | 
 | 		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); | 
 | 		/* | 
 | 		 * Set the 4-bit period. | 
 | 		 */ | 
 | 		mmr_image &= ~((unsigned long)0xf << | 
 | 		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); | 
 | 		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << | 
 | 		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT); | 
 | 		uv_write_global_mmr64 | 
 | 		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); | 
 | 		/* | 
 | 		 * Subsequent reversals of the timebase bit (3) cause an | 
 | 		 * immediate timeout of one or all INTD resources as | 
 | 		 * indicated in bits 2:0 (7 causes all of them to timeout). | 
 | 		 */ | 
 | 		mmr_image |= ((unsigned long)1 << | 
 | 		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT); | 
 | 		uv_write_global_mmr64 | 
 | 		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); | 
 | 	} | 
 | } | 
 |  | 
 | static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) | 
 | { | 
 | 	if (*offset < num_possible_cpus()) | 
 | 		return offset; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) | 
 | { | 
 | 	(*offset)++; | 
 | 	if (*offset < num_possible_cpus()) | 
 | 		return offset; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void uv_ptc_seq_stop(struct seq_file *file, void *data) | 
 | { | 
 | } | 
 |  | 
 | static inline unsigned long long | 
 | microsec_2_cycles(unsigned long microsec) | 
 | { | 
 | 	unsigned long ns; | 
 | 	unsigned long long cyc; | 
 |  | 
 | 	ns = microsec * 1000; | 
 | 	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); | 
 | 	return cyc; | 
 | } | 
 |  | 
 | /* | 
 |  * Display the statistics thru /proc. | 
 |  * 'data' points to the cpu number | 
 |  */ | 
 | static int uv_ptc_seq_show(struct seq_file *file, void *data) | 
 | { | 
 | 	struct ptc_stats *stat; | 
 | 	int cpu; | 
 |  | 
 | 	cpu = *(loff_t *)data; | 
 |  | 
 | 	if (!cpu) { | 
 | 		seq_printf(file, | 
 | 			"# cpu sent stime self locals remotes ncpus localhub "); | 
 | 		seq_printf(file, | 
 | 			"remotehub numuvhubs numuvhubs16 numuvhubs8 "); | 
 | 		seq_printf(file, | 
 | 			"numuvhubs4 numuvhubs2 numuvhubs1 dto "); | 
 | 		seq_printf(file, | 
 | 			"retries rok resetp resett giveup sto bz throt "); | 
 | 		seq_printf(file, | 
 | 			"sw_ack recv rtime all "); | 
 | 		seq_printf(file, | 
 | 			"one mult none retry canc nocan reset rcan "); | 
 | 		seq_printf(file, | 
 | 			"disable enable\n"); | 
 | 	} | 
 | 	if (cpu < num_possible_cpus() && cpu_online(cpu)) { | 
 | 		stat = &per_cpu(ptcstats, cpu); | 
 | 		/* source side statistics */ | 
 | 		seq_printf(file, | 
 | 			"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", | 
 | 			   cpu, stat->s_requestor, cycles_2_us(stat->s_time), | 
 | 			   stat->s_ntargself, stat->s_ntarglocals, | 
 | 			   stat->s_ntargremotes, stat->s_ntargcpu, | 
 | 			   stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub, | 
 | 			   stat->s_ntarguvhub, stat->s_ntarguvhub16); | 
 | 		seq_printf(file, "%ld %ld %ld %ld %ld ", | 
 | 			   stat->s_ntarguvhub8, stat->s_ntarguvhub4, | 
 | 			   stat->s_ntarguvhub2, stat->s_ntarguvhub1, | 
 | 			   stat->s_dtimeout); | 
 | 		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", | 
 | 			   stat->s_retry_messages, stat->s_retriesok, | 
 | 			   stat->s_resets_plug, stat->s_resets_timeout, | 
 | 			   stat->s_giveup, stat->s_stimeout, | 
 | 			   stat->s_busy, stat->s_throttles); | 
 |  | 
 | 		/* destination side statistics */ | 
 | 		seq_printf(file, | 
 | 			   "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", | 
 | 			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu), | 
 | 					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), | 
 | 			   stat->d_requestee, cycles_2_us(stat->d_time), | 
 | 			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, | 
 | 			   stat->d_nomsg, stat->d_retries, stat->d_canceled, | 
 | 			   stat->d_nocanceled, stat->d_resets, | 
 | 			   stat->d_rcanceled); | 
 | 		seq_printf(file, "%ld %ld\n", | 
 | 			stat->s_bau_disabled, stat->s_bau_reenabled); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Display the tunables thru debugfs | 
 |  */ | 
 | static ssize_t tunables_read(struct file *file, char __user *userbuf, | 
 | 						size_t count, loff_t *ppos) | 
 | { | 
 | 	char buf[300]; | 
 | 	int ret; | 
 |  | 
 | 	ret = snprintf(buf, 300, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n", | 
 | 		"max_bau_concurrent plugged_delay plugsb4reset", | 
 | 		"timeoutsb4reset ipi_reset_limit complete_threshold", | 
 | 		"congested_response_us congested_reps congested_period", | 
 | 		max_bau_concurrent, plugged_delay, plugsb4reset, | 
 | 		timeoutsb4reset, ipi_reset_limit, complete_threshold, | 
 | 		congested_response_us, congested_reps, congested_period); | 
 |  | 
 | 	return simple_read_from_buffer(userbuf, count, ppos, buf, ret); | 
 | } | 
 |  | 
 | /* | 
 |  * -1: resetf the statistics | 
 |  *  0: display meaning of the statistics | 
 |  */ | 
 | static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, | 
 | 				 size_t count, loff_t *data) | 
 | { | 
 | 	int cpu; | 
 | 	long input_arg; | 
 | 	char optstr[64]; | 
 | 	struct ptc_stats *stat; | 
 |  | 
 | 	if (count == 0 || count > sizeof(optstr)) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(optstr, user, count)) | 
 | 		return -EFAULT; | 
 | 	optstr[count - 1] = '\0'; | 
 | 	if (strict_strtol(optstr, 10, &input_arg) < 0) { | 
 | 		printk(KERN_DEBUG "%s is invalid\n", optstr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (input_arg == 0) { | 
 | 		printk(KERN_DEBUG "# cpu:      cpu number\n"); | 
 | 		printk(KERN_DEBUG "Sender statistics:\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"sent:     number of shootdown messages sent\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"stime:    time spent sending messages\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"numuvhubs: number of hubs targeted with shootdown\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"numuvhubs16: number times 16 or more hubs targeted\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"numuvhubs8: number times 8 or more hubs targeted\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"numuvhubs4: number times 4 or more hubs targeted\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"numuvhubs2: number times 2 or more hubs targeted\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"numuvhubs1: number times 1 hub targeted\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"numcpus:  number of cpus targeted with shootdown\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"dto:      number of destination timeouts\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"retries:  destination timeout retries sent\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"rok:   :  destination timeouts successfully retried\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"resetp:   ipi-style resource resets for plugs\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"resett:   ipi-style resource resets for timeouts\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"giveup:   fall-backs to ipi-style shootdowns\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"sto:      number of source timeouts\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"bz:       number of stay-busy's\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"throt:    number times spun in throttle\n"); | 
 | 		printk(KERN_DEBUG "Destination side statistics:\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"recv:     shootdown messages received\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"rtime:    time spent processing messages\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"all:      shootdown all-tlb messages\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"one:      shootdown one-tlb messages\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"mult:     interrupts that found multiple messages\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"none:     interrupts that found no messages\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"retry:    number of retry messages processed\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"canc:     number messages canceled by retries\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"nocan:    number retries that found nothing to cancel\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"reset:    number of ipi-style reset requests processed\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"rcan:     number messages canceled by reset requests\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"disable:  number times use of the BAU was disabled\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"enable:   number times use of the BAU was re-enabled\n"); | 
 | 	} else if (input_arg == -1) { | 
 | 		for_each_present_cpu(cpu) { | 
 | 			stat = &per_cpu(ptcstats, cpu); | 
 | 			memset(stat, 0, sizeof(struct ptc_stats)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static int local_atoi(const char *name) | 
 | { | 
 | 	int val = 0; | 
 |  | 
 | 	for (;; name++) { | 
 | 		switch (*name) { | 
 | 		case '0' ... '9': | 
 | 			val = 10*val+(*name-'0'); | 
 | 			break; | 
 | 		default: | 
 | 			return val; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * set the tunables | 
 |  * 0 values reset them to defaults | 
 |  */ | 
 | static ssize_t tunables_write(struct file *file, const char __user *user, | 
 | 				 size_t count, loff_t *data) | 
 | { | 
 | 	int cpu; | 
 | 	int cnt = 0; | 
 | 	int val; | 
 | 	char *p; | 
 | 	char *q; | 
 | 	char instr[64]; | 
 | 	struct bau_control *bcp; | 
 |  | 
 | 	if (count == 0 || count > sizeof(instr)-1) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(instr, user, count)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	instr[count] = '\0'; | 
 | 	/* count the fields */ | 
 | 	p = instr + strspn(instr, WHITESPACE); | 
 | 	q = p; | 
 | 	for (; *p; p = q + strspn(q, WHITESPACE)) { | 
 | 		q = p + strcspn(p, WHITESPACE); | 
 | 		cnt++; | 
 | 		if (q == p) | 
 | 			break; | 
 | 	} | 
 | 	if (cnt != 9) { | 
 | 		printk(KERN_INFO "bau tunable error: should be 9 numbers\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	p = instr + strspn(instr, WHITESPACE); | 
 | 	q = p; | 
 | 	for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) { | 
 | 		q = p + strcspn(p, WHITESPACE); | 
 | 		val = local_atoi(p); | 
 | 		switch (cnt) { | 
 | 		case 0: | 
 | 			if (val == 0) { | 
 | 				max_bau_concurrent = MAX_BAU_CONCURRENT; | 
 | 				max_bau_concurrent_constant = | 
 | 							MAX_BAU_CONCURRENT; | 
 | 				continue; | 
 | 			} | 
 | 			bcp = &per_cpu(bau_control, smp_processor_id()); | 
 | 			if (val < 1 || val > bcp->cpus_in_uvhub) { | 
 | 				printk(KERN_DEBUG | 
 | 				"Error: BAU max concurrent %d is invalid\n", | 
 | 				val); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			max_bau_concurrent = val; | 
 | 			max_bau_concurrent_constant = val; | 
 | 			continue; | 
 | 		case 1: | 
 | 			if (val == 0) | 
 | 				plugged_delay = PLUGGED_DELAY; | 
 | 			else | 
 | 				plugged_delay = val; | 
 | 			continue; | 
 | 		case 2: | 
 | 			if (val == 0) | 
 | 				plugsb4reset = PLUGSB4RESET; | 
 | 			else | 
 | 				plugsb4reset = val; | 
 | 			continue; | 
 | 		case 3: | 
 | 			if (val == 0) | 
 | 				timeoutsb4reset = TIMEOUTSB4RESET; | 
 | 			else | 
 | 				timeoutsb4reset = val; | 
 | 			continue; | 
 | 		case 4: | 
 | 			if (val == 0) | 
 | 				ipi_reset_limit = IPI_RESET_LIMIT; | 
 | 			else | 
 | 				ipi_reset_limit = val; | 
 | 			continue; | 
 | 		case 5: | 
 | 			if (val == 0) | 
 | 				complete_threshold = COMPLETE_THRESHOLD; | 
 | 			else | 
 | 				complete_threshold = val; | 
 | 			continue; | 
 | 		case 6: | 
 | 			if (val == 0) | 
 | 				congested_response_us = CONGESTED_RESPONSE_US; | 
 | 			else | 
 | 				congested_response_us = val; | 
 | 			continue; | 
 | 		case 7: | 
 | 			if (val == 0) | 
 | 				congested_reps = CONGESTED_REPS; | 
 | 			else | 
 | 				congested_reps = val; | 
 | 			continue; | 
 | 		case 8: | 
 | 			if (val == 0) | 
 | 				congested_period = CONGESTED_PERIOD; | 
 | 			else | 
 | 				congested_period = val; | 
 | 			continue; | 
 | 		} | 
 | 		if (q == p) | 
 | 			break; | 
 | 	} | 
 | 	for_each_present_cpu(cpu) { | 
 | 		bcp = &per_cpu(bau_control, cpu); | 
 | 		bcp->max_bau_concurrent = max_bau_concurrent; | 
 | 		bcp->max_bau_concurrent_constant = max_bau_concurrent; | 
 | 		bcp->plugged_delay = plugged_delay; | 
 | 		bcp->plugsb4reset = plugsb4reset; | 
 | 		bcp->timeoutsb4reset = timeoutsb4reset; | 
 | 		bcp->ipi_reset_limit = ipi_reset_limit; | 
 | 		bcp->complete_threshold = complete_threshold; | 
 | 		bcp->congested_response_us = congested_response_us; | 
 | 		bcp->congested_reps = congested_reps; | 
 | 		bcp->congested_period = congested_period; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static const struct seq_operations uv_ptc_seq_ops = { | 
 | 	.start		= uv_ptc_seq_start, | 
 | 	.next		= uv_ptc_seq_next, | 
 | 	.stop		= uv_ptc_seq_stop, | 
 | 	.show		= uv_ptc_seq_show | 
 | }; | 
 |  | 
 | static int uv_ptc_proc_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &uv_ptc_seq_ops); | 
 | } | 
 |  | 
 | static int tunables_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations proc_uv_ptc_operations = { | 
 | 	.open		= uv_ptc_proc_open, | 
 | 	.read		= seq_read, | 
 | 	.write		= uv_ptc_proc_write, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static const struct file_operations tunables_fops = { | 
 | 	.open		= tunables_open, | 
 | 	.read		= tunables_read, | 
 | 	.write		= tunables_write, | 
 | }; | 
 |  | 
 | static int __init uv_ptc_init(void) | 
 | { | 
 | 	struct proc_dir_entry *proc_uv_ptc; | 
 |  | 
 | 	if (!is_uv_system()) | 
 | 		return 0; | 
 |  | 
 | 	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL, | 
 | 				  &proc_uv_ptc_operations); | 
 | 	if (!proc_uv_ptc) { | 
 | 		printk(KERN_ERR "unable to create %s proc entry\n", | 
 | 		       UV_PTC_BASENAME); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL); | 
 | 	if (!tunables_dir) { | 
 | 		printk(KERN_ERR "unable to create debugfs directory %s\n", | 
 | 		       UV_BAU_TUNABLES_DIR); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, | 
 | 			tunables_dir, NULL, &tunables_fops); | 
 | 	if (!tunables_file) { | 
 | 		printk(KERN_ERR "unable to create debugfs file %s\n", | 
 | 		       UV_BAU_TUNABLES_FILE); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * initialize the sending side's sending buffers | 
 |  */ | 
 | static void | 
 | uv_activation_descriptor_init(int node, int pnode) | 
 | { | 
 | 	int i; | 
 | 	int cpu; | 
 | 	unsigned long pa; | 
 | 	unsigned long m; | 
 | 	unsigned long n; | 
 | 	struct bau_desc *bau_desc; | 
 | 	struct bau_desc *bd2; | 
 | 	struct bau_control *bcp; | 
 |  | 
 | 	/* | 
 | 	 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) | 
 | 	 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub | 
 | 	 */ | 
 | 	bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)* | 
 | 		UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); | 
 | 	BUG_ON(!bau_desc); | 
 |  | 
 | 	pa = uv_gpa(bau_desc); /* need the real nasid*/ | 
 | 	n = pa >> uv_nshift; | 
 | 	m = pa & uv_mmask; | 
 |  | 
 | 	uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, | 
 | 			      (n << UV_DESC_BASE_PNODE_SHIFT | m)); | 
 |  | 
 | 	/* | 
 | 	 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each | 
 | 	 * cpu even though we only use the first one; one descriptor can | 
 | 	 * describe a broadcast to 256 uv hubs. | 
 | 	 */ | 
 | 	for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); | 
 | 		i++, bd2++) { | 
 | 		memset(bd2, 0, sizeof(struct bau_desc)); | 
 | 		bd2->header.sw_ack_flag = 1; | 
 | 		/* | 
 | 		 * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub | 
 | 		 * in the partition. The bit map will indicate uvhub numbers, | 
 | 		 * which are 0-N in a partition. Pnodes are unique system-wide. | 
 | 		 */ | 
 | 		bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1; | 
 | 		bd2->header.dest_subnodeid = 0x10; /* the LB */ | 
 | 		bd2->header.command = UV_NET_ENDPOINT_INTD; | 
 | 		bd2->header.int_both = 1; | 
 | 		/* | 
 | 		 * all others need to be set to zero: | 
 | 		 *   fairness chaining multilevel count replied_to | 
 | 		 */ | 
 | 	} | 
 | 	for_each_present_cpu(cpu) { | 
 | 		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) | 
 | 			continue; | 
 | 		bcp = &per_cpu(bau_control, cpu); | 
 | 		bcp->descriptor_base = bau_desc; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * initialize the destination side's receiving buffers | 
 |  * entered for each uvhub in the partition | 
 |  * - node is first node (kernel memory notion) on the uvhub | 
 |  * - pnode is the uvhub's physical identifier | 
 |  */ | 
 | static void | 
 | uv_payload_queue_init(int node, int pnode) | 
 | { | 
 | 	int pn; | 
 | 	int cpu; | 
 | 	char *cp; | 
 | 	unsigned long pa; | 
 | 	struct bau_payload_queue_entry *pqp; | 
 | 	struct bau_payload_queue_entry *pqp_malloc; | 
 | 	struct bau_control *bcp; | 
 |  | 
 | 	pqp = (struct bau_payload_queue_entry *) kmalloc_node( | 
 | 		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), | 
 | 		GFP_KERNEL, node); | 
 | 	BUG_ON(!pqp); | 
 | 	pqp_malloc = pqp; | 
 |  | 
 | 	cp = (char *)pqp + 31; | 
 | 	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); | 
 |  | 
 | 	for_each_present_cpu(cpu) { | 
 | 		if (pnode != uv_cpu_to_pnode(cpu)) | 
 | 			continue; | 
 | 		/* for every cpu on this pnode: */ | 
 | 		bcp = &per_cpu(bau_control, cpu); | 
 | 		bcp->va_queue_first = pqp; | 
 | 		bcp->bau_msg_head = pqp; | 
 | 		bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1); | 
 | 	} | 
 | 	/* | 
 | 	 * need the pnode of where the memory was really allocated | 
 | 	 */ | 
 | 	pa = uv_gpa(pqp); | 
 | 	pn = pa >> uv_nshift; | 
 | 	uv_write_global_mmr64(pnode, | 
 | 			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, | 
 | 			      ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | | 
 | 			      uv_physnodeaddr(pqp)); | 
 | 	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, | 
 | 			      uv_physnodeaddr(pqp)); | 
 | 	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, | 
 | 			      (unsigned long) | 
 | 			      uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1))); | 
 | 	/* in effect, all msg_type's are set to MSG_NOOP */ | 
 | 	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialization of each UV hub's structures | 
 |  */ | 
 | static void __init uv_init_uvhub(int uvhub, int vector) | 
 | { | 
 | 	int node; | 
 | 	int pnode; | 
 | 	unsigned long apicid; | 
 |  | 
 | 	node = uvhub_to_first_node(uvhub); | 
 | 	pnode = uv_blade_to_pnode(uvhub); | 
 | 	uv_activation_descriptor_init(node, pnode); | 
 | 	uv_payload_queue_init(node, pnode); | 
 | 	/* | 
 | 	 * the below initialization can't be in firmware because the | 
 | 	 * messaging IRQ will be determined by the OS | 
 | 	 */ | 
 | 	apicid = uvhub_to_first_apicid(uvhub); | 
 | 	uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, | 
 | 				      ((apicid << 32) | vector)); | 
 | } | 
 |  | 
 | /* | 
 |  * We will set BAU_MISC_CONTROL with a timeout period. | 
 |  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT. | 
 |  * So the destination timeout period has be be calculated from them. | 
 |  */ | 
 | static int | 
 | calculate_destination_timeout(void) | 
 | { | 
 | 	unsigned long mmr_image; | 
 | 	int mult1; | 
 | 	int mult2; | 
 | 	int index; | 
 | 	int base; | 
 | 	int ret; | 
 | 	unsigned long ts_ns; | 
 |  | 
 | 	mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK; | 
 | 	mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL); | 
 | 	index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK; | 
 | 	mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT); | 
 | 	mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK; | 
 | 	base = timeout_base_ns[index]; | 
 | 	ts_ns = base * mult1 * mult2; | 
 | 	ret = ts_ns / 1000; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * initialize the bau_control structure for each cpu | 
 |  */ | 
 | static void __init uv_init_per_cpu(int nuvhubs) | 
 | { | 
 | 	int i; | 
 | 	int cpu; | 
 | 	int pnode; | 
 | 	int uvhub; | 
 | 	int have_hmaster; | 
 | 	short socket = 0; | 
 | 	unsigned short socket_mask; | 
 | 	unsigned char *uvhub_mask; | 
 | 	struct bau_control *bcp; | 
 | 	struct uvhub_desc *bdp; | 
 | 	struct socket_desc *sdp; | 
 | 	struct bau_control *hmaster = NULL; | 
 | 	struct bau_control *smaster = NULL; | 
 | 	struct socket_desc { | 
 | 		short num_cpus; | 
 | 		short cpu_number[16]; | 
 | 	}; | 
 | 	struct uvhub_desc { | 
 | 		unsigned short socket_mask; | 
 | 		short num_cpus; | 
 | 		short uvhub; | 
 | 		short pnode; | 
 | 		struct socket_desc socket[2]; | 
 | 	}; | 
 | 	struct uvhub_desc *uvhub_descs; | 
 |  | 
 | 	timeout_us = calculate_destination_timeout(); | 
 |  | 
 | 	uvhub_descs = (struct uvhub_desc *) | 
 | 		kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); | 
 | 	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); | 
 | 	uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL); | 
 | 	for_each_present_cpu(cpu) { | 
 | 		bcp = &per_cpu(bau_control, cpu); | 
 | 		memset(bcp, 0, sizeof(struct bau_control)); | 
 | 		pnode = uv_cpu_hub_info(cpu)->pnode; | 
 | 		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; | 
 | 		*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8)); | 
 | 		bdp = &uvhub_descs[uvhub]; | 
 | 		bdp->num_cpus++; | 
 | 		bdp->uvhub = uvhub; | 
 | 		bdp->pnode = pnode; | 
 | 		/* kludge: 'assuming' one node per socket, and assuming that | 
 | 		   disabling a socket just leaves a gap in node numbers */ | 
 | 		socket = (cpu_to_node(cpu) & 1); | 
 | 		bdp->socket_mask |= (1 << socket); | 
 | 		sdp = &bdp->socket[socket]; | 
 | 		sdp->cpu_number[sdp->num_cpus] = cpu; | 
 | 		sdp->num_cpus++; | 
 | 	} | 
 | 	for (uvhub = 0; uvhub < nuvhubs; uvhub++) { | 
 | 		if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8)))) | 
 | 			continue; | 
 | 		have_hmaster = 0; | 
 | 		bdp = &uvhub_descs[uvhub]; | 
 | 		socket_mask = bdp->socket_mask; | 
 | 		socket = 0; | 
 | 		while (socket_mask) { | 
 | 			if (!(socket_mask & 1)) | 
 | 				goto nextsocket; | 
 | 			sdp = &bdp->socket[socket]; | 
 | 			for (i = 0; i < sdp->num_cpus; i++) { | 
 | 				cpu = sdp->cpu_number[i]; | 
 | 				bcp = &per_cpu(bau_control, cpu); | 
 | 				bcp->cpu = cpu; | 
 | 				if (i == 0) { | 
 | 					smaster = bcp; | 
 | 					if (!have_hmaster) { | 
 | 						have_hmaster++; | 
 | 						hmaster = bcp; | 
 | 					} | 
 | 				} | 
 | 				bcp->cpus_in_uvhub = bdp->num_cpus; | 
 | 				bcp->cpus_in_socket = sdp->num_cpus; | 
 | 				bcp->socket_master = smaster; | 
 | 				bcp->uvhub = bdp->uvhub; | 
 | 				bcp->uvhub_master = hmaster; | 
 | 				bcp->uvhub_cpu = uv_cpu_hub_info(cpu)-> | 
 | 						blade_processor_id; | 
 | 			} | 
 | nextsocket: | 
 | 			socket++; | 
 | 			socket_mask = (socket_mask >> 1); | 
 | 		} | 
 | 	} | 
 | 	kfree(uvhub_descs); | 
 | 	kfree(uvhub_mask); | 
 | 	for_each_present_cpu(cpu) { | 
 | 		bcp = &per_cpu(bau_control, cpu); | 
 | 		bcp->baudisabled = 0; | 
 | 		bcp->statp = &per_cpu(ptcstats, cpu); | 
 | 		/* time interval to catch a hardware stay-busy bug */ | 
 | 		bcp->timeout_interval = microsec_2_cycles(2*timeout_us); | 
 | 		bcp->max_bau_concurrent = max_bau_concurrent; | 
 | 		bcp->max_bau_concurrent_constant = max_bau_concurrent; | 
 | 		bcp->plugged_delay = plugged_delay; | 
 | 		bcp->plugsb4reset = plugsb4reset; | 
 | 		bcp->timeoutsb4reset = timeoutsb4reset; | 
 | 		bcp->ipi_reset_limit = ipi_reset_limit; | 
 | 		bcp->complete_threshold = complete_threshold; | 
 | 		bcp->congested_response_us = congested_response_us; | 
 | 		bcp->congested_reps = congested_reps; | 
 | 		bcp->congested_period = congested_period; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Initialization of BAU-related structures | 
 |  */ | 
 | static int __init uv_bau_init(void) | 
 | { | 
 | 	int uvhub; | 
 | 	int pnode; | 
 | 	int nuvhubs; | 
 | 	int cur_cpu; | 
 | 	int vector; | 
 | 	unsigned long mmr; | 
 |  | 
 | 	if (!is_uv_system()) | 
 | 		return 0; | 
 |  | 
 | 	if (nobau) | 
 | 		return 0; | 
 |  | 
 | 	for_each_possible_cpu(cur_cpu) | 
 | 		zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), | 
 | 				       GFP_KERNEL, cpu_to_node(cur_cpu)); | 
 |  | 
 | 	uv_nshift = uv_hub_info->m_val; | 
 | 	uv_mmask = (1UL << uv_hub_info->m_val) - 1; | 
 | 	nuvhubs = uv_num_possible_blades(); | 
 | 	spin_lock_init(&disable_lock); | 
 | 	congested_cycles = microsec_2_cycles(congested_response_us); | 
 |  | 
 | 	uv_init_per_cpu(nuvhubs); | 
 |  | 
 | 	uv_partition_base_pnode = 0x7fffffff; | 
 | 	for (uvhub = 0; uvhub < nuvhubs; uvhub++) | 
 | 		if (uv_blade_nr_possible_cpus(uvhub) && | 
 | 			(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode)) | 
 | 			uv_partition_base_pnode = uv_blade_to_pnode(uvhub); | 
 |  | 
 | 	vector = UV_BAU_MESSAGE; | 
 | 	for_each_possible_blade(uvhub) | 
 | 		if (uv_blade_nr_possible_cpus(uvhub)) | 
 | 			uv_init_uvhub(uvhub, vector); | 
 |  | 
 | 	uv_enable_timeouts(); | 
 | 	alloc_intr_gate(vector, uv_bau_message_intr1); | 
 |  | 
 | 	for_each_possible_blade(uvhub) { | 
 | 		if (uv_blade_nr_possible_cpus(uvhub)) { | 
 | 			pnode = uv_blade_to_pnode(uvhub); | 
 | 			/* INIT the bau */ | 
 | 			uv_write_global_mmr64(pnode, | 
 | 					UVH_LB_BAU_SB_ACTIVATION_CONTROL, | 
 | 					((unsigned long)1 << 63)); | 
 | 			mmr = 1; /* should be 1 to broadcast to both sockets */ | 
 | 			uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, | 
 | 						mmr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | core_initcall(uv_bau_init); | 
 | fs_initcall(uv_ptc_init); |